
 2025الرابع والأربعون العدد مجلة كلية المأمون

401

Machine Learning Aids Predict the Execution Times of

Equations for Predictive Performance Analysis

Yasmin Makki Mohialden1
, Nadia Mahmood Hussien2

, Zeyad Farooq Lutfi3
, Samira Abdul

Kader Hussain4
, Ethar Abdul Wahhab Hachim5

1,2,3,4,5 Computer Science Department, Collage of Science, Mustansiriyah University, Baghdad-

Iraq

1ymmiraq2009@uomustansiriyah.edu.iq

2nadia.cs89@uomustansiriyah.edu.iq

uomustansiriyah.edu.iq@6zeyadfa3

samiracs@uomustansiriyah.edu.iq4

uomustansiriyah.edu.iq@201124ethar5

Abstract

This paper develops a machine learning system which creates forecasts about

equation runtime duration. The solution aims at simplifying resource utilization

forecasts and scalability assessment for computational programs. The proposed

method utilizes standard supervised learning algorithm linear regression to create

predictions regarding runtime from sent equation lengths. Python code production

involves generating random data followed by runtime equation resolution timing and

linear regression model development which utilizes input size as the model

independent variable while using expected runtime as the dependent variable. The

analysis indicates that the developed model achieves proper runtime prediction

capabilities across various input data ranges. The research evaluates the potential of

this application method to help select algorithms and determine their complexity

scales. Machine learning techniques used for runtime estimation enhance computing

environments by enabling improved performance analysis and decision-making

through machine learning predictors in combination with algorithm scaling methods

and runtime estimation and performance assessment capabilities.

 Keywords: Machine learning predictor, Estimation of running times, Performance analysis,

Runtime prediction, Linear regression.

mailto:1ymmiraq2009@uomustansiriyah.edu.iq
mailto:2nadia.cs89@uomustansiriyah.edu.iq
mailto:3ethar201124@uomustansiriyah.edu.iq
mailto:4samiracs@uomustansiriyah.edu.iq
mailto:5zeyadfa6@uomustansiriyah.edu.iq

 2025الرابع والأربعون العدد مجلة كلية المأمون

402

1. Introduction

It's essential to know how long programs take to run in computer systems if

you want to get the most out of your resources and do a better job analyzing

performance. To scale algorithms and make decisions, it is essential to

correctly estimate how long a complex equation will take to run. The runtime

is often figured out through theory analysis or real-world observations, which

may not always give accurate predictions for changing input sizes. Many

people are interested in using machine learning methods to improve runtime

estimation [1, 2, 3].

Because time-dependent mathematical models are harder to simulate numerically, they

may use too many computer resources in processing power or memory storage.

Numerical simulations of a given model must often be run more than once (called

"multi-query") and with many different inputs for various applications, such as

sensitivity analysis, optimization, control, uncertainty quantification, or dealing with

multiscale issues. Even if complex mathematical models are accurate and reliable,

they may not be helpful for forecasting in computational medicine and meteorology if

they can't be solved almost instantly [4, 5, 6].

When domain knowledge isn't enough, for example, to pick the correct parameters or

models, machine learning techniques are often used to replace those parts of the

process. This leads to hybrid methods, which can be new models for reducing model

order or faster, more reliable solvers [7, 8, 9].

This study looks at how machine learning can predict complicated equations'

runtime based on their inputs' size. The idea is to make a predictive model

that can accurately predict how long equations will take to run. This will

allow computer systems to scale algorithms more successfully and analyze

resource allocation more effectively. Using linear regression, the suggested

way connects the input size and the time it takes for the equations to run. It is

a popular supervised learning method to find a link between the input size and

the time it takes for equations to run [10, 11].

 2025الرابع والأربعون العدد مجلة كلية المأمون

403

This paper is set up as follows: In this section, an introduction to the study question

and its importance to computational systems are given. In Section 2, it talks about the

related work. In section 3 "Methodology" explains the techniques used to make the

predictive model for predicting equation runtimes. Results and Analyses, 4th Section

In this part, the results show how well the models work with statistical analyses and

visuals are provided. Lastly section 5 presents the conclusion and suggestions for

future work.

2. Related work

In [2018] Image binarization is considered as the first step in analyzing old

papers. Even though the ink is fading, there are spots, and it's bleeding

through, it still makes a line between the center and the background. When

studying extensive document image archives, it's essential to do binarization

quickly because even small inefficiencies can waste years of processing time.

