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ABSTRACT 

Kinship verification is a crucial research area due to its diverse applications, including paternity tests, family 

reunions, and criminal investigations. While DNA analysis has been the predominant method, artificial intelligence 

techniques are still being explored and tested. Facial kinship verification, which involves comparing features between two 

facial images, has garnered significant research interest. This paper introduces a new approach to kinship verification 
using hand-palm images. The EfficientNetB0 model was utilized for deep feature extraction through transfer learning. A 

Siamese neural network architecture was employed to assess similarity. Various experimental scenarios were conducted 

concerning network architecture, training parameters, and fine-tuning. The Mosul Kinship Hand (MKH) dataset was used 

to create the palm dermal image dataset, consisting of 7,332 pairs equally divided into related and unrelated categories. 

The results were promising, achieving approximately 99% validation accuracy, and 77.02 ms average inference time per 

image pair using a post-training Principal Component Analysis (PCA) technique. 
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1. INTRODUCTION 

Kinship verification (kV) is defined as the 

automated process of determining whether two or 

more individuals share a biological relationship, 

that is, whether they are kin or non-kin. This 

approach assumes that genetically related 

individuals exhibit some resemblances, which can 

be analyzed [1]. KV plays a significant role in 

paternity disputes, forensic investigations, 

reunification of families, and the identification of 

victims of disasters. It is helpful in reuniting 

families, solving cases in court, and determining 

biological relationships. Technology has increased 

its accuracy and speed, making it highly essential 

in forensic medicine, immigration, and medical 

research. While deoxyribonucleic acid (DNA) has 

long been the gold standard for kinship 

verification, image analysis algorithms offer a 

lower-cost and time-efficient approach [2]. 

However, DNA requires several hours or days to 

produce results and involves significant costs [3]. 

Thus, it cannot be used for real-time KV 

applications [4]. Researchers have employed 

computer vision and artificial intelligence (AI) 

techniques for visual kinship verification (VKV), 

with a particular focus on facial kinship 

verification (FKV), which has garnered significant 

attention. VKV is not yet a substitute for DNA tests 

and requires considerable research, but it holds 

promise as a valuable complementary tool. 

Various traits are passed down from parents to 

their offspring through genetic inheritance. These 

include characteristics such as eye color, 

handedness [5], lip print patterns [6] [7], and 

fingerprint patterns [8][9].  

Based on the impact of inherited familial 

traits, this study explores the potential use of hand 

palm skin texture for KV, investigating the use of 

deep transfer learning (DTL), especially the 

EfficientNetB0 model, and the Siamese neural 

network (SNN) architecture for image similarity 

analysis. 

The rest of the paper's introduction 

addresses essential theories related to the core 

topics of this study and highlights key research 

file:///E:/Papers/papers%20++/Siamese%20NN%20Skin/كتابات/mazin.hazizi@uomosul.edu.iq
http://creativecommons.org/licenses/by/4.0/
mailto:alrafidain_engjournal3@uomosul.edu.iq


Mazin H. Aziz: Siamese Neural Networks and Transfer Learning…..  91 

Al-Rafidain Engineering Journal (AREJ)  Vol. 30, No. 2, September 2025, pp. 90-103 

contributions. Subsequent sections feature a  

literature review, a description of the experimental 

setup, and a comprehensive research methodology 

divided into six scenario subsections. The paper 

proceeds with results and discussion, conclusions, 

acknowledgements, and references. 

1.1. Computer Vision-Based Kinship 

Verification 

Kinship verification involves three basic 

issues [10]: determining if two persons are related 

by blood through a kinship relationship, 

establishing parent-child relationships, and 

identifying an individual's relatives from a list of 

potential candidates [11]. KV fundamentally relies 

on comparing two individuals  [12]. FKV is a 

method of automatically verifying familial 

relationships based on facial features. [13]. Over 

the past decade, significant advancements have 

been made in FKV, mainly due to the integration 

of deep learning techniques [11]. However, it 

remains in its early stages, with ongoing research 

addressing numerous associated challenges [14]. 

KV remains a vital area of study with significant 

implications across various domains [15]. 

1.2. Deep Transfer Learning (DTL) 
KV feature learning and extraction 

methods are typically divided into three main 

categories: hand-crafted approaches, metric 

learning methods, and deep learning models  [1]. 

Deep learning (DL) is widely regarded as a highly 

promising approach for KV due to its capability to 

automatically classify and extract features. 

However, to effectively address real-world 

challenges, there is a need for larger, more 

balanced datasets and more advanced methods 

[16]. DL-based approaches, particularly trained 

models such as VGG-Face and Facenet, have 

demonstrated superior results for FKV [16] [17]. 

The EfficientNets model was first introduced by 

M. Tan and Q. V. Le as a new scaling approach for 

the Convolutional Neural Network (CNN) 

ConvNets, based on a compound scaling approach 

[18]. They introduced a balanced strategy that 

simultaneously scales up the three dimensions of 

ConvNets—depth, width, and resolution—leading 

to significant performance improvements and the 

creation of a new model family known as 

EfficientNets. Remarkably, EfficientNet-B7 

achieved an accuracy of 84.3% while being 8.4 

times smaller and 6.1 times faster than the most 

popular ConvNets at the time, such as MobileNets 

and ResNet.  

