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ABSTRACT

Kinship verification is a crucial research area due to its diverse applications, including paternity tests, family
reunions, and criminal investigations. While DNA analysis has been the predominant method, artificial intelligence
techniques are still being explored and tested. Facial kinship verification, which involves comparing features between two
facial images, has garnered significant research interest. This paper introduces a new approach to kinship verification
using hand-palm images. The EfficientNetBO model was utilized for deep feature extraction through transfer learning. A
Siamese neural network architecture was employed to assess similarity. Various experimental scenarios were conducted
concerning network architecture, training parameters, and fine-tuning. The Mosul Kinship Hand (MKH) dataset was used
to create the palm dermal image dataset, consisting of 7,332 pairs equally divided into related and unrelated categories.
The results were promising, achieving approximately 99% validation accuracy, and 77.02 ms average inference time per

image pair using a post-training Principal Component Analysis (PCA) technique.
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1. INTRODUCTION

Kinship verification (kV) is defined as the
automated process of determining whether two or
more individuals share a biological relationship,
that is, whether they are kin or non-kin. This
approach assumes that genetically related
individuals exhibit some resemblances, which can
be analyzed [1]. KV plays a significant role in
paternity  disputes, forensic investigations,
reunification of families, and the identification of
victims of disasters. It is helpful in reuniting
families, solving cases in court, and determining
biological relationships. Technology has increased
its accuracy and speed, making it highly essential
in forensic medicine, immigration, and medical
research. While deoxyribonucleic acid (DNA) has
long been the gold standard for kinship
verification, image analysis algorithms offer a
lower-cost and time-efficient approach [2].
However, DNA requires several hours or days to
produce results and involves significant costs [3].
Thus, it cannot be used for real-time KV

applications [4]. Researchers have employed
computer vision and artificial intelligence (Al)
techniques for visual kinship verification (VKV),
with a particular focus on facial kinship
verification (FKV), which has garnered significant
attention. VKV is not yet a substitute for DNA tests
and requires considerable research, but it holds
promise as a Vvaluable complementary tool.
Various traits are passed down from parents to
their offspring through genetic inheritance. These
include characteristics such as eye color,
handedness [5], lip print patterns [6] [7], and
fingerprint patterns [8][9].

Based on the impact of inherited familial
traits, this study explores the potential use of hand
palm skin texture for KV, investigating the use of
deep transfer learning (DTL), especially the
EfficientNetBO model, and the Siamese neural
network (SNN) architecture for image similarity
analysis.

The rest of the paper's introduction
addresses essential theories related to the core
topics of this study and highlights key research
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contributions. Subsequent sections feature a
literature review, a description of the experimental
setup, and a comprehensive research methodology
divided into six scenario subsections. The paper
proceeds with results and discussion, conclusions,
acknowledgements, and references.

1.1. Computer Vision-Based Kinship
Verification

Kinship verification involves three basic
issues [10]: determining if two persons are related
by blood through a kinship relationship,
establishing  parent-child relationships, and
identifying an individual's relatives from a list of
potential candidates [11]. KV fundamentally relies
on comparing two individuals [12]. FKV is a
method of automatically verifying familial
relationships based on facial features. [13]. Over
the past decade, significant advancements have
been made in FKV, mainly due to the integration
of deep learning techniques [11]. However, it
remains in its early stages, with ongoing research
addressing numerous associated challenges [14].
KV remains a vital area of study with significant
implications across various domains [15].

1.2. Deep Transfer Learning (DTL)

KV feature learning and extraction
methods are typically divided into three main
categories: hand-crafted approaches, metric
learning methods, and deep learning models [1].
Deep learning (DL) is widely regarded as a highly
promising approach for KV due to its capability to
automatically classify and extract features.
However, to effectively address real-world
challenges, there is a need for larger, more
balanced datasets and more advanced methods
[16]. DL-based approaches, particularly trained
models such as VGG-Face and Facenet, have
demonstrated superior results for FKV [16] [17].
The EfficientNets model was first introduced by
M. Tan and Q. V. Le as a new scaling approach for
the Convolutional Neural Network (CNN)
ConvNets, based on a compound scaling approach
[18]. They introduced a balanced strategy that
simultaneously scales up the three dimensions of
ConvNets—depth, width, and resolution—leading
to significant performance improvements and the

= % X pm S 3 3 g 2

HERACEL BB Kl KD ER K
E HENEIEE R RSB BB E
i
E . & ;
= o2l |8 (& |18 (& & (8 |8

g = =z = = - = =

MBConvl, k3x3 |

28x28x80

|

creation of a new model family known as
EfficientNets. = Remarkably,  EfficientNet-B7
achieved an accuracy of 84.3% while being 8.4
times smaller and 6.1 times faster than the most
popular ConvNets at the time, such as MobileNets
and ResNet.

