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ABSTRACT  

Deception detection is an interdisciplinary field that has researchers from psychology, 

criminology, and computer science. We propose the automated detection of deception based on 

facial micro expressions which occur spontaneously in response to the attempt to mask the inner 

emotion. It has received significant attention as an indicator of deceit, it reveals the genuine 

emotions that are concealed. In this paper, we first proposed a 3D 478 Mediapipe Face Mesh 

Model to extract facial landmarks that reflect facial micro expression, this is contrary to the 

traditional method, which relies on human judgment and the use of devices to detect facial 

micro expression. Second, a feature selection-based multivariate mutual information method 

was proposed to select facial landmarks that are most related to the deceptive cues and have 

critical influence on the classification task. Finally, a gated recurrent unit model was trained to 

predict deceptive behavior on a real-life trial dataset. The model successfully achieved 97% 

accuracy, outperforming other state-of-the-art methods. 
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1. INTRODUCTION 

Deception is a complex social behavior in which the deceiver attempts to influence others (i.e., 

the deceived person) by changing their perception of the situation to make them more consistent 

with the deceiver's views and behaviors (Jakubowska and Białecka‐Pikul, 2020). Lying can 

damage relationships and hinder communication, which can have harmful consequences. 

Therefore, deception detection is a key component in many fields, such as healthcare, court 

trials, and security (D’Ulizia et al., 2023). Deception detection involves determining whether a 

particular communication contains truth. It is an active and evidence-based reasoning process 

(Levine, 2014). Lie detection has been the subject of intensive research for decades, with 

deception researchers primarily focused on detecting deception automatically without the use 

of special equipment or based on human judgment, such as Facial Action Units (FACS). 

Because humans have a limited ability to detect deception (Monaro et al., 2022), the average 

accuracy of lie detection without special aids is reported to be 57%, which is only slightly better 

than chance. Even physiological methods such as polygraphs or newer methods based on 

functional magnetic resonance imaging (fMRI) do not always correlate with deception (Farah 

et al., 2014). Furthermore, the usefulness of these devices for real-life deception detection is 

limited by the cost of the equipment and the overt nature of the methods. The importance of 

digitalization and machine-learning-based approaches has also become critical in multiple 

disciplines (Mohammed, Kareem and Mohammed, 2022) (Alaa, Hussein and Al-libawy, 2024). 

Machine learning methods have the ability to automate the detection of deception, utilizing 

multiple methods and possessing multiple modes of information (Prome et al., 2024). Many 

indicators are used to differentiate liars from truth tellers; these include verbal indicators like 

voice and text analysis, as well as non-verbal indicators like facial expressions and body 

movement (D’Ulizia et al., 2023). One of the most significant indicators of a liar is the analysis 

of the micro expressions on the face. Micro-expressions on the face are non-verbal signals that 

are instantaneous and are also short-lived. These signals are often undetected by untrained 

observers because of their short duration and low intensity (Verma et al., 2019). They express 

the feeling that the individual is attempting to hide. These involuntary facial movements are 

important because they can expose crucial information about the person's actual emotions. 

Because of their nature, these micro expressions have difficulty in their recognition, which 

necessitates the measurement and analysis of facial movements. In this case, landmarks on the 

face are critical. Face landmarks are spatial features that represent significant facial locations; 

these include the center of the chin, the eye's corner, the nose's tip, and the eye's corner. The 

locations of the landmarks' faces can indicate alterations to the facial muscles, which are 
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represented by the micro expressions of the face. The landmarks on the face are categorized 

into three groups based on their number: sparse, moderate, and dense. Sparse models have fewer 

than 50 landmarks, moderate models have 50-100 landmarks, and dense models have over 100 

landmarks (Chen et al., 2015). In comparison to the 2D method that extracted 68 facial 

landmarks, the 3D method that extracted over 100 facial landmarks can include a larger variety 

of the facial landmarks, including its emotional state, position, occlusion, and lighting 

conditions (Jabberi et al., 2023). Therefore, the key contributions of our approach include the 

following: 

1. Proposing a deep learning technique to extract 478 facial landmarks with three coordinates 

(x, y, z) per frame for each video in the used dataset to analyze and capture a wider range of 

facial micro expression for more accurate full automated deception detection and minimize 

human error and subjectivity. 

