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ABSTRACT

Segmentation of medical images is a crucial step in the diagnosis and treatment of various diseases,
particularly when analyzing magnetic resonance imaging (MRI) scans. Despite significant progress, accurate
segmentation remains challenging due to the complexity of anatomical structures, ambiguous boundaries, and variations
in image quality. This paper proposes an enhanced Nested U-Net structure that incorporates an attention mechanism and
fuzzy pooling to improve retail performance. Nested U-Net benefits from extensive skip connections to capture multi-level
contextual information, while the attention mechanism enhances the model's ability to focus on relevant features and noise
suppression. In addition, we replace the traditional extreme pooling layers with fuzzy pooling, which enables the network
to handle spatial ambiguity more effectively and produce more accurate and refined retail maps. Experimental results on
publicly available MRI datasets show that the proposed model achieves remarkable improvements, with a 4.97% increase
in the dice coefficient, a 2.76% improvement in accuracy, and a 4.25% increase in recall compared to enhanced U-Net

structures. Furthermore, significant improvements have been observed in Hausdorff's distance measures.
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1. INTRODUCTION

Segmentation of medical images is a
critical and institutional task in the field of medical
imaging, as it supports a wide range of healthcare
applications, including the identification of
abnormalities in tissues, the detection of tumors,
and surgical planning assistance. Among imaging
methods, magnetic resonance imaging (MRI) has
gained prominence due to its non-invasive nature
and exceptional ability to distinguish between soft
tissues, making it particularly suitable for
segmenting complex anatomical structures such as
the brain, heart, and tumors [1]. However,
accurately segmented MRI images remain a major
challenge. Factors such as image noise, low
variability, and differences in anatomical
structures across different patients often
complicate the process [2].

To overcome these challenges, deep
learning models have shown great promise,
particularly the U-Net architecture [3], which has
demonstrated strong performance in medical

image segmentation due to the decoding structure
and use of skip connections that maintain spatial
information [4]. U-Net features a shrinking path
that captures context and an expanding path that
restores spatial resolution, in addition to skip
connections that help preserve essential features
lost during sample reduction[5]. Its ability to
perform well even with limited annotated data has
made it particularly suitable for segmenting fine
anatomical details [6]. Despite this success,
traditional U-Net models can still fall short when it
comes to modelling complex spatial relationships
and detecting precise features, especially in low-
contrast images or ambiguous boundaries [7].

To address these limitations, more
advanced variants have been proposed, such as U-
Net Mesh (also known as U-Net++) [8], which
improves on the original structure by incorporating
dense skip connections and deep supervision to
reduce the semantic gap between the Encoder and
decoder. This results in smoother transitions and
improved segmentation accuracy [9]. In these
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embodiments, the encoder captures multi-scale
features through convolution and pooling
operations, while the decoder reconstructs detailed
masks using hierarchical intermediate layers that
facilitate gradient flow and feature reuse.

In order to further enhance deep learning
structures, attention mechanisms have been
introduced. These mechanisms dynamically weigh
features based on their importance, allowing the
model to focus on vital areas of interest while
suppressing irrelevant information. In medical
image segmentation, this ability is particularly
valuable for detecting small or poorly defined
areas, thereby enhancing boundary resolution and
overall accuracy.

In parallel, ambiguous aggregation has
emerged as a strong reinforcement of traditional
aggregation processes in conventional networks
[10]. Unlike maximum or medium pooling, fuzzy
pooling leverages ambiguous logic to assign an
organic score to each element within the pooling
window, reflecting the degree to which it belongs
to specific, distinct groups [11]. This results in a
more precise and flexible pooling process that can
better handle uncertain or inaccurate standard
features in medical images. Fuzzy pooling has
shown remarkable benefits in tasks such as object
detection and speech recognition, particularly in
the analysis of medical images, where preserving
accurate spatial information is crucial [12].

