

JOURNAL OF KUFA-PHYSICS

journal.uokufa.edu.iq/index.php/jkp/index | ISSN: 2077-5830

Enhancing the Efficiency and Stability for Next-Generation Solar Energy Harvesting

Nagham subhi halboos **adnan falh Hassan

Physics department, faculty of science, kufa university

*Corresponding Author E-mail: naghams.algraiti@student.uokufa.edu.iq adnanf.aljubury@uokufa.edu.iq

ARTICLE INF.

Article history:

Received: 7 MAR., 2025 Revised: 28 MAR., 2025 Accepted: 20 MAY., 2025 Available Online: 28 JUN. 2025

Keywords:

Solar cells, efficiency, titanium dioxide (NPs), electrochemical methods, rhodamine b dye, luminous solar concentrator.

ABSTRACT

Scientific research is swiftly advancing to improve solar cell efficiency as a solution to environmental damage from fossil fuels. This study targets two main strategies: the production of nanostructured titanium dioxide (TiO₂ NPs) through electrochemical methods, chosen for its ease, speed, and costeffectiveness, and the high efficiency of titanium dioxide as a luminous solar concentrator (LSC). X-ray diffraction (XRD), and transmission electron microscopy (TEM) confirmed the formation of titanium dioxide nanorods and spherical particles. The research also utilized Rhodamine B dye only to enhance solar cell efficiency. Combining 50% titanium dioxide with rhodamine dye yielded change in efficiency ($\Delta \eta$) of 70%, whereas individual dye application resulted in $(\Delta \eta)$ of 20% for rhodamine dye. These findings mark significant progress toward clean, efficient, and sustainable energy solutions, highlighting the potential of nanotechnology and innovative dye applications to enhance solar cell performance and reduce environmental impact.

DOI: https://doi.org/10.31257/2018/JKP/2025/v17.i01.18969

تعزيز الكفاءة والاستقرار لحصاد الطاقة الشمسية من الجبل التالي

نغم صبحى حلبوص و عدنان فالح حسن

قسم الفيزياء، كلية العلوم، جامعة الكوفة

الكلمات المفتاحية:

الخلصة

خلايا شمسية . كفاءة ثاني اوكسيد التيتانيوم النانوي والطريقة الكهروكيميائية بصبغة الرودامين ب , مرکز شمسی مضیء

في هذه الدراسـه تم تصنيع جزيئات نانويه كرويه من ثاني اوكسيد التيتانيوم ((TiO2) (72 نانو متر) باستخدام طريقة كهرو كيميائية وتم توصيفها باستخدام حيود الاشعة السينيه (XRD) والمجهر الالكتروني النافذ (TEM) ثم دمجت هذه الجسيمات النانويه مع صبغة الرودامين ب لتصنيع مركز شمسي مضيء (LSC) مصمم لتعزيز كفاءة تحويل الخلايا الشمسيه القائمه على السليكون. حقق خلط 50%من ثاني اوكسيد التيتانيوم (TiO2) مع صبغة رودامين ب تحسنا ملحوظا في الكفاءة $\eta = 1.361$ و $\Delta \eta = 70\%$, متجاوز ا بذلك نسبة 20% الملاحظه مع صبغة الرودامين ب وحده . تبرز هذه النتائج الية التعزيز تأزرية , مما يظهر امكانية تقنية النانووالتكامل الاستيراتيجي للصبغات في تطوير تقنيات الطاقة النظيفة والفعالة والمستدامة .ويؤكد العمل على جدوى الخلايا الشمسيه الكهروضوئية القائمه على ثاني اوكسيد التيتانيوم كحلول مبتكره لتحسين حصاد الطاقة الشمسية مع تقليل البصمات البيئية .