2. Proposing a robust method that is capable of accurately measuring the degree of the mutual 

information between features to identify the most relevant cues of deception. 

3. Proposing a deep learning model that can handle sequential data and accurately predict 

deceptive tellers from truth tellers. 

The paper organizes its subsequent sections as follows: Section 2 presents a review of the 

pertinent literature on deception detection, with a focus on deep learning techniques. In Section 

3, the methodology is explained. This includes the dataset and how it was preprocessed, as well 

as 3D facial landmark extraction, feature selection, and prediction using the GRU model. In 

Section 4, the proposed method's performance is fully discussed, with evidence from 

experiments. Finally, Section 5 presents the study's conclusion. 

1.1. Aim of the Study 

Detecting deception is particularly crucial in scenarios such as security screenings, police 

interrogations, and courtroom testimonies, where the consequences of deceit can be severe. 

Therefore, the main aim of this study is to propose an efficient system for detecting liars using 

deep neural networks. The system aims to scale and analyze facial micro expressions, 

automatically extracting and selecting 3D facial landmarks (features) in a way that surpasses 

the human capability of identifying deceit. 

2. LITERATURE REVIEW 

To accurately detect deception, researchers used a variety of different methodological 

techniques, such as (Yildirim, Chimeumanu and Rana, 2023) developed a deep learning model 

that achieved a 74.17% accuracy in classifying deception based on micro-expressions. 

Moreover (Tsuchiya, Hatano and Nishiyama, 2023) use machine learning in detecting 
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deception through facial expressions and pulse rate achieving an accuracy and F1 value of 0.75-

0.8. While (Islam et al., 2021) (Shen et al., 2021) and (Stathopoulos et al., 2023) identify deceit 

from the subject's natural response to truth and lie by evaluating Facial Action Units (FACS), 

which is a taxonomy of human facial muscle movements based on how they appear on the face 

and splits the face into multiple action units (AUs), which are basic movements caused by a 

single muscle or a group of muscles in response to a face expression (Martinez et al., 2017). 

Where (Islam et al., 2021) achieved accuracy of 61.54%, 80% by (Shen et al., 2021), and 

92.36%. by (Stathopoulos et al., 2023). Also, (Nam et al., 2023) used Multimodal deep neural 

network FacialCueNet that employed action units and micro expressions to reveal an 

individual's intentions and feelings. Additionally, short-term memory and convolutional neural 

networks construct the spatial-temporal attention module. The approach achieved an evaluation 

accuracy of 88.45%.  Another study (Alaskar, 2023) uses the hybrid metaheuristics and deep 

learning for deception detection, developed a self-adaptive population-based firefly algorithm 

for deception detection, achieving a high accuracy of 99%. Also, (Khan et al., 2021) highlights 

the importance of eye movements by identifying them as a key feature for distinguishing 

between truthful and deceptive behavior, employing various classifiers. However, RF produces 

better results with 78% accuracy. When (Venkatesh, Ramachandra and Bours, 2019) using 

extracted micro expression features provided with the dataset yields the best accuracy of 88% 

in an individual-level model. While in (Şen et al., 2020), semi-automatic lying detection using 

OpenFace to automatically extract facial action units and the visual features that were given 

with the dataset was used to attain a best accuracy of 80.97% using nearest neighbor classifier 

and fully automatic lying detection that employed OpenFace to automatically extract facial 

action units got an accuracy of 61.58% use a random forest classifier. Moreover, (Nikbin and 

Qu, 2024) presents a well-structured approach that uses hybrid deep neural network (HDNN) 

to detect deception. The method reveals promising advancements in accuracy, and the 

methodology achieves a 91% accuracy rate in detecting fear-related micro-expressions. 

Another approach (Dinges et al., 2024) uses multiple sets of facial cues, each predicted by its 

own Convolutional Neural Network (CNN). The method involves CNN models analyzing gaze, 

head pose, and facial emotions, as well as Action Units (AUs). The research found that the 

effectiveness of deception detection varies by dataset context, with the best results on high-

stake datasets. It revealed that integrating multiple modalities and classifiers led to an average 

accuracy of 67%. While (Kang et al., 2024) presents a novel method for deception detection 

that incorporates both global and local facial features. The study employs shallow CNNs to 

extract local features and utilizes a Video Transformer with spatiotemporal separation attention 
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to extract global ones. Both of these methods are effective at capturing complex facial dynamics 

and do well on existing datasets.  