The architecture of the pre-trained 

EfficientNetB0 model that was used as the SNN's 

backbone for feature extraction in this research 

comprises 237 layers, organized using 16 MBConv 

blocks combined with squeeze-and-excitation (SE) 

modules. It also has an initial Conv2D layer along 

with a final classification head, as shown in Fig. 

1[19].  

EffecientNets were used to enhance 

feature extraction capabilities for fingerprint 

classification, specifically targeting gender 

identification [20], and to classify the monkeypox 

skin lesions. It was found that EfficientNet-B0 is a 

highly effective model for skin lesion 

classification, outperforming various CNN 

architectures [21], and that it  outperformed other 

CNN models in terms of precision, recall, and F1-

score when used to improve the early detection and 

classification of brain tumors using MRI images 

[22] and for the classification of thoracic diseases 

[23]. 

1.3. Siamese Neural Network (SNN) 
A Siamese Neural Network (SNN) is an 

effective tool for assessing the similarity between 

two images. It is designed to compare image pairs 

and evaluate their likeness. The SNN operates 

using two or more identical sub-networks that 

share the same parameters and features. The term 

"Siamese" highlights the interconnected 

architecture of these networks, similar to conjoined 

twins [24][25]. The initial version of SNNs was 

introduced by Bromley et al. [26] and has since 

gained significant and growing attention in 

practical applications [27]. SNNs are a type of deep 

learning architecture that excels in creating non-

linear embeddings for a variety of machine 

learning tasks, especially those based on similarity 

[28]. The basic SNN architecture as depicted in 

Fig. 2, consists of two identical, weight-shared 

networks that extract features (embeddings) from 

Fig. 1. Architecture of baseline EffecientNetB0. 
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input images X1 and X2. These embeddings are 

then compared to evaluate similarity, which is used 

to classify the inputs as either related or unrelated. 

Recently, there has been renewed interest in this 

architecture due to advancements in neural 

networks, particularly in multimedia applications 

[29]. SNNs and their variants are highly effective 

for various computer vision tasks, especially when 

dealing with a large number of classes and a small 

number of samples per class [30]. 

SNNs are trained with labeled pairs 

(related/unrelated) to learn a similarity metric. 

During training, a feature space is created in a way 

that related pairs are near and unrelated pairs are 

distant. A similarity layer then looks at these pairs 

and classifies them according to a learned 

threshold [31]. Distance metrics, like cosine 

similarity (Equation 1) and Euclidean distance 

(Equation 2) [32], are utilized for measuring the 

output embeddings produced by twin subnetworks. 

This architecture proves advantageous in various 

applications, such as image comparison, object 

tracking, and face recognition, particularly for 

limited or imperfect training data sets [33] [34]. 

SNNs use a contrastive loss function (Equation) 

that is computed by summing up the losses over 

similar and dissimilar pairings. Contrastive Loss 

(𝐿) is the loss function that penalizes dissimilar 

embeddings for positive pairs and similar 

embeddings for negative pairs, with a margin M 

(Equation 3), and (𝐿𝑀) is the modified Contrastive 

Loss (Equation 4) designed to handle class 

imbalance by weighing positive and negative 

samples differently [32][35]. Through 

backpropagation, the network adapts its weights to 

make the distance between similar pairs smaller 

while keeping the distance between dissimilar 

pairs as large as some defined margin [31]. 

SNNs, primarily developed with deep 

learning frameworks, have only recently become 

viable for real-world applications due to their high 

computational demands. [27]. SNNs have recently 

advanced in terms of architectures, methods, and 

applications including face recognition, signature 

verification, gait analysis, tattoo recognition, and 

pedestrian tracking [30]. Siamese Neural Networks 

(SNNs) vary by twin network structure: (1) Simple 

SNNs have two branches with shared weights. (2) 

Pseudo SNNs feature branches with different 

weights or structures, ideal for varied input types. 

(3) Triplet networks use three branches to enhance 

deep metric learning by comparing an anchor input 

with a positive and a negative example. (4) 

Quadruplet and quintuplet networks allow for 

more complex input comparisons [27]. 

Cosine similarity (𝐴, 𝐵) =  
𝐴 . 𝐵

∥ 𝐴 ∥ .  ∥ 𝐵 ∥
 …1 

Where: 

𝐴 . 𝐵 is the dot product of vectors 𝐴 and 𝐵. 

∥ 𝐴 ∥ .  ∥ 𝐵 ∥ are the magnitudes (norms) of 

vectors 𝐴 and 𝐵, respectively. 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒:  𝑑 (𝐴, 𝐵)

=  √∑(𝐴𝑖 −  𝐵𝑖)2

𝑛

𝑖=1

 
…2 

  

𝐿(𝑦, 𝑑) = 𝑦. 𝑑2  + (1
− 𝑦). max(𝑀 − 𝑑, 0)2 

…3 

  

𝐿𝑀(𝑦, 𝑑) = 𝑦. (𝑑2 −  𝜔𝑝)  

+ (1
− 𝑦). max(𝑀 − 𝑑, 0)2 

…4 

 

 

• y ∈ {0,1} is the label (1 for similar pairs, 0 for 

dissimilar). 