1. INTRODUCTION

Nanoscience has witnessed remarkable advancements over the past three decades, emerging as one of the most impactful scientific disciplines due to its transformative applications across diverse sectors. These include, but are not limited to, industry, agriculture, medicine, national security, and energy management, among other critical fields [1]. Nanomaterials are specifically characterized by structural dimensions within the nanoscale range (1–100 nm). This precise scale provides them with unique properties—such as enhanced chemical reactivity, exceptional electrical conductivity, and mechanical superior strength distinguishing them from conventional materials and enabling their interdisciplinary utility. Their superior surface area, high flexibility and hardness, tensile strength, and superior optical and magnetic properties when compared to their counterparts of bulk materials. All these positive characteristics make nanomaterials the ideal solution to enhance the efficiency of solar cells in general, as they are highly efficient semiconductors, and in particular luminescent solar concentrators (LSC) to enhance light harvesting and reduce light waste [2, 3]. As global efforts are focused to address environmental crises through sustainable energy solutions, photovoltaic (PV) systems have

positioned themselves in an advanced stage in renewable energy innovation, offering scalable pathways to mitigate carbon emissions [4]. The rapid adoption of solar power stems from mounting concerns over the ecological damage caused by conventional fossil fuels, coupled with solar energy's inherent reliability and near-limitless availability. Solar cells, recognized as a practical method for investing this energy, capitalize on Earth's substantial influx. Scientific estimates solar indicate that the atmosphere receives approximately 1367 W/m² of solar irradiance, with global absorption rates reaching 1.8×10¹¹ MW a capacity far exceeding current worldwide energy demands [5]. In solar cell research, titanium dioxide (TiO₂) nanoparticles have garnered significant attention as a multifunctional n-type semiconductor. With a bandgap energy between 3.2 and 3.35 eV, TiO₂ is widely integrated into photocatalysis, electronic devices, and renewable energy systems. Beyond energy applications, its commercial versatility extends to coatings, polymer composites, cosmetic sunscreens, and printing technologies. This material exists in multiple crystalline phases (e.g., anatase, rutile, and brookite) and can adopt both ordered and disordered configurations atomic [6,7].To optimize solar energy utilization and minimize losses, researchers have turned to advanced technologies such as

luminescent solar concentrators (LSC). These systems enhance photovoltaic efficiency by concentrating diffuse sunlight, thereby improving energy while conversion rates reducing material waste a critical advancement in sustainable energy infrastructure[8,9]. Furthermore, Rhodamine B is utilized due to its high molar absorptivity ($\epsilon \approx$ $106,000 \text{ M}^{-1} \text{ cm}^{-1} \text{ in ethanol at } 543$ reported fluorescence nm). The quantum yields (Φ_f) range from 0.3 to 0.66 [10], depending on the solvent. Fluorescence lifetimes (c) also vary significantly with the solvent, ranging from 3.2 ns in octanol to just 1.5 ns in water. This variation is primarily due to changes in non-radiative relaxation rates. The fundamental reason behind this is not well understood, but one clear trend is that as the polarity of the solvent mixture increases, the quantum yield of Rhodamine B decreases. Some studies have also identified solvent viscosity as a contributing factor in Rhodamine B solvent sensitivity; in high viscosity solvents, the motion of the flexible diethylamino groups on the xanthene ring is restricted, potentially lowering non-radiative decay rates. However, other studies have not found a direct dependence of non-radiative decay rates on solvent viscosity. Specific mode coupling between vibrations of Rhodamine B and those of interacting solvent molecules has also been suggested to explain the large variation in non-radiative decay rate. Additionally, the solvent affects the position of the absorption and emission maxima for Rhodamine B. For cationic Rhodamine B in methanol, these values are 552 nm and 577 nm, respectively, whereas in water, there is a small redshift of the respective maxima to 557 nm and 580 nm. This red-shift is attributed to a greater stabilization of the highly polarizable excited state due to more favorable interactions between the dye and polar solvents, leading to a decrease in the $SO \rightarrow S1$ energy level gap.2[11,12,13]