The architecture of the pre-trained
EfficientNetBO model that was used as the SNN's
backbone for feature extraction in this research
comprises 237 layers, organized using 16 MBConv
blocks combined with squeeze-and-excitation (SE)
modules. It also has an initial Conv2D layer along
with a final classification head, as shown in Fig.
1[19].

EffecientNets were used to enhance
feature extraction capabilities for fingerprint
classification, specifically targeting gender
identification [20], and to classify the monkeypox
skin lesions. It was found that EfficientNet-BO is a
highly effective model for skin lesion
classification, outperforming various CNN
architectures [21], and that it outperformed other
CNN models in terms of precision, recall, and F1-
score when used to improve the early detection and
classification of brain tumors using MRI images
[22] and for the classification of thoracic diseases
[23].

1.3. Siamese Neural Network (SNN)

A Siamese Neural Network (SNN) is an
effective tool for assessing the similarity between
two images. It is designed to compare image pairs
and evaluate their likeness. The SNN operates
using two or more identical sub-networks that
share the same parameters and features. The term
"Siamese”  highlights  the interconnected
architecture of these networks, similar to conjoined
twins [24][25]. The initial version of SNNs was
introduced by Bromley et al. [26] and has since
gained significant and growing attention in
practical applications [27]. SNNs are a type of deep
learning architecture that excels in creating non-
linear embeddings for a variety of machine
learning tasks, especially those based on similarity
[28]. The basic SNN architecture as depicted in
Fig. 2, consists of two identical, weight-shared
networks that extract features (embeddings) from
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Fig. 1. Architecture of baseline EffecientNetBO.
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input images X1 and X2. These embeddings are
then compared to evaluate similarity, which is used
to classify the inputs as either related or unrelated.
Recently, there has been renewed interest in this
architecture due to advancements in neural
networks, particularly in multimedia applications
[29]. SNNs and their variants are highly effective
for various computer vision tasks, especially when
dealing with a large number of classes and a small
number of samples per class [30].
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Fig. 2. The basic Siamese Neural Network
(SNN) architecture.

SNNs are trained with labeled pairs
(related/unrelated) to learn a similarity metric.
During training, a feature space is created in a way
that related pairs are near and unrelated pairs are
distant. A similarity layer then looks at these pairs
and classifies them according to a learned
threshold [31]. Distance metrics, like cosine
similarity (Equation 1) and Euclidean distance
(Equation 2) [32], are utilized for measuring the
output embeddings produced by twin subnetworks.
This architecture proves advantageous in various
applications, such as image comparison, object
tracking, and face recognition, particularly for
limited or imperfect training data sets [33] [34].
SNNs use a contrastive loss function (Equation)
that is computed by summing up the losses over
similar and dissimilar pairings. Contrastive Loss
(L) is the loss function that penalizes dissimilar
embeddings for positive pairs and similar
embeddings for negative pairs, with a margin M
(Equation 3), and (L,,) is the modified Contrastive
Loss (Equation 4) designed to handle class
imbalance by weighing positive and negative
samples differently [32][35]. Through
backpropagation, the network adapts its weights to
make the distance between similar pairs smaller
while keeping the distance between dissimilar
pairs as large as some defined margin [31].

SNNs, primarily developed with deep
learning frameworks, have only recently become
viable for real-world applications due to their high
computational demands. [27]. SNNs have recently
advanced in terms of architectures, methods, and
applications including face recognition, signature
verification, gait analysis, tattoo recognition, and
pedestrian tracking [30]. Siamese Neural Networks
(SNNs) vary by twin network structure: (1) Simple
SNNs have two branches with shared weights. (2)
Pseudo SNNs feature branches with different
weights or structures, ideal for varied input types.
(3) Triplet networks use three branches to enhance
deep metric learning by comparing an anchor input
with a positive and a negative example. (4)
Quadruplet and quintuplet networks allow for
more complex input comparisons [27].
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e M=1.5 is the margin hyperparameter.