3. METHODOLOGY 

We experimented with different approaches to find the ideal preprocessing and techniques for 

detecting deception as shown in Fig.1. 

 

 

 

 

 

 

 

 

 

 

3.1. The Dataset 

We employ the real-life trial dataset (Pérez-Rosas et al., 2015). It is a multimodal deception 

detection dataset (video, audio, and text). The videos are real scenarios that have been 

downloaded from YouTube as shown in Fig. 2. These videos are factual police interrogation 

and courtroom videos, comprised of raw, 60 truthful, and 61 deceitful videos. Also, researchers 

have extracted certain features from these videos. These extracted features are facial, audio and 

text features which are indicators of deceptive behavior. In this study, one model-based raw 

video was used to extract the 3D 478 facial landmarks.  

 

 

 

Fig. 2. Samples of the real video dataset  

3.2. Preprocessing 

Preprocessing aims to prepare a raw video dataset and extract features into a simple and 

efficient format, which are:  

1-BGR Conversion 

Involves converting an image from the RGB color space, commonly used in many image 

processing tasks, to the BGR color space. The RGB video frames are converted to BGR color 

Fig. 1. Block diagram of the proposed system 
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space by processing them with OpenCV. This conversion ensures compatibility with the model, 

preventing color misinterpretation that could lead to inaccurate facial landmark detection. This 

step is crucial in preparing the frame correctly for subsequent analysis, aligning with the 

expectations of the face mesh model for optimal performance. 

2-Frame Deletion 

The videos in the used dataset, from which we extract 3D facial landmarks, are real-life 

scenarios. Therefore, some faces in these videos are difficult to detect due to occlusion by 

subtitles or other objects and faces far from the camera may be too small or blurry to detect 

effectively. As a result, we exclude some frames that have zero values based on the following 

equations: 

   𝑅𝑖 = ∑ 𝑈𝑖𝑗
𝑛
𝑗=1       (1) 

Where 𝑅𝑖  is the total sum of values in the i-th row. 𝑈𝑖𝑗 represents the value in the i-th row and 

j-th column, in the matrix B that is m×n, which stores 3D facial landmarks. After compute the 

summation of each row in the matrix B, now filters the row by delete the rows that have 

summation equal to zero according to this condition: 

 

    𝐴𝑖= 

 

Where 𝐴 is a binary factor of length m, where each element 𝐴𝑖 is 1 if 𝑅𝑖 ≠ 0 and 0 otherwise. 

Thus, we have now matrix 𝐵′where rows with a sum of zero are removed based on value of 

binary vector A using this equation: 

𝐵′ = 𝐵 ⋅ 𝐴        (3) 

In this context, the multiplication B⋅A s not standard matrix multiplication but rather a filtering 

operation where rows in B corresponding to  𝐴𝑖 = 0 are removed. 

3.3. 3D Facial Landmarks Extraction 

The facial landmark detection technique used an end-to-end neural network Mediapipe 

franework. Mediapipe framework used a set of pre-trained models. It makes 3D facial landmark 

estimations forming a mesh of 478 points (see Fig. 3) from the input of 2D video frames. For 

extracting the  478 facial landmarks with three coordinates (x, y, z), it employed two deep 

learning models. It first used a face detector model which drew a rectangle around the detected 

faces to locate faces, and extracted main face landmarks including center of mouth, nose tip, 

left eye trigon, right eye trigon. The face mesh model uses cropped detected faces from the face 

detector model as input, without additional depth information. The face mesh model establishes 

1 if 𝑅𝑖 ≠ 0 

0 if 𝑅𝑖 = 0 
(2) 
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a metric 3D space and uses the positions of facial landmarks on the screen to estimate facial 

transformations in that space (Lugaresi et al., 2019). The face transformation data consists of 

conventional 3D primitives, including a face pose transformation matrix and a triangular face 

mesh. It uses regression to estimate the approximate 3D surface and generates a vector of the 

desired 478 facial landmarks, each with three coordinates (x, y, z) per frame for each video in 

the dataset. Furthermore, the model was trained using synthetic visualized data and 2D semantic 

contours from annotated real-world data. The resulting model provided us with reasonable 

predictions of 3D landmarks, not only on synthetic data but also on real-world data. This 

combination of data helps the model accurately infer the depth of facial features, resulting in 

robust 3D landmark detection from 2D inputs. This training enables the model to understand 

how 2D features map to a 3D face mesh (Li et al., 2024). 

