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 انخـلاطـخ:

Cryptococcus neoformans  ٙفطشٚبد رشجّ انخًٛشح رسجت انزٓبثبد جٓبصٚخ ، خبطخ ف ْٙ

انًشػٗ انزٍٚ ٚعبٌَٕ يٍ ػعف انًُبعخ. رٕجذ ْزِ انفطشٚبد فٙ ثٛئبد يخزهفخ ، يثم انفبكٓخ ٔانزشثخ 

ٔفؼلاد انطٕٛس. َٕعبٌ سئٛسٛبٌ ٚظٛجبٌ انجشش ، يًب ٚؤد٘ إنٗ الإطبثخ ثبنًكٕساد انخفٛخ. الأشخبص 

ف فٙ جٓبص انًُبعخ ، ٔخبطخ انًظبثٍٛ ثبلإٚذص أٔ انزٍٚ ٚخؼعٌٕ نهعلاج انًثجؾ انزٍٚ ٚعبٌَٕ يٍ ػع

نهًُبعخ ثعذ صساعخ الأعؼبء ، ٚكٌَٕٕ أكثش عشػخ نلإطبثخ ثبنعذٖٔ. ٚؤثش انزٓبة انسحبٚب ثبنًكٕساد 

يشٚغ يظبة ثفٛشٔط َقض انًُبعخ انجششٚخ سُٕٚبً ، يًب ٚزسجت فٙ ٔفبح  002.222انخفٛخ عهٗ حٕانٙ 

 شخض. 022222ٔ  002.222ثٍٛ  يب

Cryptococcus neoformans  ٙانسجت انشئٛسٙ لانزٓبة انسحبٚب انفطش٘ ٔانزٓبثبد انجٓبص انعظج ْٕ

انًشكض٘ ، يًب ٚسبْى فٙ حذٔس ٔفٛبد عبنًٛخ كجٛشح ، لا سًٛب فٙ أفشٚقٛب جُٕة انظحشاء انكجشٖ. 

بعخ ، يع يعذل ٔفٛبد يشرفع ٚظم إنٗ ٔٚؤثش ثشكم أسبسٙ عهٗ انًشػٗ انزٍٚ ٚعبٌَٕ يٍ كجذ انًُ

٪. فٙ حٍٛ اَخفغ يعذل الإطبثبد انًشرجطخ ثفٛشٔط َقض انًُبعخ انجششٚخ فٙ انجهذاٌ انًزقذيخ ، 20

رظم انعذٖٔ الاَزٓبصٚخ يظذس قهق كجٛش فٙ انًُبؽق راد انٕطٕل انًحذٔد إنٗ انشعبٚخ انظحٛخ. رى 

نخفٛخ فٙ انغبنت فٙ انجهذاٌ انًُخفؼخ ٔانًزٕسطخ انذخم ، انعثٕس عهٗ حبلاد انزٓبة انسحبٚب ثبنًكٕساد ا

فٙ رقهٛم اَزشبس انًكٕساد  HAARTٔلا سًٛب أفشٚقٛب جُٕة انظحشاء انكجشٖ. ًٚكٍ أٌ ٚسبعذ رٕافش 

انخفٛخ ٔانزٓبة انسحبٚب انفطش٘ ٔانٕفٛبد انًشرجطخ ثٓب. فٙ انًشػٗ غٛش انًظبثٍٛ ثفٛشٔط َقض 

انعلاجبد انًثجطخ نهًُبعخ يٍ خطش الإطبثخ ثبنًكٕساد انخفٛخ ٔالانزٓبثبد انًُبعخ انجششٚخ ، قذ رضٚذ 

 انفطشٚخ الأخشٖ.

يٍ حٕانٙ خًسٍٛ حًؼًب أيُٛٛبً ٔرعًم كًٕقع رفبعم ثٍٛ انجشٔرُٛبد.  F-box (FBP)رزكٌٕ ثشٔرُٛبد 

يٍ  SCF ٚزكٌٕ يجًع .SCFرعًم كعُبطش كبسحخ فٙ انخلاٚب ، ٔرجًع انجشٔرُٛبد لإسسبنٓب إنٗ يجًع 

ب فٙ رحذٚذ سكبئض نٛجبصاد  FBPٚهعت  .F-box (FBP)  ٔSkp1  ٔRbx1  ٔCul1ثشٔرٍٛ  ًً دٔسًا يٓ

SCF  يًب ٚؼًٍ خظٕطٛخ عبنٛخ يٍ انشكٛضح. ٚسبْى ،FBP  فٙ انعذٚذ يٍ انٕظبئف انخهٕٚخ يثم

. رُظى ْزِ انسبعبد انجٕٛنٕجٛخ ٔانُسخ ٔانزطٕٚش َٔقم الإشبساد ٔدٔساد انخهٛخ ٔاسزشعبس انًغزٚبد

انجشٔرُٛبد ثشكم اَزقبئٙ يسزٕٚبد انجشٔرٍٛ فٙ انخهٛخ عٍ ؽشٚق اسزٓذاف ثشٔرُٛبد يعُٛخ ٚزى رعذٚهٓب فٙ 

