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Abstract  

This paper develops a machine learning system which creates forecasts about 

equation runtime duration. The solution aims at simplifying resource utilization 

forecasts and scalability assessment for computational programs. The proposed 

method utilizes standard supervised learning algorithm linear regression to create 

predictions regarding runtime from sent equation lengths. Python code production 

involves generating random data followed by runtime equation resolution timing and 

linear regression model development which utilizes input size as the model 

independent variable while using expected runtime as the dependent variable. The 

analysis indicates that the developed model achieves proper runtime prediction 

capabilities across various input data ranges. The research evaluates the potential of 

this application method to help select algorithms and determine their complexity 

scales. Machine learning techniques used for runtime estimation enhance computing 

environments by enabling improved performance analysis and decision-making 

through machine learning predictors in combination with algorithm scaling methods 

and runtime estimation and performance assessment capabilities. 
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1. Introduction  

It's essential to know how long programs take to run in computer systems if 

you want to get the most out of your resources and do a better job analyzing 

performance. To scale algorithms and make decisions, it is essential to 

correctly estimate how long a complex equation will take to run. The runtime 

is often figured out through theory analysis or real-world observations, which 

may not always give accurate predictions for changing input sizes. Many 

people are interested in using machine learning methods to improve runtime 

estimation [1, 2, 3]. 

Because time-dependent mathematical models are harder to simulate numerically, they 

may use too many computer resources in processing power or memory storage. 

Numerical simulations of a given model must often be run more than once (called 

"multi-query") and with many different inputs for various applications, such as 

sensitivity analysis, optimization, control, uncertainty quantification, or dealing with 

multiscale issues. Even if complex mathematical models are accurate and reliable, 

they may not be helpful for forecasting in computational medicine and meteorology if 

they can't be solved almost instantly [4, 5, 6].  

When domain knowledge isn't enough, for example, to pick the correct parameters or 

models, machine learning techniques are often used to replace those parts of the 

process. This leads to hybrid methods, which can be new models for reducing model 

order or faster, more reliable solvers [7, 8, 9]. 

This study looks at how machine learning can predict complicated equations' 

runtime based on their inputs' size. The idea is to make a predictive model 

that can accurately predict how long equations will take to run. This will 

allow computer systems to scale algorithms more successfully and analyze 

resource allocation more effectively. Using linear regression, the suggested 

way connects the input size and the time it takes for the equations to run. It is 

a popular supervised learning method to find a link between the input size and 

the time it takes for equations to run [10, 11].  
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This paper is set up as follows: In this section, an introduction to the study question 

and its importance to computational systems are given. In Section 2, it talks about the 

related work. In section 3 "Methodology" explains the techniques used to make the 

predictive model for predicting equation runtimes. Results and Analyses, 4th Section 

In this part, the results show how well the models work with statistical analyses and 

visuals are provided. Lastly section 5 presents the conclusion and suggestions for 

future work. 

2. Related work  

In [2018] Image binarization is considered as the first step in analyzing old 

papers. Even though the ink is fading, there are spots, and it's bleeding 

through, it still makes a line between the center and the background. When 

studying extensive document image archives, it's essential to do binarization 

quickly because even small inefficiencies can waste years of processing time. 

Binarization is critical for companies and states that want to look at large 

groups of documents. This means that work needs to be sped up without 

slowing down binaryization. The authors get 3.5 times faster processing by 

correctly mapping a state-of-the-art binarization method to a heterogeneous 

CPU-GPU architecture. The authors' algorithm cuts execution time by 1.7 

compared to earlier ways of tweaking parameters. For the chosen method, 

machine learning-based parameter adjustment is faster regarding absolute 

processing times than heterogeneous computing [12]. 

In [2020] The authors provide MATH, a new dataset comprising 12,500 

complex competition mathematics tasks. Each MATH issue has a 

comprehensive step-by-step solution that may be used to train models to 

create answer derivations and explanations. They also contribute an extensive 

auxiliary pretraining dataset that helps teach models the principles of 

mathematics to facilitate future research and improve MATH accuracy. While 

we can improve MATH accuracy, our results reveal that accuracy remains 

relatively low, even with massive Transformer models. Furthermore, if 
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scaling trends continue, just raising budgets and model parameter counts will 

be unfeasible for obtaining solid mathematical reasoning. While Scale 

Transformers automatically solves most other text-based jobs, it does not 

currently solve MATH [13]. 

In [2021] Understanding complex materials is considered an essential aim for 

industrial and scientific growth, especially ones with solid-liquid interfaces 

like water on surfaces or in small areas. Established modeling methods have 

given us the necessary information about atoms. Still, initio methods have 

trouble with the time and length scales we need, and force field methods can 

be wrong. The authors show how a simple and automatic machine-learning 

method can solve these problems and give accurate an initio interaction 

models for a wide range of complex aquatic systems. Because of these 

breakthroughs, molecular simulations of many scientifically critical systems 

are now possible. To understand complicated systems like how solids and 

liquids interact, you need simulation methods that show potential energy 

surfaces quickly and adequately. A machine learning method is given for 

building and testing models of complicated water systems. Instead of trying to 

make machine learning work well everywhere, the authors suggest making 

models that are easy to use and work well at specific thermal state points. 