Binarization is critical for companies and states that want to look at large

groups of documents. This means that work needs to be sped up without

slowing down binaryization. The authors get 3.5 times faster processing by

correctly mapping a state-of-the-art binarization method to a heterogeneous

CPU-GPU architecture. The authors' algorithm cuts execution time by 1.7

compared to earlier ways of tweaking parameters. For the chosen method,

machine learning-based parameter adjustment is faster regarding absolute

processing times than heterogeneous computing [12].

In [2020] The authors provide MATH, a new dataset comprising 12,500

complex competition mathematics tasks. Each MATH issue has a

comprehensive step-by-step solution that may be used to train models to

create answer derivations and explanations. They also contribute an extensive

auxiliary pretraining dataset that helps teach models the principles of

mathematics to facilitate future research and improve MATH accuracy. While

we can improve MATH accuracy, our results reveal that accuracy remains

relatively low, even with massive Transformer models. Furthermore, if

 2025الرابع والأربعون العدد مجلة كلية المأمون

404

scaling trends continue, just raising budgets and model parameter counts will

be unfeasible for obtaining solid mathematical reasoning. While Scale

Transformers automatically solves most other text-based jobs, it does not

currently solve MATH [13].

In [2021] Understanding complex materials is considered an essential aim for

industrial and scientific growth, especially ones with solid-liquid interfaces

like water on surfaces or in small areas. Established modeling methods have

given us the necessary information about atoms. Still, initio methods have

trouble with the time and length scales we need, and force field methods can

be wrong. The authors show how a simple and automatic machine-learning

method can solve these problems and give accurate an initio interaction

models for a wide range of complex aquatic systems. Because of these

breakthroughs, molecular simulations of many scientifically critical systems

are now possible. To understand complicated systems like how solids and

liquids interact, you need simulation methods that show potential energy

surfaces quickly and adequately. A machine learning method is given for

building and testing models of complicated water systems. Instead of trying to

make machine learning work well everywhere, the authors suggest making

models that are easy to use and work well at specific thermal state points.

After an initio simulation, a data-driven operational learning process builds

machine learning capabilities. These models can then be used in full

simulations to answer the science question or look at the thermal performance

of initio methods. The authors show how their process works in different

water systems, like bulk water with many ions in solution, water on a titanium

dioxide surface, and water between nanotubes and molybdenum disulfide

sheets. The accuracy of our method in terms of the initio reference is shown

by an automated validation method that looks at structural and dynamical

properties as well as the accuracy of force forecasts. Lastly, the authors show

that method to examine the structure and movement of water on the surface of

 2025الرابع والأربعون العدد مجلة كلية المأمون

405

rutile titanium dioxide (110). Machine learning models add more time and

length scales to models of complicated systems accurately. Machine learning

models make time and length scales for modeling complex systems simply

but accurately [14].

In our proposed model, we introduce a challenge in measuring the Equation's

runtime in different inputs using machine learning and without it based on

Python.

2.1 Gap in Related Work

Research has succeeded in its targets but persistent barriers exist for precise

and effective runtime estimation of mathematical expressions that span

multiple input values. Research studies continue to depend heavily on

established computer methods that fail to produce accurate outcomes when

dealing with complex inputs. Real-world data application testing of proposed

models exists insufficiently which reduces their reliability output in practical

usage. Applications requiring fast and accurate runtime prediction cannot use

machine learning-based models because they need extensive training data. A

new model needs development to create accurate mathematical equation

runtime estimates in addition to improving integration between machine

learning methods and traditional computational analytics.

3. Methodology

Machine learning is frequently employed in various fields to resolve complex issues

that are not amenable to simple computer-based solutions. One of the simplest and

most commonly used machine learning methods is linear regression [15]. It is a

mathematical method for conducting predictive analysis. Continuous, natural, or

mathematical variable projections are possible with linear regression [16, 17]. A linear

regression test assesses and quantifies the relationship between the variables under

consideration. Regression and partial correlation are techniques that help scientists

determine how confusion affects the connection between two variables [17,18]. It is a

technique for evaluating data and modeling that develops linear relationships between

 2025الرابع والأربعون العدد مجلة كلية المأمون

406

dependent and independent variables. Thus, this technique would simulate the

relationships between dependent and independent variables [19].

Figure 1 illustrates the proposed method. This study aims to investigate the viability

and efficacy of machine learning for predicting equation runtimes to gain essential

insights into improving performance analysis and decision-making in computational

systems. Enhancing resource allocation, algorithm selection, and scalability analysis

through the integration of machine learning techniques might result in computing

systems that are more effective and optimized in the long run. The method examines

the runtimes of equations with and without machine learning techniques to predict

runtimes based on input sizes.