1.4. Contributions

Key contributions of this work include (1)
the introduction of a novel palm-skin-based
kinship verification (PSKV) method. (2) The
effectiveness of EfficientNetBO for deep feature
extraction in skin images via a Siamese Neural
Network (SNN). (3) The achievement of state-of-
the-art accuracy, surpassing current computer
vision techniques in kinship verification. (4) The
implementation of an SNN architecture with fully
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connected similarity layers leads to significant
performance enhancements.

2. LITERATURE REVIEW

This section examines studies utilizing
computer vision for kinship verification, delves
into related research on Siamese neural networks,
and highlights the application of deep transfer
learning techniques. The proposed method for
kinship verification using palm skin images
presents a new approach with no existing
equivalent in prior research.

Othmani et al. proposed using ResNet50
to extract features from paired facial images to
determine Kinship by measuring feature distances.
They highlight that unbalanced datasets
significantly lower accuracy, stressing the need for
balanced training samples [36]. Another study
proposes a deep learning approach using an SNN
to predict kinship between individuals based on
their facial features, achieving a validation
accuracy of 65% [37]. A proposed family-aware
convolutional neural network (FA-CNN) classifier
achieved acceptable performance on the Family in
the Wild (FIW) facial dataset for VKV, with an
average accuracy of 68.84% [38]. The AdvKin
(Adversarial Convolutional Network for Kinship
Verification) model is proposed by N. Nader et al.
for KV using a family ID-based adversarial
convolutional network. Extensive experiments
conducted on both small-scale benchmarks and the
large-scale Families in the Wild (FIW) dataset
demonstrate the superiority of the AdvKin model
over existing state-of-the-art approaches in KV
tasks [39].

SNN architecture was established by T.
Navghare et al. based on deep learning algorithms
such as ResNet and VGGNet. The focus was on
four kinship relations: father-son, father-daughter,
mother-son, and mother-daughter. The proposed
model achieved an average similarity score of
72.73% using the created dataset which comprised
facial images from 96 families, including 410
images and over 77,000 distinct pairs [40]. FKV
using a deep SNN architecture applied to the
Families In the Wild (FIW) dataset, indicating that
cosine similarity outperforms L1 and L2 norms,
achieving higher accuracy across various kinship
types.[41]. C. Bisogni and F. Narducci employed
SNNs utilizing a VGGFace architecture to conduct
experiments to distinguish kinship versus non-
kinship and identify specific kinship types, using
two established datasets: Faces in the Wild and
KinFace-Il. In their experiments, the SNNs
exhibited a maximum accuracy of 75% for kinship
recognition tasks [42]. J. Yu, G. addressed three
key tasks: kinship verification, tri-subject kinship

verification, and Kinship retrieval, utilizing a deep
fusion SNN to achieve these objectives. The
authors explore two methods for similarity
computation: fully connected similarity and cosine
similarity, both of which aid in ranking the
similarity scores to identify potential relatives[43].
The study conducted by R. Annisa and B. Soewito
explores the effectiveness of MobileNet and SNN
in analyzing the M2FRED dataset, which focuses
on mobile face recognition under the constraints
imposed by the COVID-19 pandemic. The results
revealed that MobileNet significantly
outperformed SNN across all metrics, achieving an
overall accuracy of 99.85%, including 100%
accuracy in mask scenarios. In contrast, SNN
exhibited an accuracy of only 49.41% [33].
Another approach has adopted transforming facial
images of parents and children to a common age
range of 15-19 years and using a deep relational
network for post-age transformation image
processing. A triplet SNN was used to optimize the
distances between anchor (parent), positive (child),
and negative (other parent) images. The results
demonstrate an accuracy rate of 76.38% [44]. A
Siamese architecture, GLANet, was proposed,
combing the strengths of Transformers and CNNs
to enhance the discriminative feature extraction
required for accurate KV [45]. A deep fusion SNN
model was produced for the tri-subject FKV task.
The network calculates the kinship similarity score
by combining the individual similarity scores of
the father-child and mother-child pairs. The paper
demonstrates the transition from traditional,
handcrafted,  feature-based  techniques to
contemporary deep learning methods [43]. A deep
learning SNN architecture was proposed for family
member retrieval from facial images. The
approach consisted of two primary components:
similarity computation and ranking. The authors
experimented with various combinations of
backbone networks and training methods to
optimize performance. In their findings, the
authors highlight that while both fully connected
similarity and cosine similarity were utilized
during training, cosine similarity yielded better
results during inference [46].

