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Abstract:

Cryptococcus neoformans are yeast-like fungi causing systemic infections,
primarily in patients with compromised immunity. These fungi are found in
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various environments, such as fruit, soil, and avian excreta. Two main species
infect humans, resulting in cryptococcosis. People with weakened immune
systems, particularly those with AIDS or undergoing immunosuppressive
therapy after an organ transplant, are at a higher risk of infection. Cryptococcal
meningitis affects around 220,000 HIV-infected patients annually, causing
150,000-200,000 deaths. Cryptococcus neoformans is the leading cause of
fungal meningitis and CNS infections, contributing to significant global deaths,
especially in sub-Saharan Africa. It primarily affects immunosuppressed
patients, with a high mortality rate of up to 82%. While the rate of HIV-related
infections has declined in developed countries, opportunistic infections remain a
major concern in areas with limited healthcare access. Cryptococcal meningitis
cases are predominantly found in low and middle-income countries, particularly
sub-Saharan Africa. The availability of HAART could help reduce cryptococcal
prevalence, fungal meningitis, and associated deaths. In non-HIV patients,
iImmunosuppressive treatments may increase the risk of cryptococcosis and
other fungal infections. F-box proteins (FBP) are composed of around fifty
amino acids and function as an interaction site between proteins. They act as
scavenger elements in cells, gathering proteins to be sent to the SCF complex.
The SCF complex consists of F-box protein (FBP), Skpl, Rbx1, and Cull. FBP
plays a crucial role in identifying substrates for SCF ligases, ensuring high
substrate specificity. FBP contributes to various cellular functions such as
circadian clocks, transcription, development, signal transduction, cell cycles,
and nutrient sensing. These proteins selectively regulate protein levels in a cell
by targeting specific proteins to be modified in the SCF complex.

Key word : Cryptococcus neoformans , virulence , F- box protein
Introduction

Cryptococcus neoformans are yeast-like fungi that can lead to systemic
infections (cryptococcosis), particularly in patients with mediated immunity (1).
It isolated cryptococcus from peach juice and subsequently demonstrated
pathology in laboratory animals(2) . Cryptococcus neoformans is a free-living
organism that can exist in many niches worldwide. Fruit and soils were isolated
from pigeons and other avian excreta(3). C.neoformans an opportunistic
Basidiomycota (4,5) Phylum pathogen with the two most frequently known
human-infected species, Cryptococcus neoformans, consisting of cryptococcal
serotypes D and A, and Cryptococcus neoformans, consisting of serotypes B and
C (6,7). Most cryptococcal patients especially CD4+ lymphocytes, are immune-
mediated. AIDS poses a significant risk factor of 15-20% in the U.S. and 55-
70% in Latin America and Sub-Saharan Africa (8). Another big risk factor in
solid-organ transplant patients is immunosuppressive therapy (9). Current
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cryptococcal meningitis with about 150,000-200,000 deaths per year (11), is
estimated at around 220,000 cases a year for HIV-infected patients (10) .

The most prevalent cause of fungal meningitis and CNS (central nervous
system) infection is Cryptococcus neoformans (12). It contributes to significant
annual world death, particularly in sub-Saharan Africa (9, 13). It especially
affects immunosuppressed patients (14) with a reported mortality of up to 82%
(15, 9). The overall rate of HIV patients in the developed, industrialized
countries improved drastically in the 1990s, the death rate plummeted and the
incidence of various opportunistic HIV-related infections including
cryptococcus in the wealthy countries declined significantly. (16,17). However,
where most of the world (and even parts of the US) still cannot access this care,
the risk of opportunistic HIV-related infection remains huge (18,16,17). Cases
of cryptococcosis and death from cryptococcal meningitis are considerably more
prevalent in AIDS-related developing countries since the incidence of HIV
pandemics is significantly higher and in these countries access to adequate
healthcare and therapeutic interventions, including antifungal medicines, is
restricted or completely absent (19, 8). Most cases of cryptococcal meningitis
occur in countries with low and middle revenues, and about 73% in sub-Saharan
Africa. (10) by 2014. Similarly, cryptococcal meningitis in sub-Saharan Africa
has and still has the highest mortality rates, mostly due to relatively high
untreated HIV/AIDS patients (20,8,10). So, AIDS patients in the US are also
faced with a death risk of 15 to 20 per cent, compared with Latin America and
Sub-Saharan Africa face 55 to 70 per cent (21,22). As can be seen in developing
countries, increased access to HAART may reduce cryptococcal prevalence,
fungal meningitis, and associated deaths. Cryptococcosis can also occur in
patients with immunocompetence in non-HIV, as monoclonal antiquities,
corticosteroids or other immunosuppressant therapies, particularly in countries
where HAART has decreased death rates for HIV patients. The use of
immunosuppressive treatment regimens is suspected of growing cryptococosis
or other fungal infections (23,24). And death rates for pathogens including
Cryptococcus neoformans, C. Albicans and A.fumigatus. Much higher than
tuberculosis and malaria (25,26).