Figure 1: General block diagram of the proposed model

The strategy takes an orderly approach to achieving this goal. To execute the linear

regression model, the necessary libraries are imported. These include a time library to

measure runtime, a library to generate random inputs, a pandas library to create a data

frame for storing the results, and (sklearn.linear_model) for linear regression.

The critical equations are written as lambda functions in the list of equations. These

equations show how to do a range of math operations and methods. Then, the process

goes through each Equation one at a time. The runtime of each Equation is found by

keeping track of when it starts, solving it with random inputs, and then keeping track

of when it finishes. Without machine learning, the runtime of the Equation can be

 2025الرابع والأربعون العدد مجلة كلية المأمون

407

found by comparing the start and end times. This runtime has been printed so that it

can be watched and studied.

The technique wrote down the Equation in the findings list, the Runtime without

machine learning, and the expected Runtime with machine learning. This lets us

compare and examine the two methods later on. The results list is then turned into a

Pandas DataFrame so that more data can be viewed and played. The data frame is

saved as an Excel file for later use and shared readily. The general steps for finding the

runtime are:-

Table 1: Input output parameter

Step Input Parameter Description Output Parameter Description

Step 1 Required Libraries

time, numpy, pandas,

LinearRegression from

scikit-learn

Imported Libraries
Libraries available

for use

Step 2 x (array of values)
Randomly generated input

values
Equation(x)

Computed

equation output

Step 3
np.random.rand(1000

000)

Generates an array X of

1,000,000 random

numbers between 0 and 1

X
Random input

values

Step 4a time.time() Captures the start time start_time
Recorded start

time

Step 4b Equation(X)
Computes the output y for

each X
y

Computed outputs

of the equation

Step 4c time.time() Captures the end time end_time Recorded end time

Step 4d end_time - start_time Computes runtime runtime
Execution time

without ML

Step 4e runtime
Printed runtime without

ML
Console Output

Displays runtime

without ML

Step 5a X.reshape(-1,1)
Reshapes X into a column

vector
X_reshaped

Reshaped input

data

Step 5b
time.time() -

start_time for each X

Generates y values based

on time differences
y_time_diff

Execution time

differences

Step 5c
X_reshaped,

y_reshaped

Reshapes inputs for

regression

X_reshaped,

y_reshaped
Reshaped data

Step 5d

LinearRegression().fi

t(X_reshaped,

y_reshaped)

Fits regression model reg
Trained linear

regression model

Step 6a X_new = [[1]]
Defines a new input for

prediction
X_new

New input for ML

prediction

Step 6b reg.predict(X_new) Predicts runtime for X_new predicted_runtime
Predicted runtime

with ML

Step 7 predicted_runtime
Predicted runtime for input

size of 1,000,000
Console Output

Displays predicted

runtime with ML

Step 8a DataFrame creation
Stores results in a

DataFrame
results

DataFrame with

equation, runtime,

and ML-predicted

runtime

 2025الرابع والأربعون العدد مجلة كلية المأمون

408

Step 8b
results.to_excel('runti

mes.xlsx')

Saves results in an Excel

file
runtimes.xlsx

Output file

containing

execution times

4. Results and analysis

This Section compares runtime measurements made without machine learning to

runtime predictions made using a trained regression model. Regression analysis is a

fundamental concept in the field of machine learning. It falls under supervised

learning, wherein the algorithm is trained with both input features and output labels. It

helps establish a relationship among the variables by estimating how one affects the

other. Training a Regression Model involves finding the best possible values of the

gradient (m) and y-intercept (c) to model a line for a given data set. This allows the

model to predict the runtime of equation productivity (y). The predictive model's

efficacy is evaluated by contrasting the anticipated runtimes with the actual runtimes

achieved without machine learning. Statistical analyses and visuals are offered to

show how well the models work.

1- One input size equation: Table 1 shows the runtime results (with and without

ML) for different equations with one input size.

Table 2 shows the results of runtime (with and without ML) for different equations with one

input size

Equation Runtime

(without ML)

Predicted

Runtime (with ML)

2 * x^3 + 4 * x^2 + 6 * x + 8 2.063560963 2.193320702

lambda x: 3 * x ** 2 + 5 * x + 2 1.656127214 1.792170969

lambda x: 2 * x ** 3 + 4 * x ** 2 + 6 * x + 8, 13.1577363 13.29169267

lambda x: np.sin(x) + np.cos(x) 3.540966272 3.689251824

lambda x: np.exp(x) + np.log(x) 3.359123468 3.492781906

lambda x: 4 * x + np.sqrt(x) - np.sinh(x) 6.140503645 6.280873637

 2025الرابع والأربعون العدد مجلة كلية المأمون

409

While figure 1 illustrates these results.