Far from wusing FKV, researchers
developed their own dataset named Mosul Kinship
Hand (MKH), which contains 648 images from 81
individuals across 14 families. The study
employed Google MediaPipe for hand detection
and segmentation, subsequently extracting 43
geometric features from the images. A neural
network classifier was then designed and trained,
achieving a prediction accuracy of 93% [47], and
92.8% using DTL via a ResNet50 model [48]. The
findings suggest that hand geometry harbor distinct
biometric traits that can effectively indicate
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Fig. 3. Samples from the MKH dataset.

kinship. Another study investigates KV using ear
images. The authors introduce the KinEar dataset,
which consists of 1,477 images from 19 families,
totaling 37,282 kinship pairs. The paper employs
an SNN architecture, utilizing five advanced deep
learning models, including VGG16, ResNet-152,
USTC-NELSLIP, Attentional Feature Fusion
(AFF), and Contextual Transformer Network
(CoTNet). Experimental results indicate that ear
images can effectively be used for kinship
verification, with four out of five models achieving
over 60% in Area Under the Receiver Operating
Characteristics (ROC-AUC). Notably, the VGG16
model achieved the highest performance, with an
ROC-AUC score of 69.22% [49].

Results from prior studies indicated that,
particularly when combined with DTL techniques,
SNNs are exceedingly effective for similarity
analysis as well as KV. In addition, EfficientNet
models were found to be suitable for mining deep
features out of skin images. Although facial KV is
quite common in these studies, only preliminary
works have been reported on other traits, which
could be a gap in reviewed research literature. Our
goal with this work is to address the gap by taking
a DTL-SNN approach and using an EfficientNetB0
model for kinship verification from palm skin
images.

3. EXPERIMENTAL SETUP

The proposed image dataset, evaluation
metrics, and computer specifications are the three
topics covered in this section.

3.1. Dataset

This section details the generation of a
skin image dataset from the source data MKH
(Mosul Kinship Hand) and its subsequent
preparation for SNN implementation.

MKH Dataset: The skin image dataset
used in this work was derived from the MKH hand
image dataset [47], which contains images from 84
individuals (44 females, 40 males, aged 3-70)
spanning 15 families. Each participant contributed
eight images: two palm and two dorsal images per

hand, with both open and closed finger poses.
Refer to Fig. 3 for samples from the MKH dataset.
Hand-Palm Skin Image Extraction: For
this work, only the hand-palm images from the
MKH dataset were used. Specifically, four region
of interest (ROI) images of the palm from each of
the 84 subjects were processed to create palm skin
images. The preprocessing involved cropping the
ROI to a standard size of 762x762 pixels. If
cropping was not possible, the images were
resized. Due to an artifact in the original MKH
dataset, only family 15 had 16 images instead of
the expected 20. The final dataset comprised 332
labelled images, organized by families. Fig. 4
shows samples from the dataset, which was then
used to construct the dataset needed for the SNN.

Fig. 4. Palm skin ROI cropping to generate the
palm dermal image dataset.

Dataset Preparation for Siamese NN: A
Python script was created to generate a labelled
palm skin image dataset for training and validating
a Siamese Neural Network (SNN). The script
produced image pairs categorized as "related"
(individuals from the same family, labelled with a
value of 1) or "unrelated" (individuals from
different families, labeled with a value of 0). The
dataset comprised 14,664 images, forming 7,332
pairs. These pairs were evenly distributed, with
3,666 classified as related and 3,666 as unrelated.
Related pairs included combinations such as
parent-child, father-mother, and siblings, covering
both same-gender and opposite-gender siblings.
Unrelated pairs were randomly selected from
different families. The datasets are available to
interested researchers upon request to the author.