• 𝜔𝑝 =  
⋕𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

⋕𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 + 𝜖
 balances class 

imbalance. 

• M=1.5 is the margin hyperparameter. 

 

1.4. Contributions 
Key contributions of this work include (1) 

the introduction of a novel palm-skin-based 

kinship verification (PSKV) method. (2) The 

effectiveness of EfficientNetB0 for deep feature 

extraction in skin images via a Siamese Neural 

Network (SNN). (3) The achievement of state-of-

the-art accuracy, surpassing current computer 

vision techniques in kinship verification. (4) The 

implementation of an SNN architecture with fully 

Fig. 2. The basic Siamese Neural Network 

(SNN) architecture. 
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connected similarity layers leads to significant 

performance enhancements.  

2. LITERATURE REVIEW 

This section examines studies utilizing 

computer vision for kinship verification, delves 

into related research on Siamese neural networks, 

and highlights the application of deep transfer 

learning techniques. The proposed method for 

kinship verification using palm skin images 

presents a new approach with no existing 

equivalent in prior research. 

Othmani et al. proposed using ResNet50 

to extract features from paired facial images to 

determine kinship by measuring feature distances. 

They highlight that unbalanced datasets 

significantly lower accuracy, stressing the need for 

balanced training samples [36]. Another study 

proposes a deep learning approach using an SNN 

to predict kinship between individuals based on 

their facial features, achieving a validation 

accuracy of 65% [37]. A proposed family-aware 

convolutional neural network (FA-CNN) classifier 

achieved acceptable performance on the Family in 

the Wild (FIW) facial dataset for VKV, with an 

average accuracy of 68.84% [38]. The AdvKin 

(Adversarial Convolutional Network for Kinship 

Verification) model is proposed by N. Nader et al. 

for KV using a family ID-based adversarial 

convolutional network. Extensive experiments 

conducted on both small-scale benchmarks and the 

large-scale Families in the Wild (FIW) dataset 

demonstrate the superiority of the AdvKin model 

over existing state-of-the-art approaches in KV 

tasks [39].  

SNN architecture was established by T. 

Navghare et al. based on deep learning algorithms 

such as ResNet and VGGNet. The focus was on 

four kinship relations: father-son, father-daughter, 

mother-son, and mother-daughter. The proposed 

model achieved an average similarity score of 

72.73% using the created dataset which comprised 

facial images from 96 families, including 410 

images and over 77,000 distinct pairs [40]. FKV 

using a deep SNN architecture applied to the 

Families In the Wild (FIW) dataset, indicating that 

cosine similarity outperforms L1 and L2 norms, 

achieving higher accuracy across various kinship 

types.[41]. C. Bisogni and F. Narducci employed 

SNNs utilizing a VGGFace architecture to conduct 

experiments to distinguish kinship versus non-

kinship and identify specific kinship types, using 

two established datasets: Faces in the Wild and 

KinFace-II. In their experiments, the SNNs 

exhibited a maximum accuracy of 75% for kinship 

recognition tasks [42]. J. Yu, G. addressed three 

key tasks: kinship verification, tri-subject kinship 

verification, and kinship retrieval, utilizing a deep 

fusion SNN to achieve these objectives. The 

authors explore two methods for similarity 

computation: fully connected similarity and cosine 

similarity, both of which aid in ranking the 

similarity scores to identify potential relatives[43]. 

The study conducted by R. Annisa and B. Soewito 

explores the effectiveness of MobileNet and SNN 

in analyzing the M2FRED dataset, which focuses 

on mobile face recognition under the constraints 

imposed by the COVID-19 pandemic. The results 

revealed that MobileNet significantly 

outperformed SNN across all metrics, achieving an 

overall accuracy of 99.85%, including 100% 

accuracy in mask scenarios. In contrast, SNN 

exhibited an accuracy of only 49.41% [33]. 

Another approach has adopted transforming facial 

images of parents and children to a common age 

range of 15-19 years and using a deep relational 

network for post-age transformation image 

processing. A triplet SNN was used to optimize the 

distances between anchor (parent), positive (child), 

and negative (other parent) images. The results 

demonstrate an accuracy rate of 76.38% [44]. A 

Siamese architecture, GLANet, was proposed, 

combing the strengths of Transformers and CNNs 

to enhance the discriminative feature extraction 

required for accurate KV [45]. A deep fusion SNN 

model was produced for the tri-subject FKV task. 