Figure 2: One input size equation

2- 2- Multiple inputs size equation: Table 2 shows the results of runtime (with and

without ML) for different equations with considerable input size.

Table 2 shows the runtime results (with and without ML) for different equations

 with multiple input sizes.

Equation Runtime

(without ML)

Predicted Runtime

 (with ML)
lambda x, y: 2 * x ** 2 + 3 * y - 4 * x * y

+ np.sin(x * y) 5.527449 5.646198
lambda x, y, z: (x + y) * z ** 2 + np.sqrt(x

* y * z) - np.exp(x - y + z) 6.37452 6.492617
lambda x, y, z: np.cos(x) * np.sinh(y) +

np.log(z) 6.405753 6.531845

0

2

4

6

8

10

12

14

 lambda x: 3 * x **
2 + 5 * x + 2

lambda x: 2 * x ** 3 +
4 * x ** 2 + 6 * x + 8,

lambda x: np.sin(x) +
np.cos(x)

lambda x: np.exp(x) +
np.log(x)

lambda x: 4 * x +
np.sqrt(x) - np.sinh(x)

Runtime (without ML) Predicted Runtime (with ML)

 2025الرابع والأربعون العدد مجلة كلية المأمون

410

While figure 3 illustrates these results.

Figure 3. Multiple inputs size equation

As well as table 3 shows the runtime results (with and without ML) for

differences in other equations and figure 3 illustrates these results.

Table 3. Results of runtime (with and without ML) for other different equations

Equation Runtime

(without ML)

Predicted Runtime

(with ML)

lambda x, y: 2 * x ** 2 + 3 * y - 4 * x * y +

np.sin(x * y) 6.594707 6.736889

lambda x, y, z: (x + y) * z ** 2 + np.sqrt(x * y

* z) - np.exp(x - y + z) 6.095517 6.233837

lambda x, y, z: np.cos(x) * np.sinh(y) +

np.log(z) 6.118021 6.261095

 Figure 3 shows the runtime results (with and without ML) for the equations in Table

3. As we can see, the model can predict the runtime with the Equation compared to the

runtime without ML.

5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

lambda x, y: 2 * x ** 2 + 3 * y - 4 * x
* y + np.sin(x * y)

lambda x, y, z: (x + y) * z ** 2 +
np.sqrt(x * y * z) - np.exp(x - y + z)

lambda x, y, z: np.cos(x) * np.sinh(y)
+ np.log(z)

Runtime (without ML) Predicted Runtime (with ML)

 2025الرابع والأربعون العدد مجلة كلية المأمون

411

Figure 3. The runtime results (with and without ML) for differences in other equations.

5. Conclusion and Future Work

The study shows the necessity to enhance mathematical equation runtime estimation

accuracy through machine learning techniques development. Research into previous

studies showed two main issues with traditional methods and small-scale dataset

testing limitations. Building an improved efficient model represents an essential need

to enhance runtime estimation while improving machine learning integration with

traditional computational analysis.

Future research should investigate high-level artificial intelligence approaches

including deep neural networks and reinforcement learning models to achieve more

precise estimates. The proposed model requires testing on multiple datasets to prove

its capability of working across various usage scenarios. Real-time prediction

processes become faster through combined use of cloud computing and parallel

computing with performance optimization techniques.

Acknowledgment

The authors would like to thank Mustansiriyah University

(https://uomustansiriyah.edu.iq) in Baghdad, Iraq, for its support in the present work.

5.6

5.8

6

6.2

6.4

6.6

6.8

 2 * x ** 2 + 3 * y - 4 * x * y +
np.sin(x * y)

 (x + y) * z ** 2 + np.sqrt(x * y * z) -
np.exp(x - y + z)

 np.cos(x) * np.sinh(y) + np.log(z)

Runtime(without ML) Predicted Runtime (with ML)

https://uomustansiriyah.edu.iq/

 2025الرابع والأربعون العدد مجلة كلية المأمون

412

References

[1] She, C., Sun, C., Gu, Z., Li, Y., Yang, C., Poor, H. V., & Vucetic, B. (2021). A tutorial on

ultrareliable and low-latency communications in 6G: Integrating domain knowledge into

deep learning. Proceedings of the IEEE, 109(3), 204-246.