2. Experimental details:

2.1 Nanofabrication of Titanium Dioxide TiO₂:

Nanofabrication of titanium dioxide TiO₂ is performed using an electrochemical cell. This method is simplicity, characterized bv its productivity, and low cost. Two facing electrodes are immersed in a prepotassium chloride prepared salt solution (KCl), with one electrode larger than the other. The potassium chloride solution was prepared by dissolving (10) g of potassium chloride in (100) ml of deionized water, from which 5 ml were taken. Additionally, the solution contains polyvinylpyrrolidone stabilizer (PVP), helps which to maintain nanoparticle stability and prevent their re-aggregation. This stabilizer was prepared by dissolving (10) g of polyvinylpyrrolidone in (100)ml of deionized water, from which (10) ml were drawn and were added to the cell. The solution volume was then adjusted to 200 ml. Titanium electrodes were immersed and connected to a constant voltage source ranging from 0 to 30 volts, with a current of 0 to 5 amperes. The current was set to 0.05 Am, and the immersion ratio of the electrodes was 1:2. The cell was placed on a hot plate to stir the solution and ensure uniform electrical conductivity. After one hour, the voltage was removed, and the solution is collected, then centrifuged and washed with deionized water, followed by absolute ethanol. The nanoparticles were then dried in an oven at 70 degrees Celsius for one hour. Subsequently, the collected nanomaterial was calcined in a furnace at 700 degrees Celsius for one hour.

2.2 Characterizations of the synthesized TiO₂

The results of X-ray diffraction showed the formation of titanium dioxide nanoparticles, with Miller indices of (111, 101, 103, 004, 112, 200,

105, 211, 213, 116, 200, 107, and 115) for the 2-theta angle ranging from 20 to 80 degrees, forming a tetragonal shape with an average crystal size of 27 nanometers, as shown in the table 1. The Miller indices were plotted against the 2-theta angle on the x-axis and the intensity on the y-axis that shown in figure 2. The results were seen o be matched with the reference card number (JCPDS Card number: 01-073-1764) [14]. Furthermore, the TEM results revealed nanoparticle agglomerations in the forms of spherical-like structures, as seen in the images in Figures 3.

Table 1 X-Ray Diffraction data of TiO₂ NPs.

2-Theta	FWHM	hkl	Geometric shape	D nm
25.692	0.413	101	tetragonal	19.72937
27.806	0.361	110	tetragonal	22.6705
36.476	0.42	101	tetragonal	19.91543
38.192	0.307	110	cubic	27.38406
41.61	0.378	111	tetragonal	22.48262
44.402	0.404	210	tetragonal	21.23863
48.462	0.437	111	cubic	19.93551
54.679	0.882	105	tetragonal	10.13973
55.471	0.441	200	cubic	20.35267
56.983	0.28	220	tetragonal	32.28223
63.074	0.459	002	tetragonal	20.30713
69.192	0.35	211	cubic	27.57365
70.534	0.345	220	tetragonal	28.20302
75.46	0.391	215	tetragonal	25.68946
76.37	0.261	202	tetragonal	38.72413

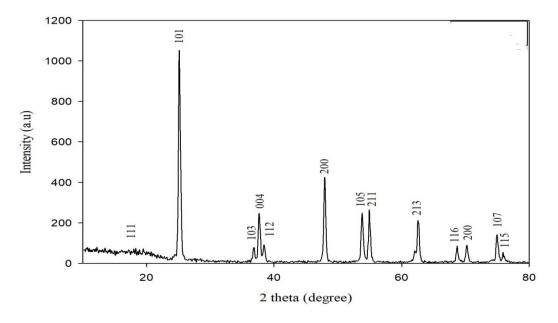


Figure.1 X-Ray Diffraction pattern of TiO₂ NPs.

