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Abstract: 

Electroncesefelography (EEG) is a powerful brain signal analysis tool widely used in 

neurological disorders, brain-computer interface (BCI), cognitive monitoring and biometric 

authentication. Despite its importance, EEG signal noise, low signal-to-show ratio (SNR) and 

inter-subject variability, advanced reserve so-up, functional extraction and classification 

techniques are necessary. This article presents a comprehensive, systematic review of EEG 

signal therapy, discusses pre-prosaic methods, functional extraction techniques, classification 

methods (traditional machine learning, deep learning and hybrid models), discussions and 

future research directions. A broad comparative analysis of existing methods is involved. 

Keywords: EEG signal processing, feature extraction, machine learning, deep learning, hybrid 

models, brain-computer interface, neurological disorder detection. 

 
 

 

 

mailto:anas.ahmed@aliraqia.edu.iq
mailto:ikhlas.m.farhan@uotechnology.edu.iq
mailto:alhashimi200@gmail.com


 2025الرابع والأربعون  العدد          مجلة كلية المأمون                                                                               

 

437 

1 Introduction 

 Electroencephalography (EEG) is a non-invasive neurophysiological technique that 

records brain activity through electrical signals. The first time introduced by Hans 

Berger in 1929 [1], EEG has become an important tool in neurology, cognitive study 

and medical diagnosis. It is essential in monitoring epilepsy, neurodiac disease 

diagnosis, emotional recognition and interaction between humans and computers [2]-

[4]. However, EEG signal analysis is challenging due to noise objects, poor spatial 

resolution and personal variability [5]. The arrival of machine learning (ML) and Deep 

Learning (DL) have improved EEG processing to a large extent, which enables 

automatic functional extraction and real-time classification [6]. The review examines 

advanced processing technology, functional extraction methods, classification models 

(including hybrid techniques) and EEG-based applications. A comparative analysis of 

traditional ML, DL, and hybrid methods is given, and challenges and future research 

directions are discussed. 

 

2   Methodology 

This systematic review follows the prism (favourite reporting elements for systematic 

reviews and meta-analysis) guidelines. 

 

2.1 Literature Search Strategy 

 A comprehensive discovery was made for articles published between 1990 and 2025 

on Google Scholar, IEEE Xplore, PubMed and Springer, such as using keywords: 

"EEG signal processing" 

"Facilitation Survey in EEG" 

"Machine Learning for EEG" 

"Deep Learning EEG classification" 

2.2 Inclusion and Exclusion Criteria 

 Inclusion criteria 

EEG preparation, functional extraction and classification studies. 
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Research on ML/DL techniques for EEG-based applications. 

Peer-Review Journal Articles and Conference Letters. 

Exclusion criteria 

Non-English publication. 

Study without empirical confirmation. 

Conference abstract with inadequate technical details 

    Traditional speech growth techniques include spectral subtraction, veneer filtration 

and MMSE estimates [5], [6]. The purpose of these methods is to reduce the noise in 

the background by preserving speech information. 

 

3. EEG Signal Processing Techniques 

EEG signal treatment consists of three important stages: 

Pre-treatment: Removal of noise and deformation certificates. 

Functional extraction: Identify meaningful patterns from the signal. 

Classification: Assign the features drawn to different categories. 

Each step is essential to improve the accuracy and strength of EEG-based applications. 

 

3.1 Preprocessing Methods 

EEG signals are often contaminated from internal and external noise sources, which 

must be removed for accurate analysis. The most common noise sources include: 

Physical objects (e.g. flashes, muscle activity, cardiac signs). 

Environmental noise (e.g., electrical intervention or movement of objects). 

Electrode displacement (e.g. poor contact with the skull). 

To reduce these effects, various pre-roses have been developed. 

Table 1: Comparison of EEG Preprocessing Methods 

Technique Purpose Advantages Disadvantages References 

Bandpass Filtering Removes unwanted 

frequency 

components 

Simple, 

effective 

Can distort 

signals 

[7], [8] 

 

Independent 

Component Analysis 

(ICA) 

Identifies and 

separates 

artefact sources 

High accuracy 

for artefact 

removal 

Computationall

y 

expensive 

[9] 
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Wavelet Transform Decomposes EEG 

into 

frequency sub-bands 

Preserves time 

and frequency 

information 

Requires 

parameter 

tuning 

[10], [11] 

Common Spatial 

Pattern (CSP) 

Enhances 

discriminative 

EEG features 

Effective for 

BCI 

applications 

Sensitive to 

noise 

variations 

[12] 

Adaptive Noise 

Cancellation 

Eliminates specific 

noise sources 

adaptively 

Works well 

with 

dynamic noise 

Computational 

overhead 

[13] 

 

3.2 Feature Extraction Techniques 

Functional extraction is essential to reduce the dimensions of EEG data while 

maintaining important information. Facilities can be classified as: 

 

Time domain properties: Statistical properties for raw EEG signals. 