[2] Thirunavukkarasu, M., Sawle, Y., & Lala, H. (2023). A comprehensive review of

optimization of hybrid renewable energy systems using various optimization

techniques. Renewable and Sustainable Energy Reviews, 176, 113192

[3] S.. Ayad and I. T. Abbas, "Using Evolving Algorithm with Distance Indicator for Solving

Different Non-linear Optimization Problems," Al-Mustansiriyah Journal of Science, vol.

33, no. 3, pp. 66–73, Sep. 2022.

[4] Regazzoni, F., Dede, L., & Quarteroni, A. (2019). Machine learning for fast and reliable

solutions of time-dependent differential equations. Journal of Computational Physics, 397,

108852.

[5] Innes, M., Edelman, A., Fischer, K., Rackauckas, C., Saba, E., Shah, V. B., & Tebbutt, W.

(2019). A differentiable programming system to bridge machine learning and scientific

computing. arXiv preprint arXiv:1907.07587.

[6] Saba Abdulbaqi Salman, Sufyan Al-Janabi, and Ali Makki Sagheer, "Security Attacks on

E-Voting System Using Blockchain," Iraqi Journal For Computer Science and

Mathematics, vol. 4, no. 2, pp. 179–188, May 2023.

[7] Heinlein, A., Klawonn, A., Lanser, M., & Weber, J. (2021). Combining machine learning

and domain decomposition methods to solve partial differential equations—A

review. GAMM‐Mitteilungen, 44(1), e202100001.

[8] Nabian, M. A., & Meidani, H. (2019). A deep learning solution approach for high-

dimensional random differential equations. Probabilistic Engineering Mechanics, 57, 14-

25.

[9]N. N. Hasan and Z. John, "Analytic Approach for Solving System of Fractional Differential

Equations," Al-Mustansiriyah Journal of Science, vol. 32, no. 1, pp. 14–17, Feb. 2021.

[10] S. Ray, "A Quick Review of Machine Learning Algorithms," 2019 International

Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon),

Faridabad, India, 2019, pp. 35-39, doi: 10.1109/COMITCon.2019.8862451.

[11] M. H. Mahmood, "On α-Fuzzy Soft Irreducible Spaces," Al-Mustansiriyah Journal of

Science, vol. 34, no. 1, pp. 65–70, Mar. 2023.

 2025الرابع والأربعون العدد مجلة كلية المأمون

413

[12]Westphal, F., Grahn, H., & Lavesson, N. (2018). Efficient document image binarization

using heterogeneous computing and parameter tuning. International Journal on Document

Analysis and Recognition (IJDAR). https://doi.org/10.1007/s10032-017-0293-7.

[13] Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart, S., Tang, E., ... & Steinhardt, J.

(2021). Measuring mathematical problem solving with the math dataset. arXiv preprint

arXiv:2103.03874.

[14] Schran, C., Thiemann, F., Rowe, P., Müller, E., Marsalek, O., & Michaelides, A. (2021).

Machine learning potentials for complex aqueous systems are made simple. Proceedings of

the National Academy of Sciences of the United States of America.

https://doi.org/10.1073/pnas.2110077118.

[15] Salman, S. A., Mohialden, Y. M., & Hussien, N. M. (2024). A Generating Distorted

CAPTCHA Images Using a Machine Learning Algorithm. Iraqi Journal for Computer

Science and Mathematics, 5(3), 27.

[16] Zhou, Z. H. (2021). Machine learning. Springer Nature

[17] E. A. W. Hachim, M. T. Gaata and T. Abbas. (2022). Iris-based Authentication Model in

Cloud Environment (IAMCE). International Conference on Electrical, Computer and

Energy Technologies (ICECET), Prague, Czech Republic, pp. 1-6, doi:

10.1109/ICECET55527.2022.9873499.

[17] Su, X., Yan, X., & Tsai, C. L. (2012). Linear regression. Wiley Interdisciplinary Reviews:

Computational Statistics, 4(3), 275-294.

[18] Ethar Abdul Wahhab Hachim, Methaq Talib Gaata a, Thekra Abbas. (2023). Voice-

Authentication Model Based on Deep Learning for Cloud Environment. International

Journal on Informatics Visualization. https://joiv.org/index.php/joiv/article/view/1303.

[19] Salman, S. A., Mohialden, Y. M., & Hussien, N. M. (2024). A Generating Distorted

CAPTCHA Images Using a Machine Learning Algorithm. Iraqi Journal for Computer

Science and Mathematics, 5(3), 27.