 .SCFيشكت 

 F- box، انؼشأح ، انًجبل انجشٔرُٛٙ  Cryptococcus neoformansانكهًبد انًفزبحٛخ : 
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Abstract:  

Cryptococcus neoformans are yeast-like fungi causing systemic infections, 

primarily in patients with compromised immunity. These fungi are found in 
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various environments, such as fruit, soil, and avian excreta. Two main species 

infect humans, resulting in cryptococcosis. People with weakened immune 

systems, particularly those with AIDS or undergoing immunosuppressive 

therapy after an organ transplant, are at a higher risk of infection. Cryptococcal 

meningitis affects around 220,000 HIV-infected patients annually, causing 

150,000-200,000 deaths. Cryptococcus neoformans is the leading cause of 

fungal meningitis and CNS infections, contributing to significant global deaths, 

especially in sub-Saharan Africa. It primarily affects immunosuppressed 

patients, with a high mortality rate of up to 82%. While the rate of HIV-related 

infections has declined in developed countries, opportunistic infections remain a 

major concern in areas with limited healthcare access. Cryptococcal meningitis 

cases are predominantly found in low and middle-income countries, particularly 

sub-Saharan Africa. The availability of HAART could help reduce cryptococcal 

prevalence, fungal meningitis, and associated deaths. In non-HIV patients, 

immunosuppressive treatments may increase the risk of cryptococcosis and 

other fungal infections. F-box proteins (FBP) are composed of around fifty 

amino acids and function as an interaction site between proteins. They act as 

scavenger elements in cells, gathering proteins to be sent to the SCF complex. 

The SCF complex consists of F-box protein (FBP), Skp1, Rbx1, and Cul1. FBP 

plays a crucial role in identifying substrates for SCF ligases, ensuring high 

substrate specificity. FBP contributes to various cellular functions such as 

circadian clocks, transcription, development, signal transduction, cell cycles, 

and nutrient sensing. These proteins selectively regulate protein levels in a cell 

by targeting specific proteins to be modified in the SCF complex.  

Key word : Cryptococcus neoformans , virulence , F- box protein 

Introduction 

Cryptococcus neoformans are yeast-like fungi that can lead to systemic 

infections (cryptococcosis), particularly in patients with mediated immunity (1). 

It isolated cryptococcus from peach juice and subsequently demonstrated 

pathology in laboratory animals(2) . Cryptococcus neoformans is a free-living 

organism that can exist in many niches worldwide. Fruit and soils were isolated 

from pigeons and other avian excreta(3). C.neoformans an opportunistic 

Basidiomycota (4,5) Phylum pathogen with the two most frequently known 

human-infected species, Cryptococcus neoformans, consisting of cryptococcal 

serotypes D and A, and Cryptococcus neoformans, consisting of serotypes B and 

C (6,7). Most cryptococcal patients especially CD4+ lymphocytes, are immune-

mediated. AIDS poses a significant risk factor of 15-20% in the U.S. and 55-

70% in Latin America and Sub-Saharan Africa (8). Another big risk factor in 

solid-organ transplant patients is immunosuppressive therapy (9). Current 
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cryptococcal meningitis with about 150,000-200,000 deaths per year (11), is 

estimated at around 220,000 cases a year for HIV-infected patients (10) . 

The most prevalent cause of fungal meningitis and CNS (central nervous 

system) infection is Cryptococcus neoformans (12). It contributes to significant 

annual world death, particularly in sub-Saharan Africa (9, 13). It especially 

affects immunosuppressed patients (14) with a reported mortality of up to 82% 

(15, 9). The overall rate of HIV patients in the developed, industrialized 

countries improved drastically in the 1990s, the death rate plummeted and the 

incidence of various opportunistic HIV-related infections including 

cryptococcus in the wealthy countries declined significantly. (16,17). However, 

where most of the world (and even parts of the US) still cannot access this care, 

the risk of opportunistic HIV-related infection remains huge (18,16,17). Cases 

of cryptococcosis and death from cryptococcal meningitis are considerably more 

prevalent in AIDS-related developing countries since the incidence of HIV 

pandemics is significantly higher and in these countries access to adequate 

healthcare and therapeutic interventions, including antifungal medicines, is 

restricted or completely absent (19, 8). Most cases of cryptococcal meningitis 

occur in countries with low and middle revenues, and about 73% in sub-Saharan 

Africa. (10) by 2014. Similarly, cryptococcal meningitis in sub-Saharan Africa 

has and still has the highest mortality rates, mostly due to relatively high 

untreated HIV/AIDS patients (20,8,10). So, AIDS patients in the US are also 

faced with a death risk of 15 to 20 per cent, compared with Latin America and 

Sub-Saharan Africa face 55 to 70 per cent (21,22). As can be seen in developing 

countries, increased access to HAART may reduce cryptococcal prevalence, 

fungal meningitis, and associated deaths. Cryptococcosis can also occur in 

patients with immunocompetence in non-HIV, as monoclonal antiquities, 

corticosteroids or other immunosuppressant therapies, particularly in countries 

where HAART has decreased death rates for HIV patients. The use of 

immunosuppressive treatment regimens is suspected of growing cryptococosis 

or other fungal infections (23,24). And death rates for pathogens including 

Cryptococcus neoformans, C. Albicans and A.fumigatus. Much higher than 

tuberculosis and malaria (25,26). 