Frequency domain properties: Analysis using Fourier Transform (FT) and Power 

Spectral Density (PSD). 

Time enemy properties: Time and frequency analysis (e.g. Wavelet, short-term 

furrier transformation). 

Nonlinear features: Measures of brain signal complexity, such as entropy and fractal 

dimension. 

Table 2: Feature Extraction Techniques in EEG Analysis 

Feature Type Methods Advantages Disadvantages Referen

ces 

Time-Domain 

 

Mean, variance, 

skewness 

Simple, 

computationally 

efficient 

Low classification 

accuracy 

[14] 

Frequency- 

Domain 

 

PSD. FFT, 

Welch's method 

 

Effective for 

steady- 

state analysis 

Loses temporal 

information 

 

[15] 

Time- 

Frequency 

 

STFT, wavelets, 

Hilbert- 

Huang Transform 

Captures transient 

patterns 

High 

computational 

complexity 

[16] 

Nonlinear 

Features 

 

Entropy, fractal 

dimension, 

Lyapunov 

exponent 

Useful for chaotic 

EEG 

patterns 

Difficult to 

interpret 

[17] 
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4. Machine Learning and Deep Learning for EEG Classification 

EEG classification is essential for epilepsy detection, motor imagery recognition, 

sleep staging, and emotion classification. Traditional ML techniques, deep learning 

models, and hybrid approaches have been developed to improve accuracy. 

 

4.1 Traditional Machine Learning Approaches 

Traditional ML models require manual feature extraction before classification. 

 

Table 3: Comparison of Traditional Machine Learning Methods for EEG 

Algorithm Advantages Disadvantage

s 

Application Referen

ces 

Support Vector 

Machines (SVM) 

Works well 

with high- 

dimensional 

data 

Requires 

tuning 

BCI, 

epilepsy 

detection 

[18], 

[19] 

k-Nearest 

Neighbors 

(KNN) 

Simple, 

interpretable 

Computationa

lly 

expensive 

Emotion 

recognition 

[20] 

Random Forest 

(RF) 

Robust to 

overfitting 

Computationa

lly 

expensive 

Cognitive 

load 

classificatio

n 

[21] 

 

4.2 Deep Learning-Based Methods 

Deep learning eliminates manual feature extraction by learning patterns directly from 

EEG signals. 

Table 4: Deep Learning Models for EEG Classification 

DL Model Advantages Disadvantage

s 

 

Application Referen

ces 

Convolutional 

Neural 

Networks (CNNs) 

Extracts spatial EEG 

features 

 

Requires large 

datasets 

Seizure 

detection 

[22],[2

3] 

Recurrent Neural 

Networks (RNNs) 

 

Captures temporal 

EEG patterns 

 

Vanishing 

gradient 

problem 

Emotion 

recognition 

 

[24] 

Graph 

Convolutional 

Networks (GCNs) 

Analyzes EEG 

connectivity 

 

Computationa

lly 

expensive 

 

Motor 

imagery 

 

[25] 
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4.3 Hybrid Methods for EEG Classification 

Hybrid models combine ML and DL approaches to improve classification accuracy 

and robustness. 

 

Table 5: Hybrid EEG Classification Models 

 

5. Applications of EEG Signal Processing 

EEG classification has numerous real-world applications, spanning medical 

diagnostics, human-computer interaction, and security systems. 

 

5.1 Brain-Computer Interfaces (BCIs) 

BCIs enable direct communication between the brain and external devices. 

Applications include: 

Neuroprstiika: controlling robotic organs [32]. 

Smart Home Control: EEG-driven home automation [33]. 

Virtual reality: Improve gaming experiences [34]. 