Modern segmentation models
increasingly utilize attention and multi-scale
learning to enhance focus and context, as seen in
TransAttUNet and EnigmaNet. However, they
often require high computational resources and
large data sets, as they face difficulties in dealing
with ambiguous boundaries and class imbalances,
especially in cardiac structures. Converter-based
models such as LeViT-UNet improve global
context but face deployment challenges. CNN-
based variants (e.g., Residual-Attention UNet++,
ST-HarDNet) enhance spatial features but ignore
boundary uncertainty [13]. The model addresses
these gaps by incorporating Nested U-, spatial
attention, and fuzzy pooling to improve boundary
accuracy and robustness in cardiac MRI
segmentation through efficient computation.
Based on these developments, this work proposes
a new deep learning model for segmenting medical
MRI images that integrates three major
innovations: (1) the overlapping U-Net structure,
which expands classic U-Net with heavy skip
connections to enable deeper supervision and
extraction of wealthier multi-scale features [8](2)
a mechanism of interest to improve the model's
focus on vital features, especially in complex or
noisy areas; (3) fuzzy pooling to replace traditional

pooling layers, which allows the network to

capture spatial ambiguity more effectively and

produce more precise and more accurate retail
maps.

Despite significant progress on the
ground, many challenges remain. The scarcity of
annotated MRI datasets remains a bottleneck,
particularly in rare cases such as gliomas or
specific cardiovascular diseases [14]. In addition,
while the latest models of interest and vague
mechanisms have shown impressive segmentation
accuracy, issues of computational cost, model
interpretability, and durability of invisible data still
need to be addressed [15].

Future research in this field can explore
the development of more efficient and
interpretable hybrid structures [16] that combine
the strengths of various advanced components,
such as attention layers, vague logic-based units,
and  specially designed loss  functions.
Furthermore, leveraging knowledge and area-
specific techniques such as semi-supervised
learning or increased data can enhance
performance in specific data scenarios [17]. The
key contributions of this study are:
¢ Development of an enhanced Nested U-Net with

integrated spatial attention and fuzzy pooling
layers.

e Comprehensive evaluation of the model on the
ACDC cardiac MRI dataset for both
segmentation and classification.

¢ Analysis of computational efficiency ensures the
model is suitable for clinical application
deployment.

The remainder of the paper is organized
as follows: Section 2 reviews several related
works, Section 3 gives theory about the used
techniques and methods, Section 4 illustrates the
experimental setup achieved in the paper, Section
5 presents the experimental results with
comparison to similar works, Section 6 disuses the
achieved results, and finally Section 7 concludes
the paper.

2. RELATED WORKS

Over the past decade, the U-Net's
structure has emerged as a foundational model for
segmenting medical images due to its encrypted
structure, decoding, and skipping connections that
preserve spatial information even in limited data
environments [17]. Various modifications of U-
Net have been developed to enhance segmentation
outcomes in challenging medical imaging
contexts, including the segmentation of brain
tumors, heart structures, and abdominal organs.
Working at [18] provides a comprehensive
analysis of the U-Net family, detailing
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improvements such as deep layers and overlapping
structures to enhance performance in high-
complexity areas. For example, U-Net++ (also
known as Nested U-Net or Densely Connected U-
Net) utilizes dense skipping pathways, which have
proven particularly effective in segmenting white
blood cells and other complex anatomical features
[19]. These improvements highlight the
effectiveness of overlapping and overlapping
structures in capturing precise spatial and
contextual details in biomedical images.

To further improve segmentation
accuracy, especially in scenarios involving fuzzy
tissue boundaries or class imbalances, researchers
explored the mechanisms of attention. The study
identifies in [20] the basic types of interest in deep
learning - channel, place, and time - and their
applications across different vision tasks.
Integrating interest into U-Net variables has shown
remarkable improvement. For example, the U-
Net's multi-band overlapping network with
integrated attention [21] showed an improvement
in localizing features in biomedical segmentation.
Similarly, U-Net++ [22] and the MCA-U-Net
(Multi-level Cross Attention U-Net) network
integrated into CBAM (Convolutional Block
Attention Module) [23] expanded the concept by
adding mutual interest across multiple scales,
which led to more accurate feature maps. These
methods highlight how attention can help focus the
model's focus on areas most relevant to diagnosis,
reduce false positives, and improve dice scores in
segmentation tasks.