3.2. Metrics
The proposed methods were evaluated
using standard training and validation metrics,
including accuracy, precision, recall, and F1-score
[50]. These metrics were calculated based on true
positive (TP), true negative (TN), false positive
(FP), and false negative (FN) instances, following
the equations (5-8). Furthermore, both the training
duration and the average inference time across 100
runs were evaluated. High accuracy signifies that
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the model correctly predicts a significant portion of
instances compared to the total predictions;
however, it is insufficient on its own for
comprehensive model evaluation. To enhance
assessment, the remaining metrics should be
employed, where high recall reflects fewer false
negatives, while high precision indicates minimal
false positives. The F1 score balances precision
and recall, providing a more holistic view of
performance. Conversely, high training accuracy
paired with lower validation accuracy suggests the
presence of mild overfitting.

| ~ TP + TN :
CCUracy = TP ¥ TN + FP + FN
Precision — —F .6
recision = TP+FP
Recall = —F 7
et = TP ¥ FN

F1_s ) TPrecision * Recall
— = k
core Precision + Recall -8

3.3. Computer specifications

All experiments were conducted on a
desktop PC equipped with an Intel® Core™ i5-
9600 CPU @ 3.70GHz, 16 GB of RAM, a 64-bit
operating system, and an x64-based processor,
without a GPU. All experiments were performed
on a CPU due to hardware constraints. Future
efforts will focus on transitioning the training and
inference workflows to cloud platforms or GPU-
accelerated systems (e.g., Google Colab, AWS
EC2) to enhance scalability and efficiency.

4. METHODOLOGY

This section outlines the methodology
used in the study, illustrating the proposed
scenarios. The EfficientNetBO pre-trained model
was employed as the foundational architecture for
both branches of the SNN. The Siamese structure
comprises two identical branches that process
process input image pairs using shared weights
(weight-sharing constraint), ensuring comparable
feature extraction for both inputs. To optimize
performance, we investigated several DTL
strategies, encompassing fine-tuning, alternative
loss functions, similarity metrics, Principal
Component Analysis (PCA), and modifications to
batch size, transfer learning rate, and early
stopping criteria. For all operational scenarios, the
dataset was partitioned into a training set (80%)

and a validation set (20%). The common batch size
was 64 samples, even though several batch sizes
were experimented with.

4.1. First Scenario (SNN with Cosine
Similarity)

An SNN architecture with cosine
similarity was employed. The model architecture is
depicted in Fig. 5, where the outputs from the SNN
twin arms which are the embeddings from the two
input images represent the deep features of each.
The two embeddings were fed to a lambda layer
that calculates the cosine similarity, then to the
fully connected (dense) layer with 256 units and a
ReLU activation function to learn a non-linear
transformation of the cosine similarity. The next
layer is a batch normalization layer, which
normalizes the activations of the previous layer
(mean = 0, standard deviation = 1) to stabilize and
speed up training. It helps reduce internal covariate
shift and improves generalization. To prevent the
model from relying too heavily on specific
neurons, the output is fed to a dropout layer, which
randomly sets 50% of the input units to O during
training. The last layer is a dense layer with 1
neuron and a sigmoid activation function that
squashes the output to a value between 0 and 1,
which is useful for the binary classification task.
All the layers of the EffecientNetB0 were freeze on
the pretrained weights and the training were
employed on the rest layers. This model was
trained for 75 epochs. Adam optimizer with 0.0001
learning rate, and binary cross entropy loss
function.
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Fig. 5. The proposed SNN architecture for the first
scenario. In the second scenario, the only change
is replacing the cosine similarity-lambda layer
with a Euclidean distance layer.

4.2. Second Scenario (Euclidean distance)

The same architecture used in the first
scenario was applied, replacing the cosine
similarity layer with a Euclidean distance layer to
compute the Euclidean distance between the two
embeddings generated by the SNN for each pair of
images. All the training parameters were kept as in
the first scenario.