After depositing or aerosolizing bird guano, organic matter and soil 

decomposition, Cryptococcus neoformans are a source of atmospheric 

desiccated cells or spores. (27,28). Such dried cells or fungal spores are inhaled, 

leading to a first pulmonary infection that often spreads into the brain causing 

meningoencephalitis (28,29). 
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Inhaling desiccated, encapsulated or basidiospores triggers human Cryptococcus 

(30). The encapsulated strains are approximately 2-5-micron diameter (31) and 

can enter alveoli without being expelled through the respiratory epithelium. 

Cryptococcus neoformans in alveolar spaces first face alveolar macrophages 

(32), which play a key role in Cryptococcus neoformers defence. Stimulated 

cells can bind, ingest and kill macrophage (33,34). Phagocytosis can occur via 

antibodies (35), supplemental receptors (36) β-glucan (33) and mannose (37). 

Primitive opsonins or collectins contribute to innate resistance to inhaled 

microorganisms in mammals and birds in Alveoli (37,39). They belong to the C-

type lectin superfamily, defined by Carbohydrogen Recognition (CRD) ligands 

with Ca2+ collagen tail (40). Resistance and use of numerous hypoxia and 

tension enzymes (41,42). It also produces a range of metabolites that provide 

survival benefits and establish an essential micro-environmental fungal-like 

mannitol, trehalose, ethanol and acetate (43,44,45). Cryptococcal disease 

infection occurs for any area of the body, including lung, spleen, prostate, skin, 

brain, liver, lymph nodes and bone (46). Of all cryptococcal infection sites, the 

most commonly affected are pulmonary and CNS sites with most CNS mortality 

(47). 

Cryptococcus Ecological Niche 

Cryptococcus neoformans are present outside the human host in very different 

ecologically diverse niches, depending on the local climate. In 1894, Sanfelice 

isolated the first strain of Cryptococcus neoformans from fruit juice (48). 

Moreover, the lack of ecological environments can affect Cryptococcus 

neoformans distribution and virulence in geographical areas. (49,50). Pigeons 

have only a latent infection, not an active infection, as their higher body 

temperatures are not ideal for fungal growth. But they are good vectors because 

their excrement provides nutrients to survive (51,52). Moreover, because 

Cryptococcus neoformans can live in saprophytic shape, they are present in all 

surfaces, including polluted soil, fruit and vegetables that come into contact with 

bird dropping, including in houses where birds can enter through open windows. 

This is especially dangerous for HIV-positive patients in these areas, as they are 

often re-infected at home (53,49). Cryptococcus species can live in and 

reproduce in soil nematodes and freely-living amebae (54). However, the 

prevalence of Cryptococcus neoformans in terms of host tree species is more 

prevalent than Cryptococcus gatti (17) Cryptococcus neoformans host tree 

species versus 12 Cryptococci gatti (49), which results in a wide distribution of 

the arbours for C.neoformans and thus an increased probability of the interaction 

of the host-pathogen. In 2003, Malik submitted a study of cryptococcosis of 

Australian parrots and reported that Cryptococcosis in parrots includes the nasal 



 

2325 
 

cavity and upper respiratory tracts, beak, sinuses and face surfaces. It seems to 

have been a predisposing factor for Cryptococcosis to sit parrots on the 

eucalyptus trees that contain Cryptococcus neoformans yeast. (55) Seo 

published a prostatitis study with Cryptococcus neoformans in 2006. In an 

immune-deficient alcoholic patient having cirrhosis, he registered prostatitis 

with Cryptococcus neoformans, with a diagnosis of sonography and biopsy (56) 

In 1993, Li isolated Cryptococcus neoformans from pigeon faeces in China and 

reported that 78% of A serotypes and 22% of AD serotypes. It found only 

C.neoformans variety from pigeon faeces in China, although the Cryptococcus 

neoformans gatti variety was also separated from clinical samples in China and 

has a special nature and is unique to tropical and subtropical areas (57). Duncan 

(2006) obtained Cryptococcus gattii from grey squirrel cultivation in Vancouver 

Canada and reported that wild animals of Vancouver, like domestic animals in 

this area, can be a reservoir for this fungus (58). 

Mating 

The life cycle of Cryptococcus neoformans (Fig.1). Under nutrient-limiting 

conditions,the peptide pheromones that cause cell-cell fusion are secreted by a 

and α yeast cells. The resulting dikaryon is causing filamentous growth and the 

two parental nuclei migrate in hyphae in coordination. To separate the cells, a 

septum forms, a nucleus is transferred via a clamp connection to the penultimate 

hyphal cell, and the clamp cell and hyphal cell fuse. Blastospores (yeast-like 

cells) may bud from the hyphae during this hyphal growth and divide in the 

form of the yeast mitotically. Chlamydospores can be enlarged and formed by 

some hyphal cells. At the basidium formation stage, the two nuclei fuse and 

undergo meiosis to create four meiotic products that form basidiospore chains 

via mitosis or surface budding. Diploid α/α cells, during monokaryotic fruition, 

for example, become α/α cells either by endoduplication or nuclear fusion 

following cell fusion between two α cells. Rudimentary clamp connections form 

the diploid monokaryotic hyphae, but these are not fused to the preceding cell. 