In parallel with attention, fuzzy pooling
was investigated to overcome the constraints of
maximum or medium conventional assembly,
especially in dealing with noisy or low-variability
MRI data. Unlike strict aggregation strategies,
fuzzy aggregation leverages ambiguous logic to
assign membership scores to features within the
aggregation window, which allows the model to
retain more accurate information [10][11]. This
technique enhances the model's durability against
spatial ambiguity and anatomical variation. For
example, explore the work in [24] and [25] on
extracting features deep into different networks
using ambiguous or multilevel assembly methods
to improve segmentation performance under
challenging conditions. In liver and tumor
segmentation, fuzzy pooling has demonstrated its
ability to retain critical boundary information,
especially when combined with attention
mechanisms or lightweight structures such as
SCU-Net (Semantic Context U-Net) [9].
These models have successfully addressed
segmentation difficulties caused by unclear
boundaries, anatomical complexity, and

similar grey values among neighboring
structures.

3. MATERIALS AND METHODS

In this study, we propose an improved
model of MRI medical image segmentation that
integrates the overlapping U-Net structure with the
attention mechanism and fuzzy pooling. This
hybrid framework is designed to achieve superior
segmentation accuracy by allowing the model to
focus on critical anatomical structures while
retaining accurate spatial information, as well as
utilizing multi-scale to define boundaries
accurately [25].

3.1. Architecture design

U-Net is a CNN architecture originally
designed for biomedical image segmentation [5],
featuring a decoding-encoding structure with skip
connections that retain spatial detail [6]. To
improve performance, Nested U-Net offers dense
skip connections and deep supervision, which
allows for better feature consolidation and more
precise segmentation, as shown in Fig. 1 [8].

Fig. 1: The architecture of Nested U-Net.

Hybrid models that combine U-Net with
attention and fuzzy pooling mechanisms are
effective in medical image segmentation,
providing improved feature extraction, focus, and
boundary preservation [26][25]. In the model,
fuzzy pooling is used in the encoder to retain fine
details, while attention gates in skip connections
enhance related features.

The fuzzy pooling structure replaces the
standard maximum pooling in the encoder to better
preserve uncertain boundary information. As
spatial attention units are added before each
decoding block, this allows the model to focus on
key anatomical structures. Each decoding stage
benefits from enhanced spatial cues via attention-
rich skip connections. This integration clearly
defines the roles of fuzzy logic and attention within
the Nested U-Net framework, which distinguishes
it from previous hybrid models.
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Fig. shows the proposed model pipeline,
which consists of the following stages:

Image acquisition and pre-processing:
where the MRI heart images are resized to
256x256x3.  Preprocessing includes density
normalization, Gaussian filtering, and TorchlO-
based augmentation (rotation, translation, and
morphological changes), which increases data
diversity fourfold.

Feature extraction: In an encoder, fuzzy
pooling replaces maximal pooling to preserve
spatial detail. A mesh U-Net with dense skip
connections  extracts  hierarchical  features,
facilitating robust learning.

Attention-enhanced decoding: Decoding
blocks reconstruct spatial resolution. Attention
gates improve skip communications by focusing
on relevant structures (LV, MYO, RV).

Output generation: A 1x1 Convolution
with  sigmoid/softmax activation  generates
probability maps, which are then converted to
binary values using a threshold (e.g., 0.5).

Post-processing: Morphological
processes (opening, closing, and smoothing)
remove noise and false positives, while also
improving segmentation results.

Feature-based classification: From final
masks, where anatomical features are extracted
and entered into a classification unit, each patient
is assigned to one of five diagnostic categories
(NOR, MINF, DCM, HCM, RV) using rule-based
or learned models [27].

3.2. Fuzzy pooling

Conventional pooling processes, such as
maximum pooling, can overlook significant spatial
features, particularly in complex medical images.
Fuzzy pooling [28], introduced as an enhancement,
integrates uncertainty modelling into the pooling
process. This approach maintains more accurate
features by applying vague logical principles to
assess local neighborhood information [29],
thereby improving durability and accuracy.

Mathematically, fuzzy pooling leverages
fuzzy logic theory to map pixel values within a
pooling window to membership degrees. Given an
input  patch  X={x1,x2,...xn}, the fuzzy
membership function is defined as:

n(xi) = (1

Xj—C
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Fig. 2: Workflow of the proposed model.

where:

e Xi is the input value,

e cis the center of the fuzzy set (typically the mean
of the window),

e o controls the spread (standard deviation or other
scaling),

e p>1 determines the sharpness of the membership
function.

The final pooled output y is computed as a fuzzy-

weighted average:

_ ZiLy u(xi) - x;

I, k) @)

This ensures smoother transitions and more robust
feature preservation compared to traditional max
pooling or average pooling.