After an initio simulation, a data-driven operational learning process builds 

machine learning capabilities. These models can then be used in full 

simulations to answer the science question or look at the thermal performance 

of initio methods. The authors show how their process works in different 

water systems, like bulk water with many ions in solution, water on a titanium 

dioxide surface, and water between nanotubes and molybdenum disulfide 

sheets. The accuracy of our method in terms of the initio reference is shown 

by an automated validation method that looks at structural and dynamical 

properties as well as the accuracy of force forecasts. Lastly, the authors show 

that method to examine the structure and movement of water on the surface of 



 2025الرابع والأربعون  العدد                                                                                            مجلة كلية المأمون             

405 

rutile titanium dioxide (110). Machine learning models add more time and 

length scales to models of complicated systems accurately. Machine learning 

models make time and length scales for modeling complex systems simply 

but accurately [14]. 

In our proposed model, we introduce a challenge in measuring the Equation's 

runtime in different inputs using machine learning and without it based on 

Python. 

2.1    Gap in Related Work 

Research has succeeded in its targets but persistent barriers exist for precise 

and effective runtime estimation of mathematical expressions that span 

multiple input values. Research studies continue to depend heavily on 

established computer methods that fail to produce accurate outcomes when 

dealing with complex inputs. Real-world data application testing of proposed 

models exists insufficiently which reduces their reliability output in practical 

usage. Applications requiring fast and accurate runtime prediction cannot use 

machine learning-based models because they need extensive training data. A 

new model needs development to create accurate mathematical equation 

runtime estimates in addition to improving integration between machine 

learning methods and traditional computational analytics. 

3. Methodology 

Machine learning is frequently employed in various fields to resolve complex issues 

that are not amenable to simple computer-based solutions. One of the simplest and 

most commonly used machine learning methods is linear regression [15]. It is a 

mathematical method for conducting predictive analysis. Continuous, natural, or 

mathematical variable projections are possible with linear regression [16, 17]. A linear 

regression test assesses and quantifies the relationship between the variables under 

consideration. Regression and partial correlation are techniques that help scientists 

determine how confusion affects the connection between two variables [17,18]. It is a 

technique for evaluating data and modeling that develops linear relationships between 
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dependent and independent variables. Thus, this technique would simulate the 

relationships between dependent and independent variables [19].  

Figure 1 illustrates the proposed method. This study aims to investigate the viability 

and efficacy of machine learning for predicting equation runtimes to gain essential 

insights into improving performance analysis and decision-making in computational 

systems. Enhancing resource allocation, algorithm selection, and scalability analysis 

through the integration of machine learning techniques might result in computing 

systems that are more effective and optimized in the long run. The method examines 

the runtimes of equations with and without machine learning techniques to predict 

runtimes based on input sizes.  

 

Figure 1: General block diagram of the proposed model 

 

The strategy takes an orderly approach to achieving this goal. To execute the linear 

regression model, the necessary libraries are imported. These include a time library to 

measure runtime, a library to generate random inputs, a pandas library to create a data 

frame for storing the results, and (sklearn.linear_model) for linear regression.  

The critical equations are written as lambda functions in the list of equations. These 

equations show how to do a range of math operations and methods. Then, the process 

goes through each Equation one at a time. The runtime of each Equation is found by 

keeping track of when it starts, solving it with random inputs, and then keeping track 

of when it finishes. Without machine learning, the runtime of the Equation can be 
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found by comparing the start and end times.  This runtime has been printed so that it 

can be watched and studied. 

The technique wrote down the Equation in the findings list, the Runtime without 

machine learning, and the expected Runtime with machine learning. This lets us 

compare and examine the two methods later on. The results list is then turned into a 

Pandas DataFrame so that more data can be viewed and played. The data frame is 

saved as an Excel file for later use and shared readily. The general steps for finding the 

runtime are:- 

Table 1: Input output parameter 

Step Input Parameter Description Output Parameter Description 

Step 1 Required Libraries 

time, numpy, pandas, 

LinearRegression from 

scikit-learn 

Imported Libraries 
Libraries available 

for use 

Step 2 x (array of values) 
Randomly generated input 

values 
Equation(x) 

Computed 

equation output 

Step 3 
np.random.rand(1000

000) 

Generates an array X of 

1,000,000 random 

numbers between 0 and 1 

X 
Random input 

values 

Step 4a time.time() Captures the start time start_time 
Recorded start 

time 

Step 4b Equation(X) 
Computes the output y for 

each X 
y 

Computed outputs 

of the equation 

Step 4c time.time() Captures the end time end_time Recorded end time 

Step 4d end_time - start_time Computes runtime runtime 
Execution time 

without ML 

Step 4e runtime 
Printed runtime without 

ML 
Console Output 

Displays runtime 

without ML 

Step 5a X.reshape(-1,1) 
Reshapes X into a column 

vector 
X_reshaped 

Reshaped input 

data 

Step 5b 
time.time() - 

start_time for each X 

Generates y values based 

on time differences 
y_time_diff 

Execution time 

differences 

Step 5c 
X_reshaped, 

y_reshaped 

Reshapes inputs for 

regression 

X_reshaped, 

y_reshaped 
Reshaped data 

Step 5d 

LinearRegression().fi

t(X_reshaped, 

y_reshaped) 