During fruiting, as in mating, blastospores and chlamydospores also form. 

Meiosis occurs at the stage of basidium development and haploid basidiospores 

in four chains are produced (59). 
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Fig.1. The life cycle of Cryptococcus neoformans 

 Infection process and host response 

Cryptococcus neoformans can enter the respiratory system in the human host by 

inhaling spores or airborne yeast cells from the atmosphere (60). The 

encapsulated fungal cells are frequently approximately 5 to 10 μm and are thus 

prone to a mucociliary clearance from lung epithelia (61). C.neoformans 

basidiospores and dedicated cells, however, measure around.6-3 μm, sufficiently 

small for alveolar deposition following inhalation (36), probably from the 

mucosal movement itself (29), isolated from the soil or bird droppings. 

Cryptococcus cells can survived out of the cell and/or transmission into the 

pulmonary cell once in the alveolar sphere either through direct internalization 

through resident alveolar macrophages or the pulmonary epithelial cells (62,63). 

In this stage pulmonary colonization, cryptococci are either cleared or become a 

localized latent asymptomatic infection, is triggered depending upon the 

existence of the host immune response. Lungs involvement may also be a 

temporary stop for cryptococci to develop symptomatic infection and ultimately 

spread to other parts of the body. Alveolar macrophages constitute 95 per cent of 

the broncho-alveolar cells, making them the predominant pulmonary phagocytes 

in the lung (64). Cryptococci relationship with alveolar macrophages is 

probability to decide the establishment and fate of pulmonary infection and 

possible systemic spread. Cryptococcus neoformans ability to stay and grow 

within macrophages could explain immunocompetent hosts' latent 

cryptococcosis. Studies using the rats Cryptococcus model found that 

immunocompetent strongly resemble rats. Developing granulomas and 

cryptococcal infection pulmonary containment distinguishes this model. This 

reverse reaction is reversed by treatment murine with immunosuppressed 

dexamethasone, leading to loss of granuloma formation and increased lung 
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fungal burden (63). The two less dangerous outcomes are that the host's immune 

system can handle and purge the spores, or the infection can remain latent and 

lung-free. (29). The third finding is that latent infection, such as HIV or 

pharmacological immune suppression, can revive the lung after the immune 

system has weakened, leading to more extreme outcomes (64) and lung 

inflammation and lung disease-causing. Cryptococcal spread from pneumonia to 

other tissues, such as the urinary, prostate, eyes, bones, liver, spleen, lymph 

nodes, and in particular, the brain is the fourth and most harmful outcome (46). 

The organ that is most frequently affected by host-infected Cryptococcus 

neoformans is lung and brain, and not just lung infection in people affected by 

the disease may cause pneumonia, but blood infection also leads to fatal 

meningoencephalitis (29). In immunocompetent individuals, there is a range of 

phases in the immune response to infection. When Cryptococcus  neoformans 

cells enter the alveoli in the lungs, alveolar macrophages attempt to phagocyte 

and either kill or sequestrate fungal cells into granulomas (65,18). As the 

engulfing macrophage succeeds, the fungal cells are secreted within the 

phagolysosome, a phagosomal organelle formed by a lysosome fusion that 

creates a local environment where low pH, hydrolytic enzymes, anti-microbial 

peptides and free toxic radicals are produced. (66,67). Specifically, free radical 

species such as RS and RNS can damage the cell wall and cell membrane and 

attack DNA and cell proteins (68,69) while pathogenic proteins are divided into 

peptides in hydrolytic enzymes. The pathogens have been destroyed and their 

peptides is shown to release cytokines which attract neutrophils and other 

immune cells through a major histocompatibility complex (MHC) cell surface 

receptor T-cells and macrophages (70). 

Cryptococcal serotypes and genomes 

Capsular agglutination reactions have identified five cryptococcal serotypes and 

are further categorized in nine molecular groups based on polymorphisms of 

DNA sequence. C. neoformans var. neoformans are composed of serotypes D 

(molecular type: VNIV) and AD (molecular type: VNIII) and C hybrid serotype 

C. neoformans var. grubii is made up of serotype A (molecular types: VNI, 

VNII, VNB) and C. gattii consist of B (molecular types: VGI, VGII, VGIII) and 

C (molecular: VGIII, VGIV), (71,72,73) serotypes (Fig.2).  All, molecular and 

phylogenetic studies attribute the development of two distinct monophyletic 

lines for C to reproductive isolation. C.  neoformans and gattii (74,75).  Genetic 

and molecular studies based now on the genome sequences available provide the 

means to research the role of particular genes in virulence C. neoformans. 

Sequencing of genomes for C.neoformans has been completed. JEC21 and B-

3501A serotype D strains and serotype A strain H99 (the most common serotype 
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comprising more than 95 per cent of Cryptococcal infections in AIDS patients), 

along with C.gattii strains. WM276 strain of serotype B and R265 clinical strain. 

The genome of strain JEC21 is as a representative example, composed of 14 

chromosomes, totaling 20 Mb of DNA, and a projected 6,574 genes (76). 