 

5.2 Neurological Disorder Diagnosis 

EEG is widely used in medical diagnosis: 

 

Hybrid Model Components Advantages Disadvantages Application References 

CNN- 

 

SVM 

 

CNN for feature 

extraction + 

SVM for 

classification 

High accuracy Computational 

cost 

Epilepsy 

detection 

[26],[27] 

LSTM- 

 

RF  

LSTM for 

sequential 

analysis + 

Random 

Forest for 

classification 

Captures 

temporal 

dependencies 

Prone to 

overfitting 

Emotion 

recognition 

 

[28],[29] 

Graph 

Convolutional 

Networks 

(GCNs) 

CNN for spatial 

features 

+ LSTM for 

temporal 

dependencies 

Handles both 

spatial and 

sequential 

patterns 

Requires large 

datasets 

Seizure 

prediction 

[30],[31] 
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Epilepsidetection: Automatic seizure spread [35]. 

Alzheimer's disease: to detect cognitive decline [36]. 

Depression diagnosis: EEG-based evaluation of mental health [37]. 

5.3 Biometric Authentication 

EEG-based certification provides increased security: 

Identification verification: EEG biometry for safe access [38]. 

Continuous certification: Verification of real-time [39]. 

 

6: Challenges and Future Directions 

 Despite the significant progress of EEG signal therapy, many challenges broadly 

prevent EEG-based technologies. These challenges include noise objects, variation 

between subjects, computational obstacles and large-scale data set deficiency. It is 

important to address these boundaries to improve the reliability, accuracy and factual 

purposes of EEG-based systems. 

6.1 Key Challenges 

6.1.1 Noise and Artifacts in EEG Signals 

 EEG signals are receptive to different noise sources, including physical, 

environmental and movement objects. These objects affect the quality of EEG 

registration, reduce the signal-to-show ratio (SNR) and affect classification 

performance. 

Common types of artwork include: 

Electromyography (EMG) objects: Muscular contraction mainly affects high-

frequency ribbon tape. 

Electroculography (EOG) objects: Results from eye movements affect the frontal 

electrode reading to a large extent. 

Movement artefacts: Electrodes are caused by displacement or subject movement, 

which is usually seen by using EEG applications. 

Streamline intervention: Environmental noise from electrical sources (50-60 Hz 

frequency range) can distort EEG signals. 
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Despite the advanced prepricing techniques such as independent component analysis 

(ICA) and Wavelet Danoizing, deformation is calculated and time-consuming. Future 

EEG systems must include real-time noise filtering algorithms to increase EEG's 

praise in real-world applications [40]. 

 

6.1.2 Inter-Subject and Intra-Subject Variability 

EEG signals show significant inter-subject variability, which means that EEG 

patterns can vary widely in individuals due to the difference in brain structure, 

cognitive function and electrode placement. Similarly, intra-subject variability refers 

to a person's change in EEG patterns over time due to fatigue, emotional conditions, 

and external factors. 

Effects of variability on the EEG model: 

Poor normalization: Trained models in one subject can perform poorly on the other 

and limit cross-topic adaptability. 

Increase in calculation complexity: Extensive privatization and calibration are needed 

before the real-world placement. 

Need for domain optimization: Many studies detect transmission and adaptive 

functional extraction techniques to reduce subject variation [41]. A promising 

approach to addressing the difference between the subjects is the development of 

adaptive and individual EEG models that dynamically adjust the parameters based on 

real-time response. 

 

6.1.3 Data Scarcity and Limited Public Datasets 

The success of Machine Learning (ML) and Deep Learning (DL) models depends on 

a large dataset. However, the EEG dataset is often limited in size, making it difficult 

to train a model with high demonstrations without overmass. 

Challenges in EEG data collection: 

High costs for data collection: EEG experiments require special equipment and 

trained professionals.Lack of Standardized Datasets: Many studies use different 
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electrode configurations and preprocessing pipelines, making cross-study 

comparisons difficult. 

Ethical and Privacy Concerns: EEG data contains sensitive information about brain 

activity, raising concerns about data sharing and subject privacy [42]. 

Potential Solutions: 

Data Augmentation Techniques: Synthetic EEG data generation using Generative 

Adversarial Networks (GANs) can help expand training datasets. 

Federated Learning Approaches: Allow decentralized model training while 

preserving privacy. 

Development of Open-Source EEG Repositories: Encouraging the collection and 

sharing of large-scale multi-subject EEG datasets. 

 

6.1.4 Real-Time EEG Processing and Computational Constraints 

Many EEG applications, such as brain-computer interfaces (BCIs) and neurofeedback 

systems, require real-time processing. However, EEG signal analysis often involves 

computationally intensive steps, including: 

High-dimensional feature extraction (e.g., wavelet decomposition). 

Deep learning-based EEG classification (e.g., CNNs, LSTMs). 

Artefact removal algorithms that require significant processing power. 