The network calculates the kinship similarity score 

by combining the individual similarity scores of 

the father-child and mother-child pairs. The paper 

demonstrates the transition from traditional, 

handcrafted, feature-based techniques to 

contemporary deep learning methods [43]. A deep 

learning SNN architecture was proposed for family 

member retrieval from facial images. The 

approach consisted of two primary components: 

similarity computation and ranking. The authors 

experimented with various combinations of 

backbone networks and training methods to 

optimize performance. In their findings, the 

authors highlight that while both fully connected 

similarity and cosine similarity were utilized 

during training, cosine similarity yielded better 

results during inference [46]. 

Far from using FKV, researchers 

developed their own dataset named Mosul Kinship 

Hand (MKH), which contains 648 images from 81 

individuals across 14 families. The study 

employed Google MediaPipe for hand detection 

and segmentation, subsequently extracting 43 

geometric features from the images. A neural 

network classifier was then designed and trained, 

achieving a prediction accuracy of 93% [47], and 

92.8% using DTL via a ResNet50 model [48]. The 

findings suggest that hand geometry harbor distinct 

biometric traits that can effectively indicate 
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kinship. Another study investigates KV using ear 

images. The authors introduce the KinEar dataset, 

which consists of 1,477 images from 19 families, 

totaling 37,282 kinship pairs. The paper employs 

an SNN architecture, utilizing five advanced deep 

learning models, including VGG16, ResNet-152, 

USTC-NELSLIP, Attentional Feature Fusion 

(AFF), and Contextual Transformer Network 

(CoTNet). Experimental results indicate that ear 

images can effectively be used for kinship 

verification, with four out of five models achieving 

over 60% in Area Under the Receiver Operating 

Characteristics (ROC-AUC). Notably, the VGG16 

model achieved the highest performance, with an 

ROC-AUC score of 69.22% [49]. 

Results from prior studies indicated that, 

particularly when combined with DTL techniques, 

SNNs are exceedingly effective for similarity 

analysis as well as KV. In addition, EfficientNet 

models were found to be suitable for mining deep 

features out of skin images. Although facial KV is 

quite common in these studies, only preliminary 

works have been reported on other traits, which 

could be a gap in reviewed research literature. Our 

goal with this work is to address the gap by taking 

a DTL-SNN approach and using an EfficientNetB0 

model for kinship verification from palm skin 

images. 

3. EXPERIMENTAL SETUP 

The proposed image dataset, evaluation 

metrics, and computer specifications are the three 

topics covered in this section. 

3.1. Dataset 

This section details the generation of a 

skin image dataset from the source data MKH 

(Mosul Kinship Hand) and its subsequent 

preparation for SNN implementation. 

MKH Dataset: The skin image dataset 

used in this work was derived from the MKH hand 

image dataset [47], which contains images from 84 

individuals (44 females, 40 males, aged 3-70) 

spanning 15 families. Each participant contributed 

eight images: two palm and two dorsal images per 

hand, with both open and closed finger poses. 

Refer to Fig. 3 for samples from the MKH dataset.  

Hand-Palm Skin Image Extraction: For 

this work, only the hand-palm images from the 

MKH dataset were used. Specifically, four region 

of interest (ROI) images of the palm from each of 

the 84 subjects were processed to create palm skin 

images. The preprocessing involved cropping the 

ROI to a standard size of 762x762 pixels. If 

cropping was not possible, the images were 

resized. Due to an artifact in the original MKH 

dataset, only family 15 had 16 images instead of 

the expected 20. The final dataset comprised 332 

labelled images, organized by families. Fig. 4 

shows samples from the dataset, which was then 

used to construct the dataset needed for the SNN. 

 

Dataset Preparation for Siamese NN: A 

Python script was created to generate a labelled 

palm skin image dataset for training and validating 

a Siamese Neural Network (SNN). The script 

produced image pairs categorized as "related" 

(individuals from the same family, labelled with a 

value of 1) or "unrelated" (individuals from 

different families, labeled with a value of 0). The 

dataset comprised 14,664 images, forming 7,332 

pairs. These pairs were evenly distributed, with 

3,666 classified as related and 3,666 as unrelated. 

Related pairs included combinations such as 

parent-child, father-mother, and siblings, covering 

both same-gender and opposite-gender siblings. 

Unrelated pairs were randomly selected from 

different families. The datasets are available to 

interested researchers upon request to the author. 

3.2. Metrics 

The proposed methods were evaluated 

using standard training and validation metrics, 

including accuracy, precision, recall, and F1-score 

[50]. These metrics were calculated based on true 

positive (TP), true negative (TN), false positive 

(FP), and false negative (FN) instances, following 

the equations (5-8). Furthermore, both the training 

duration and the average inference time across 100 

runs were evaluated. High accuracy signifies that 

Fig. 3. Samples from the MKH dataset. 