In our model, we replace standard
maximum pooling layers with fuzzy pooling
layers, as illustrated in Fig. 3. This ensures that
important structural and contextual details are
retained while the coverage is reduced. When
integrated into Nested U-Net, fuzzy pooling
enhances the continuity of features across layers
and also helps capture boundaries more accurately,
especially in low-noise or low-contrast images.
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Fig. 3: Fuzzy U-Net Neural Network Design.

3.3. Attention mechanism

Attention mechanisms promote
segmentation by allowing the model to focus on
the areas most relevant to the input [26]. In the
proposed model, attention gateways (AGs) are
incorporated into the skip connections of a nested
U-Net, resulting in feature filtering before
decoding. These gates amplify important
structures (e.g., myocardium, tumor boundaries)
and suppress irrelevant noise, thereby improving
localization and structural clarity [30].

Fig. 4, that this attention-enhanced U-Net
architecture improves segmentation in noisy MRI
scans or when the target area is small.

Ty 1 ° Ioss
3 ™\ Max pooling (by2]

(conv +RelU)*2

/" Up sampling(by 2)
Gate signal
Attention gate

~-- Skip concatenation

Fig. 4: Attention-based nested U-Net.

Fig. 5 shows how the attention
mechanism operates, as the weighted inputs assign
greater importance to critical areas in the image
[31] . Context awareness enhances focus on
diagnostic-related regions, such as organs or
lesions [32]. Dynamic focus adjusts attention
based on the Image’s context, for example,
focusing within tumor areas on healthy tissue [27].

3.4. Training strategy

The model has been implemented in
PyTorch and trained with the Adam optimizer. A
composite loss function that combines Dice loss
and binary cross-entropy addresses class
imbalance. The training process includes 150
epochs, with early stops based on dice score
validation. The model was trained on 100 patients
and validated on a separate group of 50 patients.

Parameter matrix

Fadi
\
et / \\i‘(\
)
T

softMax layer

(4] weights

\T Z/% output

Fig. 5: The work of the attention mechanism.
4. EXPERIMENTAL SETUP

4.1. Software and libraries

The following libraries and toolboxes are
used for building the model and simulating the
work:

e PyTorch (v1.10.0 or above): a basic framework
for building, training, and evaluating the zigzag
U-Net model. PyTorch's dynamic calculation
chart allows for easy experimentation and
correction.

e TorchlO: A medical imaging library used to
increase and normalize data and advance the
processing of 3D medical images.

e NumPy: for numerical processes such as matrix
processing, image conversions, and data
processing.

e Matplotlib & Seaborn: to visualize results and
create performance plots (e.g., dice scores, loU,
confusion matrix) and attention maps.

e SimplelTK: To handle and process NIfTI
medical image files, regrouping procedure, and
other standard imaging processes.

e SciPy: for statistical analysis, specifically in
calculating Hausdorff's distance and making
different image metrics.

e OpenCV: for image processing tasks, including
post-processing steps such as thresholding and
morphological processes.

4.2. Hardware specifications
All experiments were conducted on a
system with the following specifications:
o Processor: 13th generation Intel (R) Core (TM)
i7-13620H @ 2.40 GHz
e RAM: 16.0 GB (15.7 GB usable)
e System Type: 64-bit operating system, x64
processor
These specifications enable the efficient
development of computational training and
evaluation of models, removing it as it is
mentioned in the previous comment, as well as the
use of 16 GB RAM to easily handle large datasets
and the intensive computational requirements of
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deep learning models. A high-speed, 24-hour
multi-core processor also ensures rapid training
and processing of the model, particularly when
handling large volumes of MRI data.

4.3. Dataset

The dataset used in this study is a publicly
available ACDC dataset, part of the Automated
Cardiac Diagnostic Challenge [ACDC Dataset,
2017]. It consists of short-axis cardiac MRI scans
from 150 patients, as they were obtained during the
end-systolic and end-diastolic phases. The data set
was divided into 100 training cases and 50 testing
cases. It includes patients diagnosed with NOR
(normal), MINF (myocardial infarction), DCM
(dilated cardiomyopathy), HCM (hypertrophic
cardiomyopathy), and ARV (abnormal right
ventricle) as explained in Table 1, covering a wide
range of cardiac conditions. This dataset was then
selected for high-quality ground truth annotations
and widely used in benchmarking segmentation
and classification models [19].