After depositing or aerosolizing bird guano, organic matter and soil
decomposition, Cryptococcus neoformans are a source of atmospheric
desiccated cells or spores. (27,28). Such dried cells or fungal spores are inhaled,
leading to a first pulmonary infection that often spreads into the brain causing
meningoencephalitis (28,29).
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Inhaling desiccated, encapsulated or basidiospores triggers human Cryptococcus
(30). The encapsulated strains are approximately 2-5-micron diameter (31) and
can enter alveoli without being expelled through the respiratory epithelium.
Cryptococcus neoformans in alveolar spaces first face alveolar macrophages
(32), which play a key role in Cryptococcus neoformers defence. Stimulated
cells can bind, ingest and kill macrophage (33,34). Phagocytosis can occur via
antibodies (35), supplemental receptors (36) p-glucan (33) and mannose (37).
Primitive opsonins or collectins contribute to innate resistance to inhaled
microorganisms in mammals and birds in Alveoli (37,39). They belong to the C-
type lectin superfamily, defined by Carbohydrogen Recognition (CRD) ligands
with Ca2+ collagen tail (40). Resistance and use of numerous hypoxia and
tension enzymes (41,42). It also produces a range of metabolites that provide
survival benefits and establish an essential micro-environmental fungal-like
mannitol, trehalose, ethanol and acetate (43,44,45). Cryptococcal disease
infection occurs for any area of the body, including lung, spleen, prostate, skin,
brain, liver, lymph nodes and bone (46). Of all cryptococcal infection sites, the
most commonly affected are pulmonary and CNS sites with most CNS mortality
47).

Cryptococcus Ecological Niche

Cryptococcus neoformans are present outside the human host in very different
ecologically diverse niches, depending on the local climate. In 1894, Sanfelice
isolated the first strain of Cryptococcus neoformans from fruit juice (48).
Moreover, the lack of ecological environments can affect Cryptococcus
neoformans distribution and virulence in geographical areas. (49,50). Pigeons
have only a latent infection, not an active infection, as their higher body
temperatures are not ideal for fungal growth. But they are good vectors because
their excrement provides nutrients to survive (51,52). Moreover, because
Cryptococcus neoformans can live in saprophytic shape, they are present in all
surfaces, including polluted soil, fruit and vegetables that come into contact with
bird dropping, including in houses where birds can enter through open windows.
This is especially dangerous for HIV-positive patients in these areas, as they are
often re-infected at home (53,49). Cryptococcus species can live in and
reproduce in soil nematodes and freely-living amebae (54). However, the
prevalence of Cryptococcus neoformans in terms of host tree species is more
prevalent than Cryptococcus gatti (17) Cryptococcus neoformans host tree
species versus 12 Cryptococci gatti (49), which results in a wide distribution of
the arbours for C.neoformans and thus an increased probability of the interaction
of the host-pathogen. In 2003, Malik submitted a study of cryptococcosis of
Australian parrots and reported that Cryptococcosis in parrots includes the nasal
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cavity and upper respiratory tracts, beak, sinuses and face surfaces. It seems to
have been a predisposing factor for Cryptococcosis to sit parrots on the
eucalyptus trees that contain Cryptococcus neoformans yeast. (55) Seo
published a prostatitis study with Cryptococcus neoformans in 2006. In an
immune-deficient alcoholic patient having cirrhosis, he registered prostatitis
with Cryptococcus neoformans, with a diagnosis of sonography and biopsy (56)
In 1993, Li isolated Cryptococcus neoformans from pigeon faeces in China and
reported that 78% of A serotypes and 22% of AD serotypes. It found only
C.neoformans variety from pigeon faeces in China, although the Cryptococcus
neoformans gatti variety was also separated from clinical samples in China and
has a special nature and is unique to tropical and subtropical areas (57). Duncan
(2006) obtained Cryptococcus gattii from grey squirrel cultivation in Vancouver
Canada and reported that wild animals of Vancouver, like domestic animals in
this area, can be a reservoir for this fungus (58).