Fig. 4. Palm skin ROI cropping to generate the 

palm dermal image dataset. 
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the model correctly predicts a significant portion of 

instances compared to the total predictions; 

however, it is insufficient on its own for 

comprehensive model evaluation. To enhance 

assessment, the remaining metrics should be 

employed, where high recall reflects fewer false 

negatives, while high precision indicates minimal 

false positives. The F1 score balances precision 

and recall, providing a more holistic view of 

performance. Conversely, high training accuracy 

paired with lower validation accuracy suggests the 

presence of mild overfitting. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 …5 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 …6 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 …7 

 

F1 − Score = 2 ∗  
𝑇𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 …8 

 

3.3. Computer specifications 

All experiments were conducted on a 

desktop PC equipped with an Intel® Core™ i5-

9600 CPU @ 3.70GHz, 16 GB of RAM, a 64-bit 

operating system, and an x64-based processor, 

without a GPU. All experiments were performed 

on a CPU due to hardware constraints. Future 

efforts will focus on transitioning the training and 

inference workflows to cloud platforms or GPU-

accelerated systems (e.g., Google Colab, AWS 

EC2) to enhance scalability and efficiency. 

4. METHODOLOGY 

This section outlines the methodology 

used in the study, illustrating the proposed 

scenarios. The EfficientNetB0 pre-trained model 

was employed as the foundational architecture for 

both branches of the SNN. The Siamese structure 

comprises two identical branches that process 

process input image pairs using shared weights 

(weight-sharing constraint), ensuring comparable 

feature extraction for both inputs. To optimize 

performance, we investigated several DTL 

strategies, encompassing fine-tuning, alternative 

loss functions, similarity metrics, Principal 

Component Analysis (PCA), and modifications to 

batch size, transfer learning rate, and early 

stopping criteria. For all operational scenarios, the 

dataset was partitioned into a training set (80%) 

and a validation set (20%). The common batch size 

was 64 samples, even though several batch sizes 

were experimented with. 

4.1. First Scenario (SNN with Cosine 

Similarity) 

An SNN architecture with cosine 

similarity was employed. The model architecture is 

depicted in Fig. 5, where the outputs from the SNN 

twin arms which are the embeddings from the two 

input images represent the deep features of each. 

The two embeddings were fed to a lambda layer 

that calculates the cosine similarity, then to the 

fully connected (dense) layer with 256 units and a 

ReLU activation function to learn a non-linear 

transformation of the cosine similarity. The next 

layer is a batch normalization layer, which 

normalizes the activations of the previous layer 

(mean = 0, standard deviation = 1) to stabilize and 

speed up training. It helps reduce internal covariate 

shift and improves generalization. To prevent the 

model from relying too heavily on specific 

neurons, the output is fed to a dropout layer, which 

randomly sets 50% of the input units to 0 during 

training. The last layer is a dense layer with 1 

neuron and a sigmoid activation function that 

squashes the output to a value between 0 and 1, 

which is useful for the binary classification task. 

All the layers of the EffecientNetB0 were freeze on 

the pretrained weights and the training were 

employed on the rest layers. This model was 

trained for 75 epochs. Adam optimizer with 0.0001 

learning rate, and binary cross entropy loss 

function. 

4.2. Second Scenario (Euclidean distance) 

The same architecture used in the first 

scenario was applied, replacing the cosine 

similarity layer with a Euclidean distance layer to 

compute the Euclidean distance between the two 

embeddings generated by the SNN for each pair of 

images. All the training parameters were kept as in 

the first scenario. 

4.3. Third Scenario (FC layers) 

Fig. 5. The proposed SNN architecture for the first 

scenario. In the second scenario, the only change 

is replacing the cosine similarity-lambda layer 

with a Euclidean distance layer. 



 96    Mazin H. Aziz: Siamese Neural Networks and Transfer Learning….. 

Al-Rafidain Engineering Journal (AREJ)  Vol. 30, No. 2, September 2025, pp. 90-103 

The SNN architecture was somewhat 

modified to overcome some of the drawbacks of 

the previous scenarios. However, instead of using 

cosine similarity or Euclidean distance, this 

implementation uses a fully connected (FC) layer 

to learn the similarity between the embeddings of 

the two input images. Traditional SNNs often use 

a distance metric (e.g., L1, cosine) between 

embeddings, followed by a threshold. However, 

this architecture replaces the metric with a 

learnable classifier head. This architecture is 

illustrated in Fig. 6. The two embeddings were 

processed independently before being 

mergedthrough a global average pooling (GAP) 

layer, followed by a batch normalization layer. The 

GAP layer reduces spatial dimensions of 

convolutional features (output of EfficientNetB0) 

to a 1D vector, preserving channel-wise 

information. The batch normalization layer 

stabilizes training by normalizing activations post-

GAP. The two outputs were merged via a feature 

concatenation layer, which merges embeddings 

from both inputs to form a joint representation for 

subsequent classification. It concatenates 1280 

features’ vector from the two embeddings to create 

a single feature vector of 2560 features. The 

resultant vector is passed through the following FC 

layers in sequence: Dense (512), batch 

normalization, dropout (0.5), dense (256), batch 

normalization & dropout repeated, and the output 

layer is a dense layer with sigmoid activation. The 

concatenated vector (2560-dim) is progressively 

compressed to 512, then to 256, and finally to 1, 

thereby avoiding the curse of dimensionality and 

focusing on task-relevant features. Batch 

normalization mitigates sensitivity to weight 

initialization and learning rates. The stacked dense 

layers act as a similarity comparator, distilling 

high-dimensional embeddings into a single 

confidence score. 

