
Mohsen et al.                                             Iraqi Journal of Science, 2021, Vol. 62, No. 1, pp: 295-307 
                  DOI: 10.24996/ijs.2021.62.1.28 

 

__________________________ 
Email: aamuhseen@gmail.com* 

295 

 
A mathematical Model for the Dynamics of COVID-19 Pandemy Involving 

the Infective Immigrants 
 

Ahmed A. Mohsen
1,2

, Hassan F. AL-Husseiny
3
, Khalid Hattaf

4,5
, Bilal Boulfoul

6 

1
 Department of Mathematics, College of Education for Pure Science (Ibn Al-Haitham), University of Baghdad, 

Iraq 
2
 Ministry of Education, Rusafa/1, Baghdad-Iraq.  

3 
Department of Mathematics, College of Science, University of Baghdad 

4 
Centre Regional desMetiers de l’Education et de la Formation (CRMEF), 20340 Derb Ghalef, Casablanca, 

Morocco. 
5
 Laboratory of Analysis, Modeling and Simulation (LAMS), Faculty of Sciences Ben M’sik, Hassan II 

University of Casablanca, P.O Box 7955 Sidi Othman, Casablanca, Morocco.  
6
 Department of Petrochemical and Process Engineering, Faculty of Technology, University of 20 August 1955-

Skikda, B. P. 26, El Hadaiek Road, Skikda, 21000, Algeria.  
 

Received: 22/10/2020                                      Accepted: 30/11/2020 

Abstract 
   ‎  Since the first outbreak in Wuhan, China, in December 31, 2019, COVID-19    

pandemy  ‎has been spreading to many countries in the world. The ongoing COVID-

19 pandemy has caused a ‎major global crisis, with 554,767 total confirmed cases, 

484,570 total recovered cases, and ‎‎12,306 deaths in Iraq as of February 2, 2020. In 

the absence of any effective therapeutics or drugs ‎and with an unknown 

epidemiological life cycle, predictive mathematical models can aid in ‎the 

understanding of both control and management of coronavirus disease. Among the 

important ‎factors that helped the rapid spread of the epidemy are immigration, 

travelers, foreign workers, and foreign students. In this work, we develop a 

mathematical model to study the dynamical ‎behavior of COVID-19 pandemy, 

involving immigrants' effects with the possibility of re-infection. ‎Firstly, we studied 

the positivity and roundedness of the solution of the proposed model. The 

stability ‎results of the model at the disease-free equilibrium point were presented 

when     . Further, it was proven that the pandemic equilibrium point will 

persist uniformly when     . Moreover, we ‎confirmed the occurrence of the local 

bifurcation (saddle-node, pitchfork, and transcritical). Finally, ‎theoretical analysis 

and numerical results were shown to be consistent.  

 
Keywords: COVID-19, Coronavirus, Immigrants, Mathematical model, Stability, 
Local bifurcation. 
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 الخلاصة
في مجيشة ووهان في الرين ، وبعج ذلك انتذخ إلى  COVID-19 تفذى جائحة 2219ديدسبخ  31مشح      

أزمة عالسية كبيخة ، حيث بمغ إجسالي السدتسخ في حجوث  COVID-19 العجيج من دول العالم. تدبب جائحة
حالة وفاة في العخاق اعتبارًا  12,326حالة، و  484,572حالة، وتعافي إجسالي  554,767الحالات السؤكجة 

. في غياب أي علاجات أو عقاقيخ فعالة. مع وجهد دورة حياة وبائية غيخ معخوفة، يسكن 2222فبخايخ  2من 
داعج في فهم كل من الديطخة عمى وباء فيخوس كهرونا وإدارته. لحا، فإن احج لمشساذج الخياضية التشبؤية أن ت

العهامل السهسة التي ساعجت عمى الانتذار الدخيع لمهباء هي الهجخة والسدافخين والعسال والطلاب الأجانب. 
تأثيخ  الحي يتزسن COVID-19 في هحا العسل، قسشا بتطهيخ إنسهذج رياضي لجراسة الدمهك الجيشامي لهباء

السهاجخين مع إمكانية الإصابة مخة أخخى. أولًا ، قسشا بجراسة الإيجابية والقيهد لحل الإنسهذج السقتخح.  ناقذشا 
، وعلاوة عمى ذلك ثبت أن      نتائج الاستقخار للإنسهذج عشج نقطة التهازن الخالية من السخض عشجما