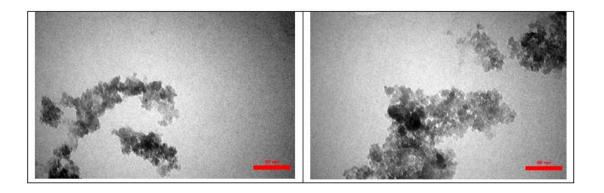
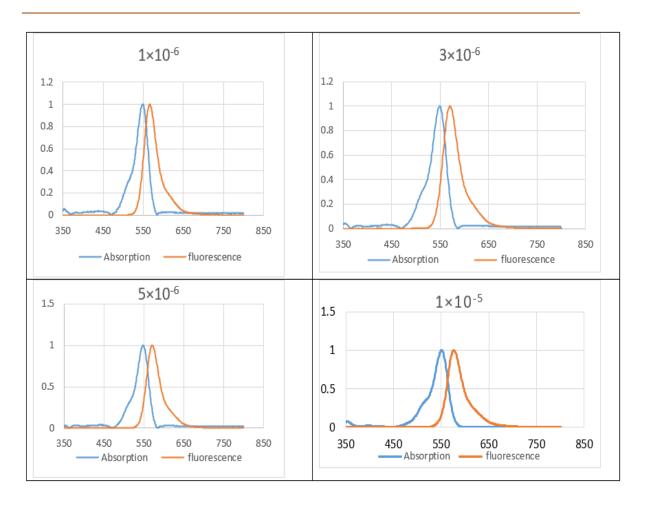



Figure.2 TEM images of TiO₂ NPs.

2.3 The quantum efficiency Φ_{fm} for five concentrations of Rhodamine B Dye

Five concentrations of Rhodamine B dye (BDH Chemicals Ltd Poole England) were prepared, namely (1×10⁻⁵M, 2×10⁻⁵M, 5×10⁻⁵M, 1×10⁻⁴M, 3×10⁻⁴M). The absorption spectra were recorded using a UV-visible spectrophotometer (SCINCO mega-2100) and the fluorescence spectra

using a spectrofluorometer (F96PRO from Shanghai Kingdak). Figure (4) included the graph from which the followings were calculated: maximum wavelength of absorbance (λ_{Amax}), maximum wavelength of fluorescence (λ_{Fmax}), Stokes shift ($\Delta\lambda = \lambda_{Fmax} - \lambda_{Amax}$), fluorescence lifetime (τ_{fm}), radiative lifetime (τ_{fm}) for all five prepared concentrations.

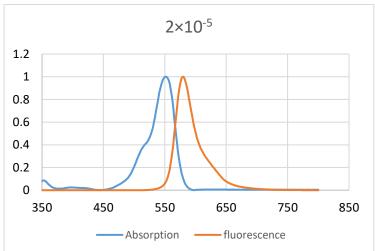


Figure.3 Absorption and fluorescence plots for the five concentrations.

Table. 2 Absorption and fluorescence parameters.

Concentration (mol/L)	λAm ax (nm)	λ Fma x (nm)	Stock Shift Δλ=λflo-λabs (nm)	The radiated Life time τfm(n sec)	The fluorescence Life time τf (n sec)	The quantum efficiency% Φfm
1×10-6	550	566	16	3.8948	3.8309	98.36
3×10 ⁻⁶	549	570	21	3.8575	3.8205	95.55
5×10 ⁻⁶	548	571	24	3.9869	3.8617	96.86
1×10 ⁻⁵	551	576	25	3.8251	3.6549	99.04
2×10 ⁻⁵	551	580	29	3.4525	3.0548	88.48

3. Results and Discussion

Before utilizing the prepared LSC in this study, the solar cell exhibited a baseline efficiency of 3.45%. Following the integration of the Rhodamine B dye-TiO₂ the efficiency system, significantly enhanced to 77%, driven by the synergistic improvements in light harvesting and charge dynamics. The Stokes shift results for Rhodamine B dye exhibited values ranging from 16 to 29 for the concentrations listed in Table 2, indicating excellent quantum outcomes. with efficiency concentration of 1×10⁻⁵ recorded the highest quantum efficiency of 99.04%, highlighting the first improvement. The second improvement was achieved by

adding 50% of previously prepared and characterized nanometric titanium dioxide (TiO₂) to the dye, which significantly enhanced the solar cell conversion efficiency, with concentration of 2×10⁻⁵ achieving the highest efficiency of 70.76%, as shown in Table 4. Additionally, the increase in efficiency can be attributed Rhodamine B dye's broad spectral range, extending from 450 to 575 nm for visible light. The presence of the nanomaterial improved solar conversion efficiency by scattering incident light onto the light center, thereby increasing light harvesting toward the solar cell and reducing light losses.