The first two scenarios utilize a lambda 

layer to compute similarity (cosine or Euclidean), 

whereas this one employs a concatenate layer 

followed by fully connected layers, thereby 

learning the similarity measure from the data. The 

training methodology adopted the binary cross-

entropy as a loss function and the Adam optimizer 

with a learning rate of 0.0001, with no fine-tuning. 

4.4. Fourth Scenario (Improved FC layers) 

The fully connected (FC) layers proposed 

in the previous architecture were optimized with 

key enhancements to regularization and training 

stability. To promote simpler decision boundaries 

and improve generalization, L2 weight 

regularization (λ=0.01) was applied to both the 

512-unit and 256-unit dense layers as depicted in 

Fig. 7. This penalizes excessively large weights, 

effectively reducing overfitting by encouraging 

sparser feature utilization. Training dynamics were 

further refined through early stopping 

(patience=10 epochs) to halt training upon 

validation loss convergence, thereby preventing 

overfitting, and adaptive learning rate reduction 

(factor=0.2, patience=5 epochs) to stabilize 

gradient updates. The original loss function (binary 

cross-entropy) and optimizer (Adam) were 

retained to maintain consistency in the 

optimization objectives. 

 

4.5. Fifth Scenario (Improved FC layers with 

PCA) 

A refined SNN architecture was 

developed as shown in Fig. 8, incorporating PCA 

for post-training feature space optimization. The 

architecture includes several advanced training 

mechanisms: (1) a contrastive learning framework 

that combines Euclidean distance metrics with 

Fig. 6. The proposed SNN architecture for the third 

scenario features fully connected layers designed to 

learn similarity through training. 

Fig. 7. The proposed architecture for the fourth 

scenario. 

Fig. 8. The SNN architecture suggested for 

scenario 5.  
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margin-based contrastive loss to improve 

discriminative feature learning; (2) a regularization 

scheme using L2 weight decay (λ=0.01) on fully 

connected layers to prevent overfitting; and (3) 

training optimization with adaptive learning rate 

scheduling, plateau detection, and early stopping 

(patience=10 epochs) to maximize convergence 

efficiency. 

4.6. Sixth Scenario (Fine tuning, PCA, with 

contrastive loss) 

This scenario integrates six 

methodological advancements to optimize 

dermatological image analysis. First, it employs 

layer-specific fine-tuning, freezing early 

EfficientNetB0 layers to retain generic features 

while adapting the last 10 layers to domain-

specific patterns. Second, L2 normalization 

projects the embeddings onto a unit hypersphere, 

thereby stabilizing distance-based similarity 

metrics. Third, an Adam optimizer with cosine 

decay scheduling (η_max=1e-4, η_min=1e-6 over 

50 epochs) ensures smooth convergence. Fourth, 

ROC-derived threshold selection maximizes 

diagnostic accuracy by balancing sensitivity and 

specificity. Fifth, balanced batch sampling (with a 

1:1 positive-negative ratio) mitigates class 

imbalance during training. Finally, a class-

weighted contrastive loss function replaces binary 

cross-entropy, dynamically adjusting penalties for 

minority/majority classes. Fig. 9 depicts the 

proposed architecture for this scenario. These 

refinements collectively address key challenges in 

medical image analysis: preserving the utility of 

pretrained feature through selective fine-tuning, 

ensuring metric stability via normalized 

embeddings, and optimizing decision boundaries 

for clinical applicability. The architecture’s design 

aligns with established principles of transfer 

learning [51] and contrastive representation 

learning [52], while introducing domain-specific 

adaptations for dermatological data. 

5. RESULTS AND DISCUSSION 

The proposed methods were assessed 

using standard training and validation metrics, 

alongside accuracy and loss graphs shown in Fig. 

10. High accuracy signifies that the model 

correctly predicts a significant portion of instances 

compared to the total predictions; however, it alone 

is insufficient for comprehensive model 

evaluation. To enhance assessment, additional 

metrics are employed: high recall reflects fewer 

false negatives, while high precision indicates 

minimal false positives. The F1 score balances 

precision and recall, providing a more holistic view 

of performance. Conversely, high training 

accuracy paired with lower validation accuracy 

suggests the presence of mild overfitting. 

The initial two scenarios yielded 

unsatisfactory results. In the first scenario, the 

training accuracy reached 74%, and validation 

accuracy was 78%, with high loss values of 

approximately 0.55 for training and 0.45 for 

validation after 75 epochs. The second scenario 

showed 64% accuracy for both training and 

validation, with a loss of about 0.64 for each. 

 Table 1 presents the comparison results 

for scenarios 3 through 6, highlighting the top 

metric in bold. It can be noticed that the sixth 

scenario excels across various metrics, achieving 

the highest contrastive accuracy in both training 

(99.51%) and validation (98.93%), alongside 

superior precision (99.43%) and F1-score 

(99.15%). It requires the fewest epochs (43) and 

the least training time (14,491 seconds). The 

average inference time, which was calculated over 

Table 1. Metric comparison among scenarios 3-6. 