4.3. Third Scenario (FC layers)
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The SNN architecture was somewhat
modified to overcome some of the drawbacks of
the previous scenarios. However, instead of using
cosine similarity or Euclidean distance, this
implementation uses a fully connected (FC) layer
to learn the similarity between the embeddings of
the two input images. Traditional SNNs often use
a distance metric (e.g., L1, cosine) between
embeddings, followed by a threshold. However,
this architecture replaces the metric with a
learnable classifier head. This architecture is
illustrated in Fig. 6. The two embeddings were
processed independently before being
mergedthrough a global average pooling (GAP)
layer, followed by a batch normalization layer. The
GAP layer reduces spatial dimensions of
convolutional features (output of EfficientNetB0)
to a 1D vector, preserving channel-wise
information. The batch normalization layer
stabilizes training by normalizing activations post-
GAP. The two outputs were merged via a feature
concatenation layer, which merges embeddings
from both inputs to form a joint representation for
subsequent classification. It concatenates 1280
features’ vector from the two embeddings to create
a single feature vector of 2560 features. The
resultant vector is passed through the following FC
layers in sequence: Dense (512), batch
normalization, dropout (0.5), dense (256), batch
normalization & dropout repeated, and the output
layer is a dense layer with sigmoid activation. The
concatenated vector (2560-dim) is progressively
compressed to 512, then to 256, and finally to 1,
thereby avoiding the curse of dimensionality and
focusing on task-relevant features. Batch
normalization mitigates sensitivity to weight
initialization and learning rates. The stacked dense
layers act as a similarity comparator, distilling
high-dimensional embeddings into a single
confidence score.

The first two scenarios utilize a lambda
layer to compute similarity (cosine or Euclidean),
whereas this one employs a concatenate layer
followed by fully connected layers, thereby
learning the similarity measure from the data. The
training methodology adopted the binary cross-
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Fig. 6. The proposed SNN architecture for the third
scenario features fully connected layers designed to

learn similarity through training.

entropy as a loss function and the Adam optimizer
with a learning rate of 0.0001, with no fine-tuning.

4.4. Fourth Scenario (Improved FC layers)

The fully connected (FC) layers proposed
in the previous architecture were optimized with
key enhancements to regularization and training
stability. To promote simpler decision boundaries
and improve generalization, L2 weight
regularization (A=0.01) was applied to both the
512-unit and 256-unit dense layers as depicted in
Fig. 7. This penalizes excessively large weights,
effectively reducing overfitting by encouraging
sparser feature utilization. Training dynamics were
further  refined through early  stopping
(patience=10 epochs) to halt training upon
validation loss convergence, thereby preventing
overfitting, and adaptive learning rate reduction
(factor=0.2, patience=5 epochs) to stabilize
gradient updates. The original loss function (binary
cross-entropy) and optimizer (Adam) were
retained to maintain consistency in the
optimization objectives.
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Fig. 7. The proposed architecture for the fourth
scenario.

4.5. Fifth Scenario (Improved FC layers with
PCA)

A refined SNN architecture was
developed as shown in Fig. 8, incorporating PCA
for post-training feature space optimization. The
architecture includes several advanced training
mechanisms: (1) a contrastive learning framework
that combines Euclidean distance metrics with
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Fig. 8. The SNN architecture suggested for
scenario 5.
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margin-based contrastive loss to improve
discriminative feature learning; (2) a regularization
scheme using L2 weight decay (A=0.01) on fully
connected layers to prevent overfitting; and (3)
training optimization with adaptive learning rate
scheduling, plateau detection, and early stopping
(patience=10 epochs) to maximize convergence
efficiency.