Table 3 solar cell parameters for Rhodamine B only

Concentration (mol/L)	Imax (mA)	Vmax (Volt)	FF	η%	Δη%
1×10 ⁻⁵	360.7	0.414	0.658	0.957	20.07
2×10 ⁻⁵	321.9	0.455	0.508	0.938	17.69

5×10 ⁻⁶	307.6	0.429	0.730	0.873	9.53
3×10 ⁻⁶	284.9	0.469	0.631	0.915	14.88
1×10 ⁻⁶	339.3	0.429	0.598	0.925	16.06

Table 4 solar cell parameters for Rhodamine B with TiO₂ NPS

Concentration (mol/L)	Imax (mA)	Vmax (Volt)	FF	η%	Δη%
1×10 ⁻⁵	514.5	0.403	0.587	1.329	66.75
2×10 ⁻⁵	506.8	0.419	0.642	1.361	70.76
5×10 ⁻⁶	460.1	0.452	0.644	1.011	26.86
3×10 ⁻⁶	513.0	0.423	0.627	1.025	28.67
1×10 ⁻⁶	475.8	0.432	0.542	1.070	34.30

The addition of 50% titanium dioxide (TiO₂)nanoparticles combined with rhodamine dye to a silicon-based solar cell achieves a 77% efficiency enhancement through synergistic mechanisms: enhanced light absorption occurs rhodamine as captures wavelengths, underutilized visible surface while TiO₂ high improves dye binding and photon harvesting via photosensitization, further supported by reduced reflective loss due to TiO2 high refractive index [15]. **Efficient** transfer charge was enabled by TiO₂ crystalline structure and conduction band alignment, which shuttles excited electrons rapidly from the dye to silicon, minimizing electron-hole recombination [16,17]. This is complemented by TiO₂ nano-scale properties, which amplify photocatalytic activity, electron-hole pair generation, light scattering to prolong photon interaction. Crucially, the 50% TiO₂ ratio optimizes light utilization and charge transport without introducing resistance or light-blocking effects [18], collectively overcoming silicon's inherent spectral limitations and charge losses deliver the to

observed 77% efficiency improvement.

4.Conclusion

The resulted data revealed that electrochemical method adopted in this work was seen to be successful in synthesizing nanomaterials with a size scale led, together with using a rhodamine B dye in luminous solar concentrator (LSC) , to a marked increase in solar cell efficiency.

Reference

- [1] Rajput, A., Shevalkar, G., Pardeshi, K., & Pingale, P. (2023). Computational nanoscience and technology. *OpenNano*, 12, 100147.
- [2] Noah, N. M., & Ndangili, P. M. (2022). Green synthesis of nanomaterials from sustainable materials for biosensors and drug delivery. Sensors International, 3, 100166.
- [3] Kumar, A., Jayeoye, T. J., Mohite, P., Singh, S., Rajput, T., Munde, S., Eze, F. N., Chidrawar, V. R., Puri, A., & Prajapati, B. G. (2024). Sustainable and consumer-centric nanotechnology-based materials: An update on the multifaceted applications, risks and tremendous opportunities. Nano-Structures & Nano-Objects, 38, 101148.
- [4] Bhati, N., Nazeeruddin, M. K., & Maréchal, F. (2024). Environmental impacts as the key objectives for perovskite