 

Fig.2.  Serotypes and Molecular Types in C.neoformans 

  

Factors of virulence 

The pathogens live in a complex relationship to the infected host. The pathogen 

needs to feel the host environment during the initial encounter and respond to 

adaptive cellular changes. The response also includes inducing specific 

phenotypes that enhance the capacity of the microorganism to survive and 

develop in this new environment (77). Cryptococcus neoformans fungus is 

relatively common cause of life-threatening meningoencephalitis in patients 

with compromised immune systems or in patients with serious immune defects 

(78). Cryptococcus neoformans have several known factors for virulence 

including their capacity to grow at a temperature of 37°C, polysaccharide 

capsules and their ability to produce suitable melanins. Virulence also includes 

various proteases, lipases and other enzymes, as well as several metabolites 

generated by Cryptococcus neoformans after infection (79). 

The Capsule  

The capsule is the prevailing virulence factor in Cryptococcus neoformans and 

plays a major role in this fungus' biology. The capsule defends fungi from 

phagocytic predators and field desiccation. The capsule interferes with the 
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immune response and provides a defensive shield for the fungal cell that is 

antiphagocytic and capable of consuming phagocytic cell-borne microbicidal 

oxidative explosions(80). The capsule consists mainly of polysaccharides and 

includes two major polysaccharides: glucuronoxylomanane (GXM) and 

galactoxylomanane (GalXM). GXM weights 90–95 percent and GalXM about 

5–8 percent. A small percentage (<1%) of mannoproteins (MPs) was also 

identified(82). The fungal spores are normally non-encapsulated during 

inhalation (28), as smaller in size allows the airway through, but during 

infection, it increases dramatically as the spore enters the alveoli.  If there is 

phagocytosis, the polysaccharides in capsules are released into the vesicles 

macrophages around the phagosomes (or phagolysosomes), and the build-up of 

these vesicles in the host cell cytoplasm leads to macrophage and lysis. The 

capsule is also used to fight macrophage attempts to kill fungal cells 

macrophages that invade cryptococci (82). Shortly after infection, the capsule 

increases dramatically in size. In vitro the capsule can grow as fast as 0,3-2,5 

um^3/min and appears to have an effect on its final size (83). Capsulation size 

and composition reflect extracellular factors. In-vitro capsule expansion 

requirements include low iron, mammalian serum, high CO2, mannitol, and 

nutrient appetite. Tiny capsules with high osmotic pressure, nutrients and iron 

are observed (84,85). 

Genes associated with capsules (CAP genes)  

 There are four genes (CAP10, CAP59, CAP60 and CAP64) associated with the 

Cryptococcus neoformans polysaccharide capsule.  (86,87). CAP59 has 

primarily been found as an important gene for the development of capsules and 

virulence in mice and is assigned to Ch. I (88). Protein Cap59 was known as a 

transmembrane protein (89). The second capsule-associated gene for 

chromosome III was CAP64 (87). The CAP64 gene supplemented an a capsular 

strain 602, which losing the capacity to manufacture capsules, for producing the 

capsule and causing fatal infection in the murine, while strain 602 was virulent 

(90). CAP60 is the third capsule-linked gene of Ch.I and Cap60 protein across 

the nuclear membrane. (91). The CAP10 gene was identified on various 

chromosomes compared with the other three capsule genes, and the cytoplasm 

of the protein encoded by the CAP10 gene. The complement of the CAP10 

gene-deficient a capsular mutant formed an encapsulated strain and of CAP10∆ 

from the wild strain triggered the production of a phenotype-like an capsular 

(86). In capsule synthesis, all four CAP genes were stated to be important, but 

Biochemical properties of CAP gene products have still not been identified. 
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Production of melanin and lacceas activity 

Another key virulence factor is melanin production. Melanin protects against 

ultra-violet (UV) environmental radiation, provides the cell wall with structural 

support and protects against phagocytosis, and macrophage-related oxidative 

killing, and contributes to extrapulmonary dissemination (92,93,94). melanin or 

melanin-like pigments are manufactured using copper as co-factor by laccases, 

which are members of the protein multicopper oxidase family (95). Since 

laccase-related mutants, these laccase enzymes are important. Virulence 

reduction in C. neoformans with the corresponding melanin deficiency (93). 

Melanin is produced in Cryptococcus neoformans using two lacca enzymes, 

Lac1 and Lac2. Lac1 is closely linked to the cell wall, while Lac2 is present in 

the cytoplasm (96). Once melanin is formed, it is deposited into cells forming a 

dense electron layer of (97) where melanin has its antioxidant function, 

protecting the cell walls, membranes and other internal parts of cryptococcal 

cells from free oxygen and nitrogen radicals as well as other macrophagic toxic 

molecules (98,99). Fungal cells can be neutralized and shielded from the 

antimicrobial oxidative effect of hydroxyl radicals in macrophages from Fe(II) 

laccase enzyme to Fe(III)(100,101). 

Thermotolerance 

C. neoformans ability growing and surviving at 37°C significantly contributes to 

their function as a human pathogen. One of the first problems faced by the 

fungus when joining the human host is the temperature rise. The 

thermotolerance of C.neoformans shown was due to pathway signals. (102,103).  