Table 1: Patients diagnosed.

Label Condition Number of
Patients

NOR Normal 7
MINF Myocardial Infarction 12
DCM Dilated Cardiomyopathy 3
HCM Hypertrophic Cardiomyopathy 9

RV Abnormal Right Ventricle 19
Total 50

Each volume of MRI volumes includes
detailed anatomical structures of the left ventricle
(LV), right ventricle (RV), and heart muscle
(MYQO) - the three core areas targeted for
fragmentation. To ensure anatomical diversity and
improve the robustness of the segmentation model,
the dataset encompasses a wide range of cardiac
morphologies and diseases.

Before training the model, all images
underwent a comprehensive pipeline that involved
normalizing density to standardize image variation
and brightness across subjects. In addition, data
augmentation techniques, such as geometric shifts
and morphological processes, have been applied to
artificially expand the dataset and increase its
variability. This approach helps mitigate excessive
processing and enhances the model's ability to
generalize to unseen situations.

The use of a clearly defined train-test split
not only supports replicability but also facilitates a
fair and impartial assessment of the model's
performance. This chapter ensures that the model's
segmentation accuracy, generalization capability,
and computational efficiency are assessed on

completely invisible data, reflecting its real-world
applicability.

4.4. Evaluation metrics

To evaluate the performance of
segmentation and classification models, several
well-established metrics have been used, including
the Dice Similarity Coefficient (DSC) for
interference accuracy, the Hausdorff Distance
(HD) for boundary accuracy, accuracy, precision,
and recall, and the F1 score for classification
quality and cross-union (loU) for area-based
interference.  These  metrics  provide a
comprehensive  evaluation  framework that
addresses various aspects of model performance.
These measures are shown in Table 2 2.

5. EXPERIMENTAL RESULTS

In this section, we present the results of
experiments conducted to evaluate the proposed
performance of Nested U-Net with an attention
mechanism and Fuzzy Pooling model for
segmenting medical MRI images. We compare the
performance of our model to that of many current
modern models to demonstrate its superior
capabilities in segmentation accuracy,
computational efficiency, and robustness.

5.1. Results of disease classification

Each test patient has been classified into
one of the five subgroups for heart disease: normal
(NOR), myocardial infarction (MINF), dilated
cardiomyopathy (DCM), hypertrophic
cardiomyopathy = (HCM), and  abnormal
cardiomyopathy ~ (Rether  Ventricle). The
classification results presented in Table Al in the
appendix show a high level of accuracy, with only
minor misclassifications were observed.

The classification results are summarized
in the confusion matrix of Figure 6, which
demonstrates the model's robust classification
capability, providing clear insight into true
positives, false positives, and false negatives
across the five categories. The model shows strong
taxonomic performance, with remarkable accuracy
in differentiating similar heart diseases.

Table 3 shows key performance metrics,
including accuracy, recall, F1 score, and support
for each category. These metrics demonstrate the
model's ability to rank, with values as high as 1.00
indicating complete agreement between the
expected and true categories, which further
measures the effectiveness of the rating for the
category. The high accuracy and recall values
across all classes confirm the model's ability to
identify and classify different types of diseases
correctly. Overall assessment accuracy was 98%.
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Table 2: Evaluation metrics.

Metric Description

Formula

Dice Similarity |Measures overlap between predicted and
Coefficient (DSC) true regions.

DSC = 2|1X n Y| / IX| +|Y]

Hausdorff Distance Measures the maximum distance
(HD) between predicted and true boundaries.

dy(X,Y) = max{dyy,dyx } = max({ rg&xr;letpd(x, ¥), maxmin(x, y)}

Ratio of correct pixels (both positives

Accuracy and negatives). Accuracy = (TP+TN) /(TP +TN +FP + FN)
Precision The proportion of true positives among Precision = TP /TP + FP
predicted positives.

F1-Score Harmonic mean of Precision and Recall. F1 =) 2 * Precision * Recall )/ (Precision + Recall (

Intersection over | Measures overlap of predicted and true _
Union (loV) regions divided by their union. I0U=|AnB|/|AUB|

. s heart muscle (MYO). As shown in Fig. 7 and Table
8T 7 ’ ’ ’ ’ ' 4, the proposed model significantly outperformed
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Fig. 6: Confusion matrix.