Mating

The life cycle of Cryptococcus neoformans (Fig.1). Under nutrient-limiting
conditions,the peptide pheromones that cause cell-cell fusion are secreted by a
and a yeast cells. The resulting dikaryon is causing filamentous growth and the
two parental nuclei migrate in hyphae in coordination. To separate the cells, a
septum forms, a nucleus is transferred via a clamp connection to the penultimate
hyphal cell, and the clamp cell and hyphal cell fuse. Blastospores (yeast-like
cells) may bud from the hyphae during this hyphal growth and divide in the
form of the yeast mitotically. Chlamydospores can be enlarged and formed by
some hyphal cells. At the basidium formation stage, the two nuclei fuse and
undergo meiosis to create four meiotic products that form basidiospore chains
via mitosis or surface budding. Diploid a/a cells, during monokaryotic fruition,
for example, become a/a cells either by endoduplication or nuclear fusion
following cell fusion between two a cells. Rudimentary clamp connections form
the diploid monokaryotic hyphae, but these are not fused to the preceding cell.
During fruiting, as in mating, blastospores and chlamydospores also form.
Meiosis occurs at the stage of basidium development and haploid basidiospores
in four chains are produced (59).
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Fig.1. The life cycle of Cryptococcus neoformans

Infection process and host response

Cryptococcus neoformans can enter the respiratory system in the human host by
inhaling spores or airborne yeast cells from the atmosphere (60). The
encapsulated fungal cells are frequently approximately 5 to 10 um and are thus
prone to a mucociliary clearance from lung epithelia (61). C.neoformans
basidiospores and dedicated cells, however, measure around.6-3 um, sufficiently
small for alveolar deposition following inhalation (36), probably from the
mucosal movement itself (29), isolated from the soil or bird droppings.
Cryptococcus cells can survived out of the cell and/or transmission into the
pulmonary cell once in the alveolar sphere either through direct internalization
through resident alveolar macrophages or the pulmonary epithelial cells (62,63).
In this stage pulmonary colonization, cryptococci are either cleared or become a
localized latent asymptomatic infection, is triggered depending upon the
existence of the host immune response. Lungs involvement may also be a
temporary stop for cryptococci to develop symptomatic infection and ultimately
spread to other parts of the body. Alveolar macrophages constitute 95 per cent of
the broncho-alveolar cells, making them the predominant pulmonary phagocytes
in the lung (64). Cryptococci relationship with alveolar macrophages is
probability to decide the establishment and fate of pulmonary infection and
possible systemic spread. Cryptococcus neoformans ability to stay and grow
within  macrophages could explain immunocompetent hosts' latent
cryptococcosis. Studies using the rats Cryptococcus model found that
immunocompetent strongly resemble rats. Developing granulomas and
cryptococcal infection pulmonary containment distinguishes this model. This
reverse reaction is reversed by treatment murine with immunosuppressed
dexamethasone, leading to loss of granuloma formation and increased lung
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fungal burden (63). The two less dangerous outcomes are that the host's immune
system can handle and purge the spores, or the infection can remain latent and
lung-free. (29). The third finding is that latent infection, such as HIV or
pharmacological immune suppression, can revive the lung after the immune
system has weakened, leading to more extreme outcomes (64) and lung
inflammation and lung disease-causing. Cryptococcal spread from pneumonia to
other tissues, such as the urinary, prostate, eyes, bones, liver, spleen, lymph
nodes, and in particular, the brain is the fourth and most harmful outcome (46).
The organ that is most frequently affected by host-infected Cryptococcus
neoformans is lung and brain, and not just lung infection in people affected by
the disease may cause pneumonia, but blood infection also leads to fatal
meningoencephalitis (29). In immunocompetent individuals, there is a range of
phases in the immune response to infection. When Cryptococcus neoformans
cells enter the alveoli in the lungs, alveolar macrophages attempt to phagocyte
and either kill or sequestrate fungal cells into granulomas (65,18). As the
engulfing macrophage succeeds, the fungal cells are secreted within the
phagolysosome, a phagosomal organelle formed by a lysosome fusion that
creates a local environment where low pH, hydrolytic enzymes, anti-microbial
peptides and free toxic radicals are produced. (66,67). Specifically, free radical
species such as RS and RNS can damage the cell wall and cell membrane and
attack DNA and cell proteins (68,69) while pathogenic proteins are divided into
peptides in hydrolytic enzymes. The pathogens have been destroyed and their
peptides is shown to release cytokines which attract neutrophils and other
immune cells through a major histocompatibility complex (MHC) cell surface
receptor T-cells and macrophages (70).