- solar cells optimization. *Energy*, 299, 131492.
- [5] Oni, A. M., Mohsin, A. S., Rahman, M. M., & Bhuian, M. B. H. (2024).A comprehensive solar evaluation of cell technologies, associated loss mechanisms, and efficiency enhancement strategies for photovoltaic cells. Energy Reports, 11, 3345-3366.
- [6]. Shabbir, S., Kulyar, M. F.-e.-A., Bhutta, Z. A., Boruah, P., & Asif, M. (2021). Toxicological consequences of titanium dioxide nanoparticles (TiO2NPs) and their jeopardy to human population. *Bionanoscience*, 11(2), 621-632.
- [7] Ahmad, M. M., Mushtaq, S., Al Qahtani, H. S., Sedky, A., & M. W. (2021).Alam, Investigation of TiO2 nanoparticles synthesized by sol-gel method for effectual photodegradation, oxidation and reduction reaction. Crystals, 11(12), 1456.
- [8] Ejaz, A., Babar, H., Ali, H. M., Jamil, F., Janjua, M. M., Fattah, I. R., Said, Z., & Li, C. (2021). Concentrated photovoltaics as light harvesters: Outlook, recent progress, and challenges. Sustainable Energy Technologies and Assessments, 46, 101199.
- [9] Khalid, M., Shanks, K., Ghosh, A., Tahir, A., Sundaram, S., &

- Mallick, T. K. (2021). Temperature regulation of concentrating photovoltaic window using argon gas and polymer dispersed liquid crystal films. *Renewable Energy*, 164, 96-108.
- [10] Arbeloa, I. L., & Rohatgi-Mukherjee, K. (1986). Solvent effect on photophysics of the molecular forms of rhodamine B. Solvation models and spectroscopic parameters. *Chemical physics letters*, 128(5-6), 474-479.
- [11] Magde, D., Rojas, G. E., & Seybold, P. G. (1999). Solvent dependence of the fluorescence lifetimes of xanthene dyes. *Photochemistry* and *photobiology*, 70(5), 737-744.
- [12] Snare, M., Treloar, F., Ghiggino, K., & Thistlethwaite, P. (1982).
 The photophysics of rhodamine B. *Journal of Photochemistry*, 18(4), 335-346.
- [13] Chang, T. L., & Cheung, H. C. (1992). Solvent effects on the photoisomerization rates of the zwitterionic and the cationic forms of rhodamine B in protic solvents. *The Journal of Physical Chemistry*, 96(12), 4874-4878.
- [14] Singh, A., Goyal, V., Singh, J., & Rawat, M. (2020). Structural, morphological, optical and photocatalytic properties of green synthesized TiO2 NPs. *Current Research in Green and Sustainable Chemistry*, 3, 100033. [15] Kim, M.-R.,

- Pham, T. C., Yang, H.-S., Park, S. H., Yang, S., Park, M., Lee, S. G., & Lee, S. (2023). Photovoltaic effects of dyesensitized solar cells using double-layered TiO2 photoelectrodes and pyrazine-based photosensitizers. *ACS Omega*, 8(16), 14699-14709.
- [16] Kaur, H., Kumar, S., Kaushal, S., Badru, R., Singh, P. P., & Pugazhendhi, A. (2023). Highly customized porous TiO2-PANI nanoparticles with excellent photocatalytic efficiency for dye degradation. *Environmental Research*, 225, 114960.
- [17] Alduhaidahawi, A. M. J., & Ahmed, A. A. (2024). Synthesis of TiO 2/ZnO Nanocomposites by the Electrochemical Method and Their Application in Dye-Sensitized Solar Cells (DSSCs). *Indonesian Journal of Chemistry*, 24(1), 228-237.
- [18] Ahmed, A. A., & JreoAlduhaidahawi, M. (2024). Fabrication of a New Dye-Sensitized Solar Cell Using CuO/TiO2 Nanocomposite Synthesized via an Electrochemical Technique. Pakistan Journal of Analytical & Environmental Chemistry, *25*(1), 57.