Fits regression model reg 
Trained linear 

regression model 

Step 6a X_new = [[1]] 
Defines a new input for 

prediction 
X_new 

New input for ML 

prediction 

Step 6b reg.predict(X_new) Predicts runtime for X_new predicted_runtime 
Predicted runtime 

with ML 

Step 7 predicted_runtime 
Predicted runtime for input 

size of 1,000,000 
Console Output 

Displays predicted 

runtime with ML 

Step 8a DataFrame creation 
Stores results in a 

DataFrame 
results 

DataFrame with 

equation, runtime, 

and ML-predicted 

runtime 
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Step 8b 
results.to_excel('runti

mes.xlsx') 

Saves results in an Excel 

file 
runtimes.xlsx 

Output file 

containing 

execution times 

 

4.  Results  and analysis  

This Section compares runtime measurements made without machine learning to 

runtime predictions made using a trained regression model. Regression analysis is a 

fundamental concept in the field of machine learning. It falls under supervised 

learning, wherein the algorithm is trained with both input features and output labels. It 

helps establish a relationship among the variables by estimating how one affects the 

other.  Training a Regression Model involves finding the best possible values of the 

gradient (m) and y-intercept (c) to model a line for a given data set. This allows the 

model to predict the runtime of equation productivity (y).  The predictive model's 

efficacy is evaluated by contrasting the anticipated runtimes with the actual runtimes 

achieved without machine learning. Statistical analyses and visuals are offered to 

show how well the models work. 

1- One input size equation: Table 1 shows the runtime results (with and without 

ML) for different equations with one input size. 

 

Table 2 shows the results of runtime (with and without ML) for different equations with one 

input size 

Equation Runtime 

(without ML) 

Predicted 

Runtime (with ML) 

2 * x^3 + 4 * x^2 + 6 * x + 8 2.063560963 2.193320702 

lambda x: 3 * x ** 2 + 5 * x + 2 1.656127214 1.792170969 

lambda x: 2 * x ** 3 + 4 * x ** 2 + 6 * x + 8, 13.1577363 13.29169267 

lambda x: np.sin(x) + np.cos(x) 3.540966272 3.689251824 

lambda x: np.exp(x) + np.log(x) 3.359123468 3.492781906 

lambda x: 4 * x + np.sqrt(x) - np.sinh(x) 6.140503645 6.280873637 
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While figure 1 illustrates these results.  

  

Figure 2: One input size equation 

2- 2- Multiple inputs size equation: Table 2 shows the results of runtime (with and 

without ML) for different equations with considerable input size.   

 
 

Table 2 shows the runtime results (with and without ML) for  different equations 

                                                with multiple input sizes. 
 

Equation Runtime  

(without ML) 

Predicted Runtime 

 (with ML)  
lambda x, y: 2 * x ** 2 + 3 * y - 4 * x * y 

+ np.sin(x * y) 5.527449 5.646198  
lambda x, y, z: (x + y) * z ** 2 + np.sqrt(x 

* y * z) - np.exp(x - y + z) 6.37452 6.492617  
lambda x, y, z: np.cos(x) * np.sinh(y) + 

np.log(z) 6.405753 6.531845  
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While figure 3 illustrates these results. 

 

Figure 3. Multiple inputs size equation 

 

As well as table 3 shows the runtime results (with and without ML) for 

differences in other equations and figure 3 illustrates these results. 

Table 3.  Results of runtime (with and without ML) for other different equations 

Equation Runtime 

(without ML) 

Predicted Runtime 

(with ML) 

lambda x, y: 2 * x ** 2 + 3 * y - 4 * x * y + 

np.sin(x * y) 6.594707 6.736889 

lambda x, y, z: (x + y) * z ** 2 + np.sqrt(x * y 

* z) - np.exp(x - y + z) 6.095517 6.233837 

lambda x, y, z: np.cos(x) * np.sinh(y) + 

np.log(z) 6.118021 6.261095 

 

 Figure 3 shows the runtime results (with and without ML) for the equations in Table 

3. As we can see, the model can predict the runtime with the Equation compared to the 

runtime without ML. 
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Figure 3. The runtime results (with and without ML) for differences in other equations. 

 

5. Conclusion and Future Work 

The study shows the necessity to enhance mathematical equation runtime estimation 

accuracy through machine learning techniques development. Research into previous 

studies showed two main issues with traditional methods and small-scale dataset 

testing limitations. Building an improved efficient model represents an essential need 

to enhance runtime estimation while improving machine learning integration with 

traditional computational analysis. 

Future research should investigate high-level artificial intelligence approaches 

including deep neural networks and reinforcement learning models to achieve more 

precise estimates. The proposed model requires testing on multiple datasets to prove 

its capability of working across various usage scenarios. Real-time prediction 

processes become faster through combined use of cloud computing and parallel 

computing with performance optimization techniques. 
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