Cryptococcal serotypes and genomes

Capsular agglutination reactions have identified five cryptococcal serotypes and
are further categorized in nine molecular groups based on polymorphisms of
DNA sequence. C. neoformans var. neoformans are composed of serotypes D
(molecular type: VNIV) and AD (molecular type: VNIII) and C hybrid serotype
C. neoformans var. grubii is made up of serotype A (molecular types: VNI,
VNII, VNB) and C. gattii consist of B (molecular types: VGI, VGII, VGIII) and
C (molecular: VGIII, VGIV), (71,72,73) serotypes (Fig.2). All, molecular and
phylogenetic studies attribute the development of two distinct monophyletic
lines for C to reproductive isolation. C. neoformans and gattii (74,75). Genetic
and molecular studies based now on the genome sequences available provide the
means to research the role of particular genes in virulence C. neoformans.
Sequencing of genomes for C.neoformans has been completed. JEC21 and B-
3501A serotype D strains and serotype A strain H99 (the most common serotype
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comprising more than 95 per cent of Cryptococcal infections in AIDS patients),
along with C.gattii strains. WM276 strain of serotype B and R265 clinical strain.
The genome of strain JEC21 is as a representative example, composed of 14
chromosomes, totaling 20 Mb of DNA, and a projected 6,574 genes (76).

Cryptococcus neoformans

C. neoformans var

/o N

C. neoformans var. C. neoformans var. C. neoformans var.
neoformans grubii gattii
Serotypes D ; A B+C
AD
Molecular types VNIV VNIII VNI, VNIL, VNB VGIL, VGII, VGIIL, VGIV

Fig.2. Serotypes and Molecular Types in C.neoformans

Factors of virulence

The pathogens live in a complex relationship to the infected host. The pathogen
needs to feel the host environment during the initial encounter and respond to
adaptive cellular changes. The response also includes inducing specific
phenotypes that enhance the capacity of the microorganism to survive and
develop in this new environment (77). Cryptococcus neoformans fungus is
relatively common cause of life-threatening meningoencephalitis in patients
with compromised immune systems or in patients with serious immune defects
(78). Cryptococcus neoformans have several known factors for virulence
including their capacity to grow at a temperature of 37°C, polysaccharide
capsules and their ability to produce suitable melanins. Virulence also includes
various proteases, lipases and other enzymes, as well as several metabolites
generated by Cryptococcus neoformans after infection (79).

The Capsule

The capsule is the prevailing virulence factor in Cryptococcus neoformans and
plays a major role in this fungus' biology. The capsule defends fungi from
phagocytic predators and field desiccation. The capsule interferes with the

1217



N a1y ot d1g s baein B gl (uilid] (Joadl utdad] padpdl piligd Yol 3as 27N
k@ (ks f) il aml) Al 1 5500 g Auindl A 5l AdS g (3] [0l T30 Aodln) ) il s o 02
L alail] y gdail ujﬁmy_g{ma'.m daala) dudals ) o gle g Aol A i) duls g Lﬂ

(Aaltiowal) A 2l gBiia e audail) o ghail dobiiienal) (BYI) jlad il

immune response and provides a defensive shield for the fungal cell that is
antiphagocytic and capable of consuming phagocytic cell-borne microbicidal
oxidative explosions(80). The capsule consists mainly of polysaccharides and
includes two major polysaccharides: glucuronoxylomanane (GXM) and
galactoxylomanane (GalXM). GXM weights 90-95 percent and GalXM about
5-8 percent. A small percentage (<1%) of mannoproteins (MPs) was also
identified(82). The fungal spores are normally non-encapsulated during
inhalation (28), as smaller in size allows the airway through, but during
infection, it increases dramatically as the spore enters the alveoli. If there is
phagocytosis, the polysaccharides in capsules are released into the vesicles
macrophages around the phagosomes (or phagolysosomes), and the build-up of
these vesicles in the host cell cytoplasm leads to macrophage and lysis. The
capsule is also used to fight macrophage attempts to kill fungal cells
macrophages that invade cryptococci (82). Shortly after infection, the capsule
increases dramatically in size. In vitro the capsule can grow as fast as 0,3-2,5
um”3/min and appears to have an effect on its final size (83). Capsulation size
and composition reflect extracellular factors. In-vitro capsule expansion
requirements include low iron, mammalian serum, high CO2, mannitol, and
nutrient appetite. Tiny capsules with high osmotic pressure, nutrients and iron
are observed (84,85).