Metric 
Third 

Scenario 

Fourth 

Scenario 

Fifth 

Scenario 

Sixth 

Scenario 

Training 

Accuracy 
97.48% 97. 34% 99.04% 

Contrastive 

99.51% 

Validation 

Accuracy 
96.45% 97.59% 98.43% 

Contrastive 

98.93% 

Precision 97.94% 96.62% 97.04% 99.43% 

Recall 99.95% 99.03% 99.86% 98.86% 

F1-Score 98.93% 97.81% 98.43% 99.15% 

Optimal 

Threshold 
-- -- -- 0.6989 

Training 

Epochs 
75 75 100 43  

Training 

Time (s) 
25048 24955 34866 14491 

Infrence 

Time (ms) 
87.83 78.35 77.02 78.52 

  
  
  
  
 
  
  

 

 
  
  

  
  
  

  

  
  
 
 
  
 

  
  

   

  
  
  
  
 
  
  

 

 
  
  

  
  
  

  

  
  
 
 
  
 

  
  

   

 
  

  
   
  
  

 
  
 
 

  
 

 
  
 
  
  
  
  
 

 
  

  
   
  

  
 
  
 
  

  
 

 
  
 
  
  
  
  
 

 
  
  

   
 
  
  
  

  
  

  
  
  

 
  

  
  
   
  
  
  

  
  
  
  
  
  

 
  
  
  

  
  
  
  
  

  
  
  
  

  
 
  
  
  

 

  
  
  
  
  

  

Fig. 9.  The architecture of SNN employed in the 

sixth scenario. 
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100 runs, was moderately fast at 78.52 

milliseconds. The fifth scenario closely follows 

with a training accuracy of 99.04% and a compact 

model size (~5 MB post-PCA), although it 

demands the most extended training duration 

(34,866 seconds). The third and fourth scenarios 

offer competitive yet less optimized outcomes, 

with the fourth scenario demonstrating better 

generalization capabilities, as evidenced by a 

validation accuracy of 97.59% compared to the 

third’s 96.45% while achieving a balanced 

inference time of 78.35 ms. Key insights include 

the advantage of the sixth scenario in contrastive 

learning, which efficiently balances speed and 

performance efficiently. The fifth scenario's PCA 

reduction offers a trade-off between reduced model 

size and increased computational cost achieving a 

minimal inference time of approximately 77 ms. 

Fig. 10. Training and validation curves for accuracy and loss across the proposed six scenarios. Rows 1 

and 2 display accuracy (Y-axis: accuracy), while Rows 3 and 4 show loss values (Y-axis: loss). The X-

axis represents the number of epochs in all plots. "1st" corresponds to the first scenario, and so on. 
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While the third scenario focuses on maximizing 

recall (99.95%), the sixth optimizes precision 

(99.43%).   The longest inference time, recorded at 

87.83ms, occurred during the third scenario. 

Fig. 10 illustrates the training/validation plots for 

all proposed scenarios, showcasing performance 

improvements. The proposed modification to 

architectural and training techniques minimizes 

erratic behavior and the gap between training and 

validation curves, reduces accuracy climb time,  

and loss descent time, and lowers the epoch count 

required to achieve optimal accuracy and loss. 

 The good performance of the sixth 

scenario can be attributed to the fine-tuning of the 

last 10 layers of the EfficientNetB0, which 

enhances the capture of fine details from the 

dermal images, balanced batch sampling, an 

enhanced contrastive loss, cosine learning rate 

scheduling, and optimal threshold selection using 

ROC-AUC. We may conclude that the technique 

of similarity checks via learning from the two 

embeddings using the FC layers outperforms the 

cosine and the Euclidean distance measures. The 

use of L2 regularization prevented overfitting, and 

the use of the post-training PCA technique reduced 

the trained model size and the inference time. The 

average inference time per image pair ranged from 

77.02 ms (Scenario 5 with PCA) to 87.83 ms 

(Scenario 3 without optimization). 

The limitations include a small dataset, a 

restricted variety of families, image data collected 

under controlled conditions, and manual ROI 

cropping, all of which affect generalizability. 

The proposed approach for KV using palm skin 

texture has not been previously implemented, 

making it a novel contribution to the field. 

Comparisons were made with other visual KV 

methods, including facial recognition, hand 

geometry, and ear shape, as shown in Table 2. 

While exact dataset-based comparisons are rare 

due to different input modalities, this table 

highlights general performance trends across 

kinship verification strategies. Although direct 

comparisons are challenging due to varying 

datasets and methodologies, this analysis aimed to 

assess the acceptability of the proposed method 

within the realm of visual KV techniques. Notably, 

the proposed method significantly outperforms the 

others, suggesting several factors: the dermal 

image dataset was captured under controlled 

conditions, palm images are less susceptible to 

external noise, and palm dermal modality may 

inherently be simpler compared to facial or ear 

datasets. Additionally, the results might stem from 

the effective synergy between the dermal image 

data and the proposed architecture and training 

strategies. Dermal images leverage texture details 

that exhibit higher intra-class consistency. 