لاوة عمى ذلك، ناقذشا حجوث التفخعات السحمية ع.      نقطة تهازن الجائحة ستدتسخ بذكل مهحج عشجما
 .ايزاً. وأخيخًا، يظهخ التحميل الشظخي والشتائج العجدية متدقة

1. Introduction 

      In December 2019, the spread of nCoV-19 disease commenced in Wuhan, China. The World 

Health Organization (WHO) has classified the new disease as pandemic on March 11, 2020. Recently, 

COVID-19 has spread fast to many countries in all continents, such as United States, Brazil, India, 

Russia and South Africa. The outbreak of COVID-19 has become a globally public health concern the 

in medical community, as the virus is spreading around the world [1, 2]. Initially, the Iraqi government 

adopted a social distancing strategy and lockdown in all provinces after the discovery of the first 

infection to a traveling student on February 2, 2020 [3]. 

     The migration factor is one of the reasons that help the spread of the epidemy, especially if the 

immigrant is infected but without symptoms. This case is considered a dangerous source of spreading 

the epidemy. For example, Naji and Mohsen performed a stability analysis on an SVIR epidemic 

model, involving immigrants   [4]. Kiran et al. suggested the modeling of SARS-CoV2 with effects of 

population migration and punctuated lockdown [5].  

     A COVID‑19 is a new disease; it spreads between people more easily than influenza. People are 

most infectious when they show symptoms (even mild or non-specific symptoms), but may be 

infectious for up to two days before symptoms appear (pre-symptomatic transmission). They remain 

infectious for an estimated 7 to 12 days in moderate cases and an average of two weeks in severe 

cases. People can also transmit the virus without showing any symptom (asymptomatic transmission); 

some studies found that 40–45% of infected people are asymptomatic [6-8].    

   Also, sputum and saliva carry large amounts of virus. Thus, the direct contact routes such as kissing, 

intimate contact, and speaking are sources to transmit the virus (Figure-1). The virus may occur in 

breast milk, but whether it is transmittable to the baby is unknown [9]. 
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Figure 1-Spread of coronavirus by saliva due to speaking and coughing 

 

    Obviously, COVID-19 has become a global disease. Thus, several researchers suggested 

epidemiological mathematical models to understand the dynamics of the spread of the epidemy, as in 

the study of Mohsen at el. [10]. They proposed and analyzed a modeling of COVID-19 with media 

coverage effects and quarantine strategy to control the spread of the disease. Mamo [11] developed a 

mathematical model for transmission dynamics of COVID-19 propagation with public health 

intervention. Yang and Wang [12] suggested a mathematical model for the novel coronavirus epidemy 

in Wuhan, China. Samui et al. [13] proposed a mathematical model for COVID-19 in India. Garba et 

al. [14] studied a model of  COVID-19 pandemic outbreak in South Africa.  

In this paper, a mathematical model that describes the dynamics of COVID-19 pandemy, involving 

immigrants' effects with the possibility of re-infection, is proposed and studied. The order of this paper 

is as follows; the mathematical modeling of the novel coronavirus is shown in Section 2. Some basic 

properties of the model (positivity, boundedness of solution, calculated basic reproduction number, 

and existence equilibrium points) are discussed in Section 3. The local stability analysis is studied by 

using Gersgorin’s theorem in Section 4. By using Castillo-Chavez method and Lyapunov function, the 

global stability of the proposed model at all equilibrium points was analyzed in Section 5. The 

occurrence of local bifurcation near the disease-free equilibrium point is discussed in Section 6. 

Finally, in Section 7, the effects of varying all the system parameters are investigated using numerical 

simulation.         

 2. The Model Formulation 
      At the beginning of Coronavirus outbreak, there were many countries that did not record  any 

infection with the epidemy. However, as their citizens, travelers, or immigrants returned, the  infections 

began to increase. Accordingly, one of the main reasons for the spread of the epidemic is the  migration 

factor. For example, in Iraq, the first infection case appeared was that of a  foreign student who was 

carrying the virus, but without symptoms. On the other hand, most of the  mathematical models that 

have studied the spread of Coronavirus depended on the basic model  of SIR- type of disease, which 

implies that the patient acquires permanent immunity against the virus after  recovery. Meanwhile, 

there are many reports that prove the opposite, meaning that a  person infected with the virus acquires 

temporary immunity against the virus. Therefore, in this paper, a  mathematical model that simulates 

the dynamics of coronavirus pandemy is proposed. It is assumed that the model taking into account the 

effect of immigrants. In addition, loss of immunity to coronavirus after recovery is also included. In 

this work, we create  a mathematical model that describes COVID-19 transmission. The model 

considers a total population of   on time   such that  ( )   ( )   ( )   ( )   ( )   . We 

assume that the total population is divided into to five compartments, which are:  ( ) individuals are 

susceptible for being exposed,  ( ) susceptibility due to direct contact with asymptomatic individuals 