4.6. Sixth Scenario (Fine tuning, PCA, with
contrastive 10ss)

This scenario integrates SiX
methodological advancements to  optimize
dermatological image analysis. First, it employs
layer-specific ~ fine-tuning,  freezing  early
EfficientNetBO layers to retain generic features
while adapting the last 10 layers to domain-
specific patterns. Second, L2 normalization
projects the embeddings onto a unit hypersphere,
thereby stabilizing distance-based similarity
metrics. Third, an Adam optimizer with cosine
decay scheduling (n_max=1e-4, n_min=1e-6 over
50 epochs) ensures smooth convergence. Fourth,
ROC-derived threshold selection maximizes
diagnostic accuracy by balancing sensitivity and
specificity. Fifth, balanced batch sampling (with a
1:1 positive-negative ratio) mitigates class
imbalance during training. Finally, a class-
weighted contrastive loss function replaces binary
cross-entropy, dynamically adjusting penalties for
minority/majority classes. Fig. 9 depicts the
proposed architecture for this scenario. These
refinements collectively address key challenges in
medical image analysis: preserving the utility of
pretrained feature through selective fine-tuning,
ensuring metric  stability via normalized
embeddings, and optimizing decision boundaries
for clinical applicability. The architecture’s design
aligns with established principles of transfer
learning [51] and contrastive representation
learning [52], while introducing domain-specific
adaptations for dermatological data.
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Fig. 9. The architecture of SNN employed in the
sixth scenario.

5. RESULTS AND DISCUSSION

The proposed methods were assessed
using standard training and validation metrics,
alongside accuracy and loss graphs shown in Fig.
10. High accuracy signifies that the model
correctly predicts a significant portion of instances
compared to the total predictions; however, it alone
is insufficient for comprehensive model
evaluation. To enhance assessment, additional
metrics are employed: high recall reflects fewer
false negatives, while high precision indicates
minimal false positives. The F1 score balances
precision and recall, providing a more holistic view
of performance. Conversely, high training
accuracy paired with lower validation accuracy
suggests the presence of mild overfitting.

The initial two scenarios Yyielded
unsatisfactory results. In the first scenario, the
training accuracy reached 74%, and validation
accuracy was 78%, with high loss values of
approximately 0.55 for training and 0.45 for
validation after 75 epochs. The second scenario
showed 64% accuracy for both training and
validation, with a loss of about 0.64 for each.

Table 1 presents the comparison results
for scenarios 3 through 6, highlighting the top
metric in bold. It can be noticed that the sixth
scenario excels across various metrics, achieving
the highest contrastive accuracy in both training
(99.51%) and validation (98.93%), alongside
superior precision (99.43%) and F1-score
(99.15%). It requires the fewest epochs (43) and
the least training time (14,491 seconds). The
average inference time, which was calculated over

Table 1. Metric comparison among scenarios 3-6.

. Third | Fourth | Fifth Sixth
Metric . . . .
Scenario|Scenario|Scenario| Scenario
Training 0 o o, | Contrastive
Accuracy 97.48% |97. 34%| 99.04% 99.51%
Validation 0 0 oy | CoNtrastive
Accuracy 96.45% | 97.59% | 98.43% 98.93%
Precision | 97.94% | 96.62% | 97.04% | 99.43%
Recall [99.95% |99.03% | 99.86% | 98.86%
F1-Score | 98.93% | 97.81% | 98.43% | 99.15%
Optimal
Threshold| - B 0.6983
Training | g 75 100 43
Epochs
Training | 5o048 | 24955 | 34866 | 14491
Time (s)
Infrence | o763 | 7835 | 77.02 | 7852
Time (ms)
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100 runs, was moderately fast at 78.52
milliseconds. The fifth scenario closely follows
with a training accuracy of 99.04% and a compact
model size (~5 MB post-PCA), although it
demands the most extended training duration
(34,866 seconds). The third and fourth scenarios
offer competitive yet less optimized outcomes,
with the fourth scenario demonstrating better
generalization capabilities, as evidenced by a

validation accuracy of 97.59% compared to the
third’s 96.45% while achieving a balanced
inference time of 78.35 ms. Key insights include
the advantage of the sixth scenario in contrastive
learning, which efficiently balances speed and
performance efficiently. The fifth scenario's PCA
reduction offers a trade-off between reduced model
size and increased computational cost achieving a
minimal inference time of approximately 77 ms.
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Fig. 10. Training and validation curves for accuracy and loss across the proposed six scenarios. Rows 1
and 2 display accuracy (Y-axis: accuracy), while Rows 3 and 4 show loss values (Y-axis: loss). The X-
axis represents the number of epochs in all plots. "1st" corresponds to the first scenario, and so on.
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While the third scenario focuses on maximizing
recall (99.95%), the sixth optimizes precision
(99.43%). The longest inference time, recorded at
87.83ms, occurred during the third scenario.