Genes associated with capsules (CAP genes)

There are four genes (CAP10, CAP59, CAP60 and CAP64) associated with the
Cryptococcus neoformans polysaccharide capsule.  (86,87). CAP59 has
primarily been found as an important gene for the development of capsules and
virulence in mice and is assigned to Ch. | (88). Protein Cap59 was known as a
transmembrane protein (89). The second capsule-associated gene for
chromosome 11l was CAP64 (87). The CAP64 gene supplemented an a capsular
strain 602, which losing the capacity to manufacture capsules, for producing the
capsule and causing fatal infection in the murine, while strain 602 was virulent
(90). CAPG6O is the third capsule-linked gene of Ch.l and Cap60 protein across
the nuclear membrane. (91). The CAP10 gene was identified on various
chromosomes compared with the other three capsule genes, and the cytoplasm
of the protein encoded by the CAP10 gene. The complement of the CAP10
gene-deficient a capsular mutant formed an encapsulated strain and of CAP10A
from the wild strain triggered the production of a phenotype-like an capsular
(86). In capsule synthesis, all four CAP genes were stated to be important, but
Biochemical properties of CAP gene products have still not been identified.
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Production of melanin and lacceas activity

Another key virulence factor is melanin production. Melanin protects against
ultra-violet (UV) environmental radiation, provides the cell wall with structural
support and protects against phagocytosis, and macrophage-related oxidative
killing, and contributes to extrapulmonary dissemination (92,93,94). melanin or
melanin-like pigments are manufactured using copper as co-factor by laccases,
which are members of the protein multicopper oxidase family (95). Since
laccase-related mutants, these laccase enzymes are important. Virulence
reduction in C. neoformans with the corresponding melanin deficiency (93).
Melanin is produced in Cryptococcus neoformans using two lacca enzymes,
Lacl and Lac2. Lacl is closely linked to the cell wall, while Lac2 is present in
the cytoplasm (96). Once melanin is formed, it is deposited into cells forming a
dense electron layer of (97) where melanin has its antioxidant function,
protecting the cell walls, membranes and other internal parts of cryptococcal
cells from free oxygen and nitrogen radicals as well as other macrophagic toxic
molecules (98,99). Fungal cells can be neutralized and shielded from the
antimicrobial oxidative effect of hydroxyl radicals in macrophages from Fe(ll)
laccase enzyme to Fe(111)(100,101).

Thermotolerance

C. neoformans ability growing and surviving at 37°C significantly contributes to
their function as a human pathogen. One of the first problems faced by the
fungus when joining the human host is the temperature rise. The
thermotolerance of C.neoformans shown was due to pathway signals. (102,103).
Also, C. neoformans has developed two main temperature rise resistance
mechanisms. Firstly, the prevention of protein denaturation and the ability to
restructure proteins using trehalose disaccharide and heat shock protein
chaperones.

The second mechanism involves the use of superoxide dismutase to protect
antioxidants (104,105). The mitochondrial superoxide dismutase (Sod2), a major
component of the antioxidant defence mechanism in C.neoformans is in
particular. are also linked to growth adaptation at high temperatures (104). This
virulence is present in less than 0.01% of outdoor fungi and is absent in most
soil fungi and most cryptococcal species (27,106).

Acetate

The pathogen generates a variety of metabolites, including acetate, that gives
survival benefit by the formation of an optimum micro-environment (45,107).
Acetate is one of the main in vitro-cultivated cryptococci metabolites (43).
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Acetate was also found to be a significant infection-related metabolite based on
brain and lung tissue biopsy studies of infected rats (108). Moreover, significant
quantities of acetate were detected by nuclear magnetic resonance (NMR) from
pulmonary cryptococcosis (109). While acetate is not fully explained role in
virulence, it has been shown to increase fungal survival, perhaps via
immunomodulatory mechanisms (45,110).