Wearable EEG devices like consumer-grade headsets have limited processing power, 

making real-time inference challenging. Optimized lightweight deep learning models, 

such as MobileNets and TensorFlow Lite, can help improve efficiency while 

maintaining high classification accuracy. 

6.2 Future Research Directions 

6.2.1 Explainable AI (XAI) for EEG Models 

Deep learning models in EEG classification often lack interpretability, making them 

challenging to deploy in clinical and neuroscience applications. Explainable AI 

(XAI) aims to enhance model transparency by providing human-readable insights 

into EEG-based decision-making. 

Key areas for XAI in EEG analysis: 
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Feature Importance Visualization: Identifying which EEG channels or frequency 

bands contribute most to classification. 

Model Interpretability Techniques: Using SHAP (Shapley Additive Explanations) or 

Layer-wise Relevance Propagation (LRP) to understand deep learning model 

predictions. 

Clinical Acceptance: Physicians require AI models to provide interpretable and 

trustworthy outputs for EEG-based diagnostics. 

By incorporating XAI techniques, EEG-based ML/DL models can become more 

transparent, trustworthy, and clinically relevant. 

 

6.2.2 Real-Time Processing for Wearable EEG Devices 

The development of portable and wearable EEG devices is a growing research area, 

enabling applications in mental health monitoring, cognitive state assessment, and 

brain-computer interfaces. The current EEG classification in real-time faces many 

challenges, including: 

Problems with delay: Most deep teaching models require high calculation power and 

limit real-time performance. 

Edge AI for EEG processing: Distribution of models on built-in systems such as 

Raspberry Pie or Nvidia Jetson can increase efficiency. 

Cloud-based EEG analysis: Cloud closing for Clouds enables more complex EEG 

analysis without hardware restrictions. 

Future EEG systems should focus on real-time processing and allow natural 

integration into everyday applications such as neurofeedback training and cognitive 

charge monitoring. 

 

6.2.3 Multimodal EEG-fMRI Fusion for Advanced Brain Mapping 

Combining EEG -is with other neuroimaging forms, such as functional magnetic 

resonance imaging (fMRI) and Magnetoencephalography(MEG), can provide deep 

insight into brain function. 

Benefits of EEG-fMRI Integration: 
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EEG provides high temporary resolution, while FMRI offers high spatial resolution. 

Better neurological disease diagnosis: Alzheimer's accuracy helps detect Parkinson's 

and epilepsy. 

A better understanding of cognitive functions: EEG-FMRI studies can show how 

brain networks interact in real time. 

Challenges of EEG-fMRI Fusion: 

Problems with signal synchronization: EEG and FMRI work on different scales, 

making it challenging to coordinate data. 

High costs and complexity: FMRI scanners are expensive and limit mass studies. 

Data integration algorithms: Advanced deep learning models must effectively 

combine EEG and FMRI functions. 

Future research should focus on developing effective deep learning frameworks that 

can initially integrate EEG and FMRI data, leading to more accurate activity of brain 

activity. 
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Conclusion 

The EEG signal treatment has experienced significant progress in recent decades, 

which improves the preaching of techniques, functional extraction methods, machine 

learning (ML), Deep Learning (DL) and hybrid classification models. Despite these 

advances, EEG-based systems face significant challenges related to signal noise, 

variation between subjects, data shortages, real-time treatment limits and model 

lecturers. 

This systematic review provided a comprehensive analysis of the EEG signal treatment 

techniques, covering: 

Independent ingredient analysis (ICA), Wavelet transformation and preprocessing 

techniques such as adaptive noise reduction, which help reduce speed objects, muscle 

noise (EMG) and eye blink artefacts 

(EOG) . 

Extraction methods, time domains, frequency domains, time-frequency 

representatives, and nonlinear functions provide unique benefits for each EEG 

application. 

From classification models, traditional ML (SVM, KNN, Random Forest) to DL-based 

approach (CNN, LSTM, GCN) and hybrid methods (CNN-SVM, LSTM-RF, CNN-

LSTM). 

Critical EEG applications include brain-computer cleaning (BCIS), neurological 

disorder diagnosis (epilepsy, Alzheimer's, depression), cognitive condition monitoring 

and biometric authentication. 

Challenges related to noise objects, professional variability, data set limits, and 

computational obstacles hinder the distribution of EEG-based solutions in the real 

world. 

Future research directions include the development of Explainable AI (XAI) for EEG 

models, real-time processing for wearable EEG devices, and EEG-fMRI fusion for 

enhanced brain mapping. 
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