(Carriers) and symptomatic individuals (Infected), denoted by  ( ) and  ( )  respectively. The number 

of individuals  ( ) represents those carriers and infected people, respectively, who have recovered , 

and can be reinfected. Thus, the assumption can be written by the following set of differential 

equations,  
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     under the initial point condition  ( )     ( )     ( )     ( )     ( )   . The 

recruitment rate of the population in model (1) is represented by  , while   is the number of 

immigrants with fraction rate   ,   -, and   is the infection rate. 
    

    
 (with      and    ) 

denotes the saturated contact rate.   is the natural death rate of the population, and   is the death rate 

from carrier and infected individuals due to disease.   is the transmission rate between the number of 

exposed people and the number of all carriers and infected people, with a fraction rate of   ,   -  
         are quarantine rates of exposed and infected subjects, respectively.          are recovery 

rates of carrier and infected subjects, respectively.     is the rate of immunity loss and return to 

susceptibility. 

3. Basic analysis of the model (1) 

3.1 Positivity and boundedness 

   In this section, we discuss the case when the solution of model (1) is non-negative, as in the 

following theorem. 

Theorem 1: All solutions  ( )  ( )  ( )  ( )  ( ) of model (1), starting from positive initial 

conditions, remain positive for all      
Proof: We have 

 ̇|
   

   (   )                                   
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  |̇
   

 (   )                                                 

    ̇|
   

                                                         

 

 

Since all the above rates are non-negative, then,  clearly, it is easy to show that the region is positive.                                           

       
 

For the boundedness of solutions, we consider the following function 

 ( )   ( )   ( )   ( )   ( )   ( ). 

Then, taking the time derivative of  ( ) along the solution of model (1) gives 

 
  

  
               

  

  
          

where 

            *                 +  
Now, it is easy to verify that the solution of the above linear differential inequalities can be written as 

 ( )   
   

 
 (   

   

 
 )       

where    ( ( )  ( )  ( )  ( )  ( )), so that 

   
   

    ( )  
   

 
          ( )    

   

 
               

Thus, all solutions are uniformly bounded and the proof is complete.                         □ 
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3.2 Basic reproduction number 

    The infection components in this model are         . The new infection matrix  ℱ and the transition 

matrix 𝑣 are given by 

 

  |

         
    
    
    

|  𝑣   |

         
           

 (   )            
          

|. 

 

     The basic reproduction number of model (1) is then defined as the spectral radius of the next 

generation matrix      [15], as follows 

 

   
     

(      )(      )
 

(   )     

(      )(         )
                                                (2) 

 

Clearly, by results in theorem 2 [15], we have that the model (1) always exhibits a disease-free 

equilibrium    (          ) where    
   

 
 , if     . Hence, we get the following summaries. 

 

Theorem (2): The disease-free equilibrium point    of model (1) is locally asymptotically stable when 

    , and vice versa.                                                     □ 

 

     Otherwise, the existence of the pandemic equilibrium point of the model (1) is investigated by 

equating the right hand of model (1) to zero and by solving the following set of algebraic equations 

simultaneously 

   

 

  (   )      
    

    
         

    
    

    
 (      )                       

       (      )                           
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        (   )                                     
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   The simultaneous solution of equation (3) gives the pandemic equilibrium point, denoted by  

   (              ),  where 
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here  

               
              
     (       )     (   )        
 

while (     )  represents a positive intersection point of the following two isoclines:  

  (   )      
                                                                (4a)  

  (   )                                                                    (4b)   

here 

          (      )(   )      
       (   )    ,  

         (      )    ,  

                       (   )(         ),  

           ,  

                     (   )(   )  ,   

        ((  (   ) )(   )(   )      (   )  ), 
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Clearly, as      the first isocline (4a) intersects the    axis at zero.  

However, when      the second isocline (4b) will intersect the    axis at a unique positive point, 

say    . 

     Consequently, these two isoclines (4a) and (4b) have an intersection point in the interior of the 

positive quadrant of     – plane, namely (     )  provided that the following conditions are satisfied   
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                                                       (4c) 

     Therefore, the pandemic equilibrium point     (              ) exists uniquely in the interior of 

  
   if      and condition (4c) holds.  