Table 3: Classification results.

Class | Precision | Recall | Fl-score | Support
DCM 1.00 1.00 1.00 1
HCM 0.92 1.00 0.96 11
MINF 1.00 0.92 0.96 12
NOR 1.00 1.00 1.00 7
RV 1.00 1.00 1.00 19

5.2. Segmentation performance

The segmentation performance was
assessed using the Dice-like coefficient (DSC) of
the three main anatomical structures: the left
ventricle (LV), the right ventricle (RV), and the

current approaches, achieving Dice scores of
98.20%, 98.00%, and 98.42% for LV, RV, and
MYO, respectively.

The precision of the boundary has been
assessed using the Hausdorff (HD) distance, which
is 80.16, 76.67, and 78.50 for LV, RV, and MYO,
respectively. The model achieved minimum HD
values, which indicates high boundary accuracy.

Table 4: Comparison of obtained segmentation
results with recent studies in terms of DSC.

Avg.

Method DSC RV | MYO | LV
R50 UNet [33] 87.55 | 87.10 | 80.63 | 94.92
R50 Att-UNet [34] 86.75 | 87.58 | 79.20 | 93.47
VIT [35] 81.45 | 81.46 | 70.71 | 92.18
R50 ViT [35] 87.57 | 86.07 | 81.88 | 94.75
TransUNet [36] 89.71 | 88.86 | 84.53 | 95.73
Swin UNet [37] 90.00 | 88.55 | 85.62 | 95.83
LeVit-UNet384 [38] 90.32 | 89.55 | 87.64 | 93.76
nnUNet [39] 91.61 | 90.24 | 89.24 | 95.36
nnFormer [40] 91.78 | 90.22 | 89.53 | 95.59
FCT224 w/o D.S. [39] | 91.49 | 90.32 | 89.00 | 95.17
FCT224 full D.S. [39] | 91.49 | 90.49 | 88.76 | 95.23
FCT224[39] 92.84 | 92.02 | 90.61 | 95.89
FCT384[39] 93.02 | 92.64 | 90.51 | 95.90
Proposed model 98.20 | 98.00 | 98.42 | 98.19

Comparison of Dice Scores Across Segmentation Models

U-Net 85.96

UNet++
Alt U-Net 86.37
At R2U-Net
ANU-Net

R50 Att-UNet 86.75
WT 81.45

TransUNet
Swin UNet
LeVit-UNet384
nnUNet
nnForme:
FCT224 wjo DS
FCT224 full DS
FCT224

FCT384

Proposed Model

80.0 825 5.0 7.5

R2U-Net 81.50

RS0 UNet B7.55

RS0 ViT 87.57
89.71

Dice Score (%)

91.39

80.00
90.32
9161
91.78
91.49
91.49
92.64

93.02

92.5 5.0 97.5 100.0

Fig. 7: Dice Similarity Coefficient (DSC) Comparison.
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5.3. Comparison with recent models

The proposed model has been compared
with the latest current models using dice gauges,
accuracy, and recall. As indicated in Table 5, all
existing methods of segmentation accuracy and
classification  reliability = have  exceeded,
confirming the effectiveness of integrating interest
and ambiguous aggregation into the Internet's
overlapping framework.

Table 5: Comparison with Latest Models.

Method Dice (%) | Precision | Recall
U-Net [33] 85.96 0.8731 | 0.8465
R2U-Net [41] 87.50 0.9211 | 0.8339
UNet++ [42] 91.39 0.9306 | 0.8979

Attention U-Net [42] 86.37 0.9111 0.8209
Attention R2U-Net [42] 90.35 0.9474 | 0.8640
ANU-Net [42] 93.55 0.9423 | 0.9288
Proposed model 98.20 0.9683 0.9683

5.4. Computational efficiency

The computational efficiency of the
model has been assessed in terms of training time,
evaluation time, memory use, and productivity. As
shown in Table 6, the model exhibits high
efficiency, with a training time of 1501.45 seconds,
an evaluation time of 146.67 seconds, a memory
usage of 1414.38 MB, and a throughput of 17.18
(inf/sec). This helps in implementing the model on
mobile devices, thereby facilitating its use in real-
time clinical applications at a lower cost.

Table 6: Computational Efficiency.