Also, C. neoformans has developed two main temperature rise resistance 

mechanisms. Firstly, the prevention of protein denaturation and the ability to 

restructure proteins using trehalose disaccharide and heat shock protein 

chaperones. 

The second mechanism involves the use of superoxide dismutase to protect 

antioxidants (104,105). The mitochondrial superoxide dismutase (Sod2), a major 

component of the antioxidant defence mechanism in C.neoformans is in 

particular.   are also linked to growth adaptation at high temperatures (104). This 

virulence is present in less than 0.01% of outdoor fungi and is absent in most 

soil fungi and most cryptococcal species (27,106). 

Acetate 

The pathogen generates a variety of metabolites, including acetate, that gives 

survival benefit by the formation of an optimum micro-environment (45,107). 

Acetate is one of the main in vitro-cultivated cryptococci metabolites (43). 
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Acetate was also found to be a significant infection-related metabolite based on 

brain and lung tissue biopsy studies of infected rats (108). Moreover, significant 

quantities of acetate were detected by nuclear magnetic resonance (NMR) from 

pulmonary cryptococcosis (109). While acetate is not fully explained role in 

virulence, it has been shown to increase fungal survival, perhaps via 

immunomodulatory mechanisms (45,110). 

The Xfp1/2 – Ack pathway which produces acetate from D-fructose 6-phosphate 

or D-Xylulose 5-phosphate and the Pdc-Ald pathway for producing pyruvate 

acetate have established two possible pathways for the production of acets in 

Cryptococcus. Acetate, which can be converted to acetyl-CoA in the 

tricarboxylic acid cycle, gluconeogenesis, or glyoxalate cycle, is one of 

Cryptococcus neoformans carbon sources. It was also shown that Cryptococcus 

neoformans produce high in vitro acetate concentrations and lung tissue 

infection in the mouse model. (45). Acetate is thought to provide the pathogen 

with, among other ways, a survival advantage due to its effect on pH. 

Cryptococcus neoformans grow only within a certain pH range, unlike other 

fungi, such as Candida albicans (Aspergillus fumigatus), but this range has a pH 

of 7.4, which is the pH of human blood, brain fluid and acidity of the 

macrophage phagol. When you grow outside this preferred host body acid range, 

such as cerebral cryptococomas, the pathogen secrets the tissues with excess 

acetate to reduce local pH (44). This optimizes the function of phospholipase B 

and other cryptococcal enzymes (111,112). The decreased pH in the 

environment around Cryptococcus neoformans would protect the pathogen from 

immune attack by decreasing or increasing neutrophil neutralization, allowing 

free radicals to neutralize and decrease superoxide production, reducing immune 

cells' ability to use certain chemical agents to kill infected cryptococci (45) . 

 

Phospholipase  

Phospholipases are a heterogeneous community of enzymes which can 

hydrolyze glycerophospholipid ester connections. The enzyme of Cryptococcus 

neoformans has lysophospholipase hydrolase, PLB and lysophospholipase 

activity of transacetylase (113). Phospholipase activity may trigger membranes 

to become destabilized, cell lysis and the release of secondary lipid messengers, 

interstitial pulmonary infection, and the spread of Cryptococci in both lymph 

and blood (114,115). Phospholipase B is a key component of lung surfactant 

dipalmitoyl phosphatidylcholine that increases the bond with lung epithelial cell, 

thereby assisting fungal spread (115,119,27). Macrophage arachidonic acid, then 

used for the generation of eicosanoids (117,118), is taken by cryptococci. The 
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developed eicosanoids can be used to suppress the immune response of the host 

to promote intracellular survival and fungal propagation (117,119). 

Proteinase  

These proteinases and phospholipases have been further proposed to allow 

Cryptococcus neoformans to be replicated within the host Macrophages by 

harming phagosomal membranes and thus avoiding the killing of phagocytic 

enzymes. Despite this advance years ago, no additional work was done to 

elucidate the mechanism used to increase Cryptococcus neoformans virulence in 

a host by proteinases (120). 

Mechanisms of dissemination 

The BBB (blood brain barrier) ensures that the brain is strongly secured and that 

macromolecules and microorganisms circulate with little access. The human 

BBB consists of microvascular, astrocyte, pericytes and neuronal feet supported 

endothelial cells (121,122). Unlike peripheral endothelial cells, close junctions 

bind brain endothelial cells, rendering the blood brain barrier a great barrier to 

many pathogens (122,123). Cryptococcus neoformans must cross the blood 

brain barrier(BBB) that is normally impermeable to infect the brain. It is 

currently clear that cryptococcal yeast cells will use a variety of ways to enter 

the brain once in the body. C. neoformans have shown a preference for infecting 

CNS (central nervous system) by several factors including the existence of 

neuronal substrates for fungal growth, a refuge place for host immune response, 

fungal survival and proliferation capabilities in hypoxic environments, and the 

ability to attract fungal cells by a neuronal cell receptor (124,12). Following an 

effective breach of the CNS, Cryptococcus neoformans can cause diseases 

especially meninges and brain infection and inflammation (Fig.3). 