The Xfp1/2 — Ack pathway which produces acetate from D-fructose 6-phosphate
or D-Xylulose 5-phosphate and the Pdc-Ald pathway for producing pyruvate
acetate have established two possible pathways for the production of acets in
Cryptococcus. Acetate, which can be converted to acetyl-CoA in the
tricarboxylic acid cycle, gluconeogenesis, or glyoxalate cycle, is one of
Cryptococcus neoformans carbon sources. It was also shown that Cryptococcus
neoformans produce high in vitro acetate concentrations and lung tissue
infection in the mouse model. (45). Acetate is thought to provide the pathogen
with, among other ways, a survival advantage due to its effect on pH.
Cryptococcus neoformans grow only within a certain pH range, unlike other
fungi, such as Candida albicans (Aspergillus fumigatus), but this range has a pH
of 7.4, which is the pH of human blood, brain fluid and acidity of the
macrophage phagol. When you grow outside this preferred host body acid range,
such as cerebral cryptococomas, the pathogen secrets the tissues with excess
acetate to reduce local pH (44). This optimizes the function of phospholipase B
and other cryptococcal enzymes (111,112). The decreased pH in the
environment around Cryptococcus neoformans would protect the pathogen from
immune attack by decreasing or increasing neutrophil neutralization, allowing
free radicals to neutralize and decrease superoxide production, reducing immune
cells' ability to use certain chemical agents to kill infected cryptococci (45) .

Phospholipase

Phospholipases are a heterogeneous community of enzymes which can
hydrolyze glycerophospholipid ester connections. The enzyme of Cryptococcus
neoformans has lysophospholipase hydrolase, PLB and lysophospholipase
activity of transacetylase (113). Phospholipase activity may trigger membranes
to become destabilized, cell lysis and the release of secondary lipid messengers,
interstitial pulmonary infection, and the spread of Cryptococci in both lymph
and blood (114,115). Phospholipase B is a key component of lung surfactant
dipalmitoyl phosphatidylcholine that increases the bond with lung epithelial cell,
thereby assisting fungal spread (115,119,27). Macrophage arachidonic acid, then
used for the generation of eicosanoids (117,118), is taken by cryptococci. The
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developed eicosanoids can be used to suppress the immune response of the host
to promote intracellular survival and fungal propagation (117,119).

Proteinase

These proteinases and phospholipases have been further proposed to allow
Cryptococcus neoformans to be replicated within the host Macrophages by
harming phagosomal membranes and thus avoiding the killing of phagocytic
enzymes. Despite this advance years ago, no additional work was done to
elucidate the mechanism used to increase Cryptococcus neoformans virulence in
a host by proteinases (120).

Mechanisms of dissemination

The BBB (blood brain barrier) ensures that the brain is strongly secured and that
macromolecules and microorganisms circulate with little access. The human
BBB consists of microvascular, astrocyte, pericytes and neuronal feet supported
endothelial cells (121,122). Unlike peripheral endothelial cells, close junctions
bind brain endothelial cells, rendering the blood brain barrier a great barrier to
many pathogens (122,123). Cryptococcus neoformans must cross the blood
brain barrier(BBB) that is normally impermeable to infect the brain. It is
currently clear that cryptococcal yeast cells will use a variety of ways to enter
the brain once in the body. C. neoformans have shown a preference for infecting
CNS (central nervous system) by several factors including the existence of
neuronal substrates for fungal growth, a refuge place for host immune response,
fungal survival and proliferation capabilities in hypoxic environments, and the
ability to attract fungal cells by a neuronal cell receptor (124,12). Following an
effective breach of the CNS, Cryptococcus neoformans can cause diseases
especially meninges and brain infection and inflammation (Fig.3).

Model of Trojan dissemination of horse

Cryptococci live and proliferate within macrophages following phagocytosis
(125,126). In addition, in a novel non-lytic exocytosis (monocytosis), Live
Cryptococci may be removed, leaving the macrophage unharmed. The exocytes
then migrate to other cells (125,126,127). This spreads to other cell can possibly
explain the use of phagocytes in cryptococcal cells to penetrate the blood brain
barrier by hitchhiking through host phagocytes (Trojan-horse ways) (128).

Transcellular pathway

Cryptococcus neoformans is used to reshape the endothelial Cryptococcal
protein kinase-dependent actin, using hyaluronic acid on its surface to hook it up
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to CD44 in luminary endothelium. Then the fungal cells leave the other side and
therefore cross the blood brain barrier through the endothelial cells (129,130).

Paracellular pathway

The pathway contains pathogens breaching the intercellular blood brain barrier
(131,129). This process involves the degradation and weakening of pathogenic,
close junctions linking brain endothelial cells, Chen et al. showed that
microvascular endothelium cryptococcal binding induced close junction
alteration (132).
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Fig.3. Mechanisms of dissemination C.neoformans in BBB.