Furthermore, palm skin features fewer details than 

facial and ear images, facilitating easier similarity 

comparisons. 

6. CONCLUSIONS 

 This study explored the potential of using 

palm dermal images as a new method for kinship 

verification through AI techniques. Results from 

various experiments using a skin image dataset that 

was produced from the MKH dataset indicated that 

this approach is both feasible and comparable to 

Table 2. Comparison with other KV methodologies. 

Note: Comparisons are provided for illustrative purposes only. Due to the absence of standardized dermal 

image datasets, results from various modalities (e.g., facial, ear, palm) are presented for perspective only 

Reference Method DTL Model Type of KV Best Accuracy 

[36] ResNet50+DTL ResNet50 

Facial Images 

77.25% 

[37] SNN -- 72% 

[38] FA-CNN FaceNet & SphereFace 68.84% 

[39] AdvKin -- 89.9 

[40] SNN ResNet & VGGNet 72.73% 

[41] SNN SqueezeNet 67.66% 

[43] SNN SENet50, VGG16 & ResNet50 73.8% 

[44] 
SNN + Age 

Transformation 
ResNet50 76.38% 

[45] SNN-GLANet Resnet50 & PVT 79.6 % 

[47] FF-NN Classifier -- Hand-Images 93% 

[48] FF-NN Classifier ResNet50 Hand-Images 92.8% 

[49] SNN 
VGG16, ResNet-152, USTC-

NELSLIP & AFF 
Ear Images 64% 

Ours SNN EffecientNetB0 
Palm Dermal 

Images 
99% 
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state-of-the-art facial kinship verification methods. 

However, to enhance generalization, experiments 

should be conducted with a larger dataset, which is 

currently unavailable. The EfficientNetB0 DTL 

model, when fine-tuned, showed promise for 

extracting dermal features. Similarity detection 

using a Siamese Neural Network (SNN) with fully 

connected layers trained with contrastive loss and 

ROC-AUC adaptive thresholding demonstrated 

superior performance. This preliminary step can be 

further evaluated and improved in future research 

by exploring other SNN architectures, such as 

triplet networks, additional DTL models, and more 

robust similarity assessment methods. While PCA 

was used to reduce the model size post-training, 

future research should also investigate model 

compression methods, such as weight pruning, 

quantization, and knowledge distillation to further 

optimize the model for edge deployment. 
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راحة  بشرة الشبكات العصبية السيامية والتعلم بالانتقال للتحقق من القرابة من صور

 اليد
 

 مازن هاشم عزيز
 

 الهندسة، جامعة الموصل، الموصل، العراق قسم هندسة الحاسوب، كلية 

mazin.hazizi@uomosul.edu.iq 

 

 2025يوليو  28 :تاريخ القبول  2025يوليو  2 استلم بصيغته المنقحة:   2025ابريل  26 تاريخ الاستلام:
 

   الملخص
ا لتطبيقاته المتنوعة، بما في ذلك اختبارات الأبوة، ولمّ شمل الأسرة، والت  حقيقات الجنائية. في  يعُد التحقق من القرابة مجالاا بحثياا بالغ الأهمية نظرا

السائد، لا تزال تقنيات الذكاء الاصطناعي قيد الاستكشاف والاختبار. وقد حظي   التحقق من القرابة عن طريق حين كان تحليل الحمض النووي هو الأسلوب 
ا جديداا للتحقق من القرابة باست خدام صور راحة اليد.  سمات الوجه، الذي يتضمن مقارنة السمات بين صورتين للوجه، باهتمام بحثي كبير. تقدم هذه الورقة نهجا

ت بنية الشبكة العصبية السيامية لتقييم التشابه. أُجريت سيناريوهات  لاستخراج السمات العميقة من خلال التعلم الانتقالي. ووُظّف  EfficientNetB0استُخدم نموذج  
( لإنشاء مجموعة بيانات  MKHتجريبية مختلفة تتعلق ببنية الشبكة، ومعايير التدريب، والضبط الدقيق. واستُخدمت مجموعة بيانات صور يد قرابة الموصل )

ا مقسمة بالتساوي إلى فئات ذات صلة وغير ذات صلة. كانت النتائج واعدة، حيث حققت دقة تحقق تبلغ حوالي    7332صور جلد راحة اليد، والتي تتكون من   زوجا
ة لكل زوج من الصور باستخدام تقنية تحليل  مللي ثاني  77.02%، ومتوسط وقت استدلال  99% وكانت النتائج واعدة، حيث حققت دقة تحقق تبلغ حوالي  99

   ( بعد التدريب.PCAالمكونات الرئيسية )

   :ة الكلمات الدال

 . اليد كفبشرة  ،EffecientNetB0 ،التعلم بالانتقال العميق ،الشبكة العصبية السيامية ،التحقق من القرابة
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