 Model of Trojan dissemination of horse 

Cryptococci live and proliferate within macrophages following phagocytosis 

(125,126). In addition, in a novel non-lytic exocytosis (monocytosis), Live 

Cryptococci may be removed, leaving the macrophage unharmed. The exocytes 

then migrate to other cells (125,126,127). This spreads to other cell can possibly 

explain the use of phagocytes in cryptococcal cells to penetrate the blood brain 

barrier by hitchhiking through host phagocytes (Trojan-horse ways) (128). 

 

Transcellular pathway 

Cryptococcus neoformans is used to reshape the endothelial Cryptococcal 

protein kinase-dependent actin, using hyaluronic acid on its surface to hook it up 
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to CD44 in luminary endothelium. Then the fungal cells leave the other side and 

therefore cross the blood brain barrier through the endothelial cells (129,130). 

Paracellular pathway 

The pathway contains pathogens breaching the intercellular blood brain barrier 

(131,129). This process involves the degradation and weakening of pathogenic, 

close junctions linking brain endothelial cells, Chen et al. showed that 

microvascular endothelium cryptococcal binding induced close junction 

alteration (132). 

 

Fig.3. Mechanisms of dissemination C.neoformans in BBB. 

Ubiquitin 

The degradation of a protein is not a simple process biologically. Peptide bonds 

in physiological environments are very stable and are an obviously beneficial 

feature, since a cell with spontaneously degraded proteins is difficult to imagine. 

However, it is often essential that proteins are destroyed. It also has to remove 

and recycle damaged proteins (133). In this case it is not just necessary to 

destroy the correct protein but at the right time. The protein system developed 

by the cell is a ubiquitin (Ub) (76 amino acid polypeptide) that was produced in 

the cell to label destructive tag proteins. This ubiquitin(Ub) tag is used as the 

signal for the proteasome to degrade the protein. One of the main pathways for 

intracellular proteolysis is this ubiquitin- proteasome pathway. Ubiquitylation 

requires an isopeptide linkage between ubiquitin and a lysine side chain on the 

substrate (134). On one site a single ubiquitin can be conjugated 

(monoubiquitination) or multiple Ub can bind to shorter oligoubiquitin chains 

through 1 of the 7 lys residues of Ub (2- 4 Ub) or longer chains of polyubiquitin 



 

2334 
 

(4-Ub) (135). Ubiquitin is activated first with its residue from C-terminal 

glycine. This is achieved by E1(ubiquitin-activating enzyme), the enzyme uses 

adenosine triphosphates to make ubiquitin adenylate and is used as a substrate 

for the synthesize of ubiquitin thiol ester (136). After that E1 is then trans for E2 

(ubiquitin conjugating enzyme) then end to the substrate by E3 (ubiquitin ligase) 

(137). The E3 ligase which forms a ubiquitin thiol ester, which can transfer Ub 

to the substrate, or indirectly convert the substrate into a platform for E2 and an 

interacting substrate, depending on its sort (138). The existence of a 

polyubiquitine chain targets proteasome substrates that use adenosine 

triphosphates energy (139). Then the substrate is analysis into ubiquitin and 

oligopeptides, released by deubiquitylation enzymes from the substrate, can then 

be recycled (140). only a small number existed ubiquitin-activating enzyme and 

ubiquitin conjugating enzyme, hundreds of known E3 ligases still have to be 

discovered. The 2 largest classes of ubiquitin ligase(E3) ligase are distinct in 

their ubiquitin molecule transfer mechanism and sequence: they are the new 

gene (RING) (138) and the new E6-AP carboxy terminal are of very interest 

(HECT)(141). RING are proteins bringing the ubiquitin conjugating enzyme, 

target protein and moving ubiquitin from one to the other. HECT function as 

mediates, the ubiquitin is first transferred from the E2 to itself and then 

converted into the target protein and this in RING E3 ligases not found. 

F-box protein 

F-box protein(FBP) a pattern of around fifty amino acids that function as a site 

of interaction between protein and protein (142). The hypothesis says FBP work 

as scavenger elements in cell that gathers proteins to be sent to the SCF 

complex. Ubiquitin is marked for the junk proteins in the S26 (proteasome) in 

SCF complex (143,144). The theory of the F-box protein is founded on the idea 

that an F-box mediates structure into a SCF by connecting it to the Skp1. The 

SCF complex (Fig.4) compose of: F-box protein (FBP) (143), Skp1 

(Kinetochore protein mutant suppressor) (145), Rbx1 (ring-box protein) also 

known as Hrt1 or Roc1 (146) and Cul1 (Cullin) (147). Since Fbps act as the 

factor for the identification of the substrates of the SCF ligases, many Fbps 

ensure high substrate specificity (148). Cullin 1, RBX1 and SKP1 weigh 

respectively 89,7, 12,3 and 18,7 kDa , while the mass of the F-box protein 

ranges from 47 to more than 110 kDa (149) . The F-box is normally in the 

amino-terminal half of the protein and is mostly coupled in the carboxy-terminal 

of the protein, two of which are most typically leucine-rich repetitions in 

humans (LRRs) and WD repetitions. The human F-box protein nomenclature 

proposed by the Human Genome Organization fits the trend proposed by 

Cenciarelli (1999) and Winston (1999): FBXL is a protein that includes F-box 
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and LRRs; FBXW is a protein that includes F-box  and WD, and FBXO denotes 

an F-box protein and either another or no other pattern (150,151).The fungal F-

Box proteins are essential to cell functions such as circadian clocks, 

transcriptions, development, signals transduction, cell cycles and sensing of 

nutrients (152). The FBP does not function randomly, but provide certain 

proteins which are frequently changed in SCF complex and thus regulate protein 

levels in a cell (143). SCF complexes promote the interaction between substrates 

and enzymes, which then transfer ubiquitin to substrates. The 26S proteasome 

subsequently degrades poly-ubiquitine substrates. The FBP is the subunit of the 

SCF complex that connects certain substrates to the complex and connects it to 

the complex through the F-box itself. There are numerous SCF complexes in 

both yeast and human cells that only differ in the F-box protein ingredients. 