Ubiquitin

The degradation of a protein is not a simple process biologically. Peptide bonds
in physiological environments are very stable and are an obviously beneficial
feature, since a cell with spontaneously degraded proteins is difficult to imagine.
However, it is often essential that proteins are destroyed. It also has to remove
and recycle damaged proteins (133). In this case it is not just necessary to
destroy the correct protein but at the right time. The protein system developed
by the cell is a ubiquitin (Ub) (76 amino acid polypeptide) that was produced in
the cell to label destructive tag proteins. This ubiquitin(Ub) tag is used as the
signal for the proteasome to degrade the protein. One of the main pathways for
intracellular proteolysis is this ubiquitin- proteasome pathway. Ubiquitylation
requires an isopeptide linkage between ubiquitin and a lysine side chain on the
substrate (134). On one site a single ubiquitin can be conjugated
(monoubiquitination) or multiple Ub can bind to shorter oligoubiquitin chains
through 1 of the 7 lys residues of Ub (2- 4 Ub) or longer chains of polyubiquitin
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(4-Ub) (135). Ubiquitin is activated first with its residue from C-terminal
glycine. This is achieved by E1l(ubiquitin-activating enzyme), the enzyme uses
adenosine triphosphates to make ubiquitin adenylate and is used as a substrate
for the synthesize of ubiquitin thiol ester (136). After that E1 is then trans for E2
(ubiquitin conjugating enzyme) then end to the substrate by E3 (ubiquitin ligase)
(137). The E3 ligase which forms a ubiquitin thiol ester, which can transfer Ub
to the substrate, or indirectly convert the substrate into a platform for E2 and an
interacting substrate, depending on its sort (138). The existence of a
polyubiquitine chain targets proteasome substrates that use adenosine
triphosphates energy (139). Then the substrate is analysis into ubiquitin and
oligopeptides, released by deubiquitylation enzymes from the substrate, can then
be recycled (140). only a small number existed ubiquitin-activating enzyme and
ubiquitin conjugating enzyme, hundreds of known E3 ligases still have to be
discovered. The 2 largest classes of ubiquitin ligase(E3) ligase are distinct in
their ubiquitin molecule transfer mechanism and sequence: they are the new
gene (RING) (138) and the new E6-AP carboxy terminal are of very interest
(HECT)(141). RING are proteins bringing the ubiquitin conjugating enzyme,
target protein and moving ubiquitin from one to the other. HECT function as
mediates, the ubiquitin is first transferred from the E2 to itself and then
converted into the target protein and this in RING E3 ligases not found.

F-box protein

F-box protein(FBP) a pattern of around fifty amino acids that function as a site
of interaction between protein and protein (142). The hypothesis says FBP work
as scavenger elements in cell that gathers proteins to be sent to the SCF
complex. Ubiquitin is marked for the junk proteins in the S26 (proteasome) in
SCF complex (143,144). The theory of the F-box protein is founded on the idea
that an F-box mediates structure into a SCF by connecting it to the Skpl. The
SCF complex (Fig.4) compose of: F-box protein (FBP) (143), Skpl
(Kinetochore protein mutant suppressor) (145), Rbx1 (ring-box protein) also
known as Hrtl or Rocl (146) and Cull (Cullin) (147). Since Fbps act as the
factor for the identification of the substrates of the SCF ligases, many Fbps
ensure high substrate specificity (148). Cullin 1, RBX1 and SKP1 weigh
respectively 89,7, 12,3 and 18,7 kDa , while the mass of the F-box protein
ranges from 47 to more than 110 kDa (149) . The F-box is normally in the
amino-terminal half of the protein and is mostly coupled in the carboxy-terminal
of the protein, two of which are most typically leucine-rich repetitions in
humans (LRRs) and WD repetitions. The human F-box protein nomenclature
proposed by the Human Genome Organization fits the trend proposed by
Cenciarelli (1999) and Winston (1999): FBXL is a protein that includes F-box
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and LRRs; FBXW is a protein that includes F-box and WD, and FBXO denotes
an F-box protein and either another or no other pattern (150,151).The fungal F-
Box proteins are essential to cell functions such as circadian clocks,
transcriptions, development, signals transduction, cell cycles and sensing of
nutrients (152). The FBP does not function randomly, but provide certain
proteins which are frequently changed in SCF complex and thus regulate protein
levels in a cell (143). SCF complexes promote the interaction between substrates
and enzymes, which then transfer ubiquitin to substrates. The 26S proteasome
subsequently degrades poly-ubiquitine substrates. The FBP is the subunit of the
SCF complex that connects certain substrates to the complex and connects it to
the complex through the F-box itself. There are numerous SCF complexes in
both yeast and human cells that only differ in the F-box protein ingredients.
Three characteristic SCF complexes are available in yeast: SCFMet30, SCFGrr
and SCFCdc4, designated for their F-box portion (153). When phosphorylated,
F-box protein targets are identified. Such phosphorylation can be carried out by
various protein kinases such as Pho kinases, CDK’s, CK’s and MAPK’s
according to the way the target protein works (154). Losing a fungal protein
from F-Box is sometimes pleiotropic, particularly in cases where the F-Box has
many objectives, the null mutation is lethal for Cdc4, which has 10 identified
targets. Conversely, if the deletion of the gene is of little or no consequence, the
FBP can only target one or a few proteins (154). The amino-terminus of Cullinl
linked with FBP through SKP1 (155). Cullinl is composed form amino-
terminus helical region and a carboxyl- terminus globular o/ domain (156).