Fig. 10 illustrates the training/validation plots for
all proposed scenarios, showcasing performance
improvements. The proposed modification to
architectural and training techniques minimizes
erratic behavior and the gap between training and
validation curves, reduces accuracy climb time,
and loss descent time, and lowers the epoch count
required to achieve optimal accuracy and loss.

The good performance of the sixth
scenario can be attributed to the fine-tuning of the
last 10 layers of the EfficientNetB0, which
enhances the capture of fine details from the
dermal images, balanced batch sampling, an
enhanced contrastive loss, cosine learning rate
scheduling, and optimal threshold selection using
ROC-AUC. We may conclude that the technique
of similarity checks via learning from the two
embeddings using the FC layers outperforms the
cosine and the Euclidean distance measures. The
use of L2 regularization prevented overfitting, and
the use of the post-training PCA technique reduced
the trained model size and the inference time. The
average inference time per image pair ranged from
77.02 ms (Scenario 5 with PCA) to 87.83 ms
(Scenario 3 without optimization).

The limitations include a small dataset, a
restricted variety of families, image data collected
under controlled conditions, and manual ROI
cropping, all of which affect generalizability.

The proposed approach for KV using palm skin
texture has not been previously implemented,

making it a novel contribution to the field.
Comparisons were made with other visual KV
methods, including facial recognition, hand
geometry, and ear shape, as shown in Table 2.
While exact dataset-based comparisons are rare
due to different input modalities, this table
highlights general performance trends across
kinship verification strategies. Although direct
comparisons are challenging due to varying
datasets and methodologies, this analysis aimed to
assess the acceptability of the proposed method
within the realm of visual KV techniques. Notably,
the proposed method significantly outperforms the
others, suggesting several factors: the dermal
image dataset was captured under controlled
conditions, palm images are less susceptible to
external noise, and palm dermal modality may
inherently be simpler compared to facial or ear
datasets. Additionally, the results might stem from
the effective synergy between the dermal image
data and the proposed architecture and training
strategies. Dermal images leverage texture details
that exhibit higher intra-class consistency.
Furthermore, palm skin features fewer details than
facial and ear images, facilitating easier similarity
comparisons.

6. CONCLUSIONS

This study explored the potential of using
palm dermal images as a new method for kinship
verification through Al techniques. Results from
various experiments using a skin image dataset that
was produced from the MKH dataset indicated that
this approach is both feasible and comparable to

Table 2. Comparison with other KV methodologies.

Note: Comparisons are provided for illustrative purposes only. Due to the absence of standardized dermal
image datasets, results from various modalities (e.g., facial, ear, palm) are presented for perspective only

Reference Method DTL Model Type of KV Best Accuracy
[36] ResNet50+DTL ResNet50 77.25%
[37] SNN -- 72%
[38] FA-CNN FaceNet & SphereFace 68.84%
[39] AdvKin -- 89.9
[40] SNN ResNet & VGGNet . 72.73%
[41] SNN SqueezeNet Facial Images 67.66%
[43] SNN SENet50, VGG16 & ResNet50 73.8%
[44] SNN + Age ResNet50 76.38%

Transformation
[45] SNN-GLANet Resnet50 & PVT 79.6 %
[47] FF-NN Classifier - Hand-Images 93%
[48] FF-NN Classifier ResNet50 Hand-Images 92.8%
VGG16, ResNet-152, USTC-
1 l 0
[49] SNN NELSLIP & AFF Ear Images 64%
ours SNN EffecientNetBO Palm Dermal 99%
Images
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state-of-the-art facial kinship verification methods.
However, to enhance generalization, experiments
should be conducted with a larger dataset, which is
currently unavailable. The EfficientNetBO DTL
model, when fine-tuned, showed promise for
extracting dermal features. Similarity detection
using a Siamese Neural Network (SNN) with fully
connected layers trained with contrastive loss and
ROC-AUC adaptive thresholding demonstrated
superior performance. This preliminary step can be
further evaluated and improved in future research
by exploring other SNN architectures, such as
triplet networks, additional DTL models, and more
robust similarity assessment methods. While PCA
was used to reduce the model size post-training,
future research should also investigate model
compression methods, such as weight pruning,
quantization, and knowledge distillation to further
optimize the model for edge deployment.
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