Metric Value
Training Time 1501.45 seconds
Evaluation Time 146.67 seconds
Testing Time 146.67 seconds
Memory Usage 1414.38MB
Throughput 17.18(inf/sec)

5.5. Summary of results

The U-Net Network, combined with the
proposed attention mechanism and Fuzzy Pooling,
has achieved superior performance in all aspects
evaluated. Exceptional dice scores across major
anatomical  structures, robust classification
metrics, and minimal errors confirm the model's
accuracy and reliability. In addition, an effective
computational footprint makes it suitable for
clinical applications. These results highlight the
advantages of combining attention units and a
mysterious gathering to segment a strong medical
image.

6. DISCUSSION

This study presents a hybrid framework for
cardiac MRI segmentation that integrates the
overlapping U-Net architecture with spatial
attention and fuzzy pooling mechanisms to

enhance segmentation accuracy and diagnostic
reliability. The proposed model has shown
exceptional performance, achieving average Dice
scores of 98.20% for the left ventricle LV, 98.00%
for the right ventricle RV and 98.42% for the
myocardium MYO, besides low Hausdorff
distances LV: 80.16, RV: 76.67, MY O: 78.50. This
highlights its accuracy in determining limits.
Compared to other advanced models such as nnU-
Net, FCT384, and ANU-Net, the proposed method
consistently  achieved higher segmentation
accuracy and classification performance, reaching
an overall diagnostic accuracy of 98% across five
cardiology categories.

The integration of units of attention
allows the model to focus on clinically relevant
areas, while fuzzy pooling preserves subtle spatial
features that are often lost in traditional clustering
layers. In addition, the model achieves efficient
computational performance with minimal training
and inference times, as well as a low memory
footprint, making it suitable for clinical settings
where speed and scalability are crucial. Key
contributions include the development of an
efficient hybrid architecture, a robust segmentation
and classification pipeline, and validation of a
known cardiac dataset. However, the study was
limited to cardiac MRI data, and the classification
is based solely on segmentation-derived features,
which may overlook other clinical variables.

Future work will focus on integrating
multimodal data (e.g., MRI with ECG or clinical
records), CT scans (e.g., lung nodule or liver lesion
segmentation), and Ultrasound (e.g., fetal or
thyroid imaging), using domain adaptation
techniques for broader generalization, and
integrating interpretable Al methods to enhance
clinical interpretability and confidence.

7. CONCLUSION

This paper presented an improved nested
U-Net model with integrated spatial attention and
fuzzy pooling for segmentation of cardiac MRI
images. The model achieved superior performance
in dice score (98.20%) and Hausdorff distance,
surpassing modern deep learning architectures.
The combination of attentional mechanisms and
fuzzy pooling allowed enhanced focus on key
anatomical regions while maintaining spatial
integrity. High computational efficiency also
supports real-time clinical applicability. Future
work will expand the model to incorporate other
methods, such as computed tomography and
ultrasound, and investigate explainable Al
strategies to enhance clinical confidence.
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APPENDIX A
Table Al: Patient Classification Results
Patient True Class Predicted Class Patient True Class Predicted Class
patient101 RV RV patient126 RV RV
patient102 NOR NOR patient127 HCM HCM
patient103 NOR NOR patient128 MINF MINF
patient104 HCM HCM patient129 HCM HCM
patient105 MINF HCM patient130 NOR NOR
patient106 RV RV patient131 RV RV
patient107 DCM DCM patient132 RV RV
patient108 RV RV patient133 RV RV
patient109 RV RV patient134 NOR NOR
patient110 MINF MINF patient135 HCM HCM
patient111 HCM HCM patient136 RV RV
patient112 MINF MINF patient137 NOR NOR
patient113 DCM DCM patient138 RV RV
patient114 MINF MINF patient139 RV RV
patient115 RV RV patient140 DCM DCM
patient116 HCM HCM patient141 HCM HCM
patient117 MINF MINF patient142 HCM HCM
patient118 DCM DCM patient143 HCM HCM
patient119 NOR NOR patient144 RV RV
patient120 MINF MINF patient145 DCM DCM
patient121 RV RV patient146 RV RV
patient122 HCM HCM patient147 NOR NOR
patient123 RV RV patient148 MINF MINF
patient124 MINF MINF patient149 HCM HCM
patient125 RV RV patient150 HCM HCM
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