Substrat

F-box protein

CULLIN

Fig.4.Schematic view of the SCF complex

F-box protein in disease

In various pathways of Dbiological development, F-box proteins regulate
substrates which control key dimensions of cell life, including cell division, cell
growth, development and differentiation, signaling , and cell survival and death.
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Therefore, F-box protein ubiquityulation dysregulation that can occur via several
distinct mechanisms (157). The F-box protein Fbpl is important for fungal plant
pathogen invasive growth and virulence Fusarium oxysporum. The fbpIA is also
hypersensitive to white calcofluorine and sodium dodecylsulfate resulting in
decreased cell wall phosphorylation. These findings indicate that Fbpl
contributes both to Fusarium oxysporum invasion and to the integrity of the cell
walls (158). F-box protein Fbpl, which causes little damage in the infected lung,
Is important regardless of classic virulence factors (capsule, melanin), fbpIA
cannot spread to other organs in the mouse model after a pulmonary infection.
but still contributes to a brain infection in the model of intravenous murine
injection that shows that the fbpIA is unable to leave from the pulmonary system
(159). Fbpl is important for Cryptococcus neoformans fungal sporulation and
virulence. Fbpl was identified as important for fungal virulence as fbpIA in of
mouse systemic infections were a virulent. Basidiospore development in
bilateral mating between fbpIA was blocked, despite the presence of normal
dikaryotic hyphae during mating (160). That FBP1 in G. zeae is important for
multiple phenotypes including both virulence and sexual development (161).
The dimorphic Candida albicans switch between the yeast form, pseudohiphal
form and the true hyphal type is central to the invasion and development of the
host disease and an essential virulence characteristic. Two Grrl and Cdc4 for f-
box proteins are listed as essential in this morphological. Either removing GRR1
or CDC4 from the genome of the Candida albicans results in pseudohyphal or
filamented morphology, under conditions which generally contribute to yeast
growth (162,163). The repression of pseudo-hyphal production from Grrl may
be caused by the negative cytokinesis control by two G1 cyclines, CIn3 and
Ccnl, which is similar to the Saccharomyces cerevisiae regulation. These
cycline proteins are stabilised in a grrid that prevents cell division after
cytokinesis, which suggest that they are potential Grrl substrates. Furthermore,
the Hofl cellular level of the grri4 cell is also increased significantly, a protein
that plays a role in cytokinesis (164). In the meantime, the way Cdc4 controls
cell morphology is less evident. One Cdc4 substrate, Soll, known to play a part
in Candida albicans morphology (165). The most destructive rice disease is
Magnaporthe oryzae, study identified that FBP, Pthl, which is important for
both rice and barley fungal disease. Pthl is Grrl homologue is required to
regulate appressorium maturation, a specialist cell structure for host cell
penetration. The pthi4 does not the host leaf surface, establishing a strong host-
pathogen relationship, research showed that Pthl is necessary for the
metabolism of fungal carbohydrate and the generation of hydrostatic pressure in
appressoria, which can lead to defect appressoria in pthiAd (162). FBPs (SKP2,
FBXW?7, and B-TrCP) research focused on cancer. SKP2 facilitates S-phase
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entering by striving for proteasomal-dependent degradation with the CDK
inhibitor p27. This role makes SKP2 an oncogenic FBP epitome. SKP2 over-
expression is related a variety of cancers, this function was confirmed through
studies in mouse models. The SKP2 inactivation induces cell senescence
independent of p53 and prevents tumorigenesis (166,167).
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