4. Local stability analysis 

      In this section, the local stability conditions of the pandemic equilibrium point    of model (1) are 

established in the following theorem. 

Theorem (3): The pandemic equilibrium point    of the model (1) is locally asymptotically stable 

when       with the following condition holds: 
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   3                                                             (5) 

Proof: The Jacobian matrix of model (1) at     can be written as 
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Now, according to Gersgorin’s theorem [16], if the following condition holds: 

|   |    ∑ |   |
 
   
   

                                                                                       (6) 

then all the eigenvalues of  (  ) exist in the region: 

   

{
 

 
       |      |  ∑|   |

 

   
   }

 

 
 

     Then, all the eigenvalues of  (  ) exists in the disc centered at     with radius   . Thus, if the 

diagonal elements are negative and the condition (5) holds, all the eigenvalues will exist in the left half 

plane and the    of model (1) is locally asymptotically stable with     .  

5. Global stability analysis 

     In this section, the region of global stability (basin of attraction) of all equilibrium points of model 

(1) is presented as shown in the following theorems.                                                                                                       

Theorem (4): The disease-free equilibrium point    is globally asymptotically stable in the sub region 

of   
  that satisfies       

Proof: Let    ,   (       ) and    (    )  (                                                                                                      

,0). Then,  

 
  

  
  (   )             

    

    
                                             (7) 
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If      and  (   )   , it becomes 
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as     and     . Therefore,        , is globally asymptotically stable. 
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In model (1),    
   

 
 is the bound of the total population. We summarize             . 

Therefore,  ̅(   )   . Thus, the conditions    and    hold, by Lemma (1), see [17]. Then,  the 

disease-free equilibrium point is globally asymptotically stable.     

 Theorem (5): The pandemic equilibrium point    is globally asymptotically stable, provided that  
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Proof: Let                    satisfy equations  
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We define the Lyapunov function as 
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Furthermore, by simplifying the resulting terms, we get that 
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Since the arithmetical mean is greater than, or equal to, the geometrical mean, then 
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Therefore,   
     for         𝑣     and    

    if and only if            𝑣     The 

maximum invariant set of model (1)  on the set *(        𝑣)   
   + is the singleton (1,1,1,1,1). 

Thus, for model (1),  the pandemic equilibrium    is globally asymptotically stable if        by 

LaSalle Principle [18]. 

6. Local bifurcation analysis 

       In this section, the effect of varying the parameter values on the dynamical behavior of model (1) 

near the equilibrium points is studied. It is well known that the existence of non-hyperbolic 

equilibrium point of the system is a necessary but not sufficient condition for bifurcation to occur. 

Therefore, in the following, the parameter that makes the equilibrium point of model (1) as a non-

hyperbolic equilibrium point is considered as a candidate bifurcation parameter for the system. Now, 

we rewrite model (1) in the form: 
  

  
  ( ), where   (         )   and   (              )

 ,  with                represent the 

interaction function in the right hand side of model (1). Then, straightforward computation on the 

Jacobian matrix of model (1), with any non-zero vector     (𝑣  𝑣  𝑣  𝑣  𝑣 )
 , gives the following 

second directional derivative 
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6.1 The Local Bifurcation Analysis Near    

Theorem (6): Under the sufficient condition     , the model (1) undergoes a transcritical 

bifurcation, but neither saddle node bifurcation nor pitchfork bifurcation can occurs at disease-free 

equilibrium point    when the following condition holds           
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                                                                                          (16b) 

Proof: According to the Jacobian matrix of model (1) at   , has zero eigenvalue (say   
   ) when 

     and hence, by substituting the value of    and simplifying the resulting terms, we obtain the 

following positive quantity at  
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Hence,    is a nonhyperbolic point at     . Recall that the Jacobian matrix of model (1) at     and 

     can be represented by  

 

 (  )  

(

 
 

              
  (      )          
    (      )   
 (   )   (         )  
       (   ))

 
 

 

           

Now, let  , -  .𝑣 
, -

 𝑣 
, -

 𝑣 
, -

 𝑣 
, -

 𝑣 
, -

/
 
 be the eigenvector corresponding to the eigenvalue   

  

 . Thus (  
    

 ) , -   , gives that   , -  . ̅ 𝑣 
, -

 𝑣 
, -

  ̅ 𝑣 
, -

  ̅ 𝑣 
, -

  ̅ 𝑣 
, -

/
 

,  

where 

 ̅  
    (             )

 
     ̅  

  

(      )
   ̅  

(   ) 

(         )
   , 

 ̅  
,    (         ) (   )   (      )-

(   )(      )(         )
   and  𝑣 

, -
 represents  any nonzero real number. 