Three characteristic SCF complexes are available in yeast: SCFMet30, SCFGrr 

and SCFCdc4, designated for their F-box portion (153). When phosphorylated, 

F-box protein targets are identified. Such phosphorylation can be carried out by 

various protein kinases such as Pho kinases, CDK’s, CK’s and MAPK’s 

according to the way the target protein works (154). Losing a fungal protein 

from F-Box is sometimes pleiotropic, particularly in cases where the F-Box has 

many objectives, the null mutation is lethal for Cdc4, which has 10 identified 

targets. Conversely, if the deletion of the gene is of little or no consequence, the 

FBP can only target one or a few proteins (154). The amino-terminus of Cullin1 

linked with FBP through SKP1 (155). Cullin1 is composed form amino- 

terminus helical region and a carboxyl- terminus globular α/β domain (156). 

 

Fig.4.Schematic view of the SCF complex 

 

F-box protein in disease  

In various pathways of biological development, F-box proteins regulate 

substrates which control key dimensions of cell life, including cell division, cell 

growth,  development and differentiation, signaling , and cell survival and death. 
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Therefore, F‐box protein ubiquityulation dysregulation that can occur via several 

distinct mechanisms (157). The F-box protein Fbp1 is important for fungal plant 

pathogen invasive growth and virulence Fusarium oxysporum. The fbp1∆ is also 

hypersensitive to white calcofluorine and sodium dodecylsulfate resulting in 

decreased cell wall phosphorylation. These findings indicate that Fbp1 

contributes both to Fusarium oxysporum invasion and to the integrity of the cell 

walls (158). F-box protein Fbp1, which causes little damage in the infected lung, 

is important regardless of classic virulence factors (capsule, melanin), fbp1∆ 

cannot spread to other organs in the mouse model after a pulmonary infection. 

but still contributes to a brain infection in the model of intravenous murine 

injection that shows that the fbp1∆ is unable to leave from the pulmonary system 

(159). Fbp1 is important for Cryptococcus neoformans fungal sporulation and 

virulence. Fbp1 was identified as important for fungal virulence as fbp1∆ in of 

mouse systemic infections were a virulent. Basidiospore development in 

bilateral mating between fbp1∆ was blocked, despite the presence of normal 

dikaryotic hyphae during mating (160). That FBP1 in G. zeae is important for 

multiple phenotypes including both virulence and sexual development (161). 

The dimorphic Candida albicans switch between the yeast form, pseudohiphal 

form and the true hyphal type is central to the invasion and development of the 

host disease and an essential virulence characteristic. Two Grr1 and Cdc4 for f-

box proteins are listed as essential in this morphological. Either removing GRR1 

or CDC4 from the genome of the Candida albicans results in pseudohyphal or 

filamented morphology, under conditions which generally contribute to yeast 

growth (162,163). The repression of pseudo-hyphal production from Grr1 may 

be caused by the negative cytokinesis control by two G1 cyclines, Cln3 and 

Ccn1, which is similar to the Saccharomyces cerevisiae regulation. These 

cycline proteins are stabilised in a grr1Δ that prevents cell division after 

cytokinesis, which suggest that they are potential Grr1 substrates. Furthermore, 

the Hof1 cellular level of the grr1Δ cell is also increased significantly, a protein 

that plays a role in cytokinesis (164). In the meantime, the way Cdc4 controls 

cell morphology is less evident. One Cdc4 substrate, Sol1, known to play a part 

in Candida albicans morphology (165). The most destructive rice disease is 

Magnaporthe oryzae, study identified that FBP, Pth1, which is important for 

both rice and barley fungal disease. Pth1 is Grr1 homologue is required to 

regulate appressorium maturation, a specialist cell structure for host cell 

penetration. The pth1Δ does not the host leaf surface, establishing a strong host-

pathogen relationship, research showed that Pth1 is necessary for the 

metabolism of fungal carbohydrate and the generation of hydrostatic pressure in 

appressoria, which can lead to defect appressoria in pth1Δ (162). FBPs (SKP2, 

FBXW7, and β-TrCP) research focused on cancer. SKP2 facilitates S-phase 
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entering by striving for proteasomal-dependent degradation with the CDK 

inhibitor p27. This role makes SKP2 an oncogenic FBP epitome. SKP2 over-

expression is related a variety of cancers, this function was confirmed through 

studies in mouse models. The SKP2 inactivation induces cell senescence 

independent of p53 and prevents tumorigenesis (166,167). 
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