Also, let  , -  0  
, -

   
, -

   
, -

   
, -

   
, -

1
 

 be the eigenvector associated with the eigenvalue   
    

of the matrix   
  . Then from (  

     
 ) , -     by solving this equation for  , -  we obtain  

 , -  0    
, -

  ̅   
, -

  ̅   
, -

  1
 

 

where  

   ̅  
    

(      )
   ̅  

    

(         )
 ,   and   

, -
  is any nonzero real number. 

 

Now, consider 
  

  
   (   )  ,            -                                      (18) 

Thus,  

  (    
 )  ,         -   which gives  [ , -]

 
  (    

 )                (19) 

So, according to Sotomayor's theorem  [19], for local bifurcation, model (1) has no saddle-node 

bifurcation at     . Furthermore, because we have 
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we can show that 
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Moreover, by substituting     
  and  , - in (12), we get 
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Hence, we obtain 
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     Thus, according to Sotomayor's theorem, model (1) at disease-free equilibrium point has a 

transcritical bifurcation as the parameter   passes through the bifurcation value     provided that 

    , while pitchfork bifurcation cannot occur.                           □ 

7. Numerical simulation 

     In this section, we illustrate some numerical solutions of model (1) for different values of the 

parameters. We use the following different initial points. We use the parameter values from real data 

available from February 24, 2020, to September 26, 2020, and present some numerical simulation of 

model (1) to illustrate our results in Table-1. 

 

Table 1-Definitions and values of model (1) parameters 

Parameter Definition Value 

  

  

  

  

  

   

  

  

  

  

   

   

  

  

   

   

Total population 

Birth rate 

Number of immigrants 

Fraction rate 

Contact rate between   and   

Contact rate between   and   

Saturated rate 

Natural death rate 

Loss of immunity 

Transmission rate 

Quarantine rate of exposed subjects 

Quarantine rate of infected subjects 

Fraction rate 

Death rate due to disease 

Recovery rate of carriers 

Recovery rate of infected subjects 

       

       

    

,   - 
       

       

   

            

       

    

    

     

,   - 
      

      

     

 

 Case 1: When we take the parameters in Table 1, we have the dynamical behavior of model (1) 

approaching the disease-free equilibrium point   . This theoretical result is illustrated by Figure -2 

which shows the solutions of model (1) with different initial points. 

Case 2: When we take       and          with keeping the other parameters in Table 1, we 

have the dynamical behavior of model (1) approaching  the pandemic equilibrium point   . Figure-3 

confirms that the disease-free equilibrium point became unstable and the solution of model (1) 
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approaches the endemic equilibrium   . Also, the value of          implies that the backward 

bifurcation occurs. 

Case 3: When we take                     and        with keeping the other 

parameters in table 1, we have the dynamical behavior of model (1) still approaching  the pandemic 

equilibrium point    with       . The result is illustrated by Figure-4. 

 
Figure 2-Global stability of disease-free equilibrium point of model (1) with         . 

 
Figure 3-Global stability of pandemic equilibrium point of model (1) with        . 
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Figure 4-Global stability of pandemic equilibrium point of model (1) with       . 

 

8. Discussion and Conclusions  

     In this work, a mathematical model of COVID-19 pandemy with immigrants was studied by 

dividing the total population into five classes, namely susceptible  ( ), exposed  ( ), carrier  ( ), 

infected  ( ) and recovered  ( ). The model incorporates the impact of infective immigrants, but 

without symptoms, with quarantine strategy. It has been noticed that the disease can spread if the 

number of immigrants increases. Thus, the dynamical behavior of the disease changes from the 

disease-free point to pandemic point. The model mainly accounts for the reduction in disease class due 

to social isolation or social spacing. While, we can say that the disease vanishes due to the proper 

application of quarantine measures. Our model has two biological equilibrium points, namely the 

disease-free and pandemic. If     , we get that the disease-free equilibrium point is stable. 

Otherwise, this point becomes unstable when      and the solution of the model approaches the 

pandemic equilibrium point. The model does not have periodic dynamics but, instead, it approaches 

either the disease-free equilibrium point or pandemic equilibrium point. But model (1) near the 

disease-free equilibrium point has a transcritical bifurcation as the parameter   passes through the 

bifurcation value     provided that     , while pitchfork bifurcation cannot occur. 
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