After extracting these 3D facial landmarks, we vectorized columns for each coordinate (x, y, z) 

per frame in every deceptive and truthful video, storing landmarks (Landmark0, Landmark477) 

in rows within an CSV file. Next, we store both the deceptive and truthful samples in a single 

CSV file. Furthermore, giving label zero value to the truthful samples and label one value to 

the deceptive samples. 

3.4. Feature Selection 

Feature selection is critical for improving a model's performance and interpretability by 

choosing relevant features. It focuses on the most informative aspects of features, and reduced 

dimensionality speeds up training and inference. The feature selection methods can be divided 

into four categories: filter methods, embedded methods, hybrid methods, and wrapper methods 

(Pudjihartono et al., 2022). In this paper, we utilized a multivariate mutual information (MMI) 

method. It is a filter technique that is used to analyze more than two features at once. The aim 

is to find patterns and dependence between several features simultaneously, allowing for a much 

deeper and more complex understanding of a given scenario than with two features. In 

deception detection, the system selects the most significant facial landmarks (features) that 

reflect deceptive cues, enabling it to distinguish between truthful and deceptive behaviour. 

These sets of selected facial landmarks also improve prediction model accuracy because they 

are most relevant to the classification process (deceptive vs. truthful). MMI is a measure of the 

dependence between a set of features. Consider three random features X, Y, and Z. MMI 

quantifies the amount of information that X, Y, and Z share. More specifically, MMI measures 

how much knowledge of one feature decreases uncertainty about the other. The calculation of 

(4) 
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MMI involves integrating over the joint probability density function (PDF) and marginal 

density functions, as shown in the following equation (Batina et al., 2011): 

𝑀𝑀𝐼(𝑋, 𝑌, 𝑍) = ∑ ∫ 𝑝[𝑥, 𝑦, 𝑧]. log
𝑦2

𝑥∈𝑋

(
𝑝[𝑥, 𝑦, 𝑧]

𝑝[𝑥]. 𝑝[𝑦]. 𝑝[𝑧]
) 𝑑𝑦 

where 𝑝[𝑥, 𝑦, 𝑧] is the joint density distribution (PDF) and 𝑝[𝑥], 𝑝[𝑦], 𝑝[𝑧] are the marginal 

density distributions of the random variables (𝑋, 𝑌, 𝑍), respectively.  MMI measures the amount 

of information that one random feature contains about another. This measure is derived from 

the PDF, as it reflects the combined behavior of these features. In addition, the marginal 

distributions are the individual distributions of these random features, obtained by integrating 

the PDF over the other feature. So, if X, Y and Z are independent, their PDF would equal the 

product of their marginal distribution, leading to MMI (X, Y, Z) =0, Non-zero MMI indicates 

dependence. Since, to estimate the MMI between the features, the estimation of the PDF 

between them is needed and because density functions between high-dimensional features is a 

hard task in practice. Therefore, another alternative is simply not to estimate densities, while 

directly estimating the MMI by using the nearest neighbor estimator (NNE) which computed 

by the following equation (Nguyen, Xue and Andreae, 2016): 

𝑀𝑀𝐼(𝑆) = 𝜓(k) −
𝑚−1

𝑘
+ (𝑚 − 1) × 𝜓(𝑁) −

1

𝑁
× ∑ ∑ 𝑛𝑖𝑗

𝑚
𝑗=1

𝑁
𝑖=1   (5) 

Where 𝜓(k) is the digamma function used to adjust for the bias in the estimation process, 𝑚 is 

the number of dimensions in the set of features (𝑆), and features mean 3D facial landmarks. 

𝑁 is the number of samples in the dataset. K is the number of neighbors. 𝑛𝑖𝑗   𝑖𝑠 the number of 

neighbors for the ith instance. The idea is that if the neighbors of a specific observation in X 

space correspond to the same neighbors in the Yand Z space, there must be a strong relationship 

between X, Y and Z. These estimators locally estimate distributions based on distances between 

features. NNE methods use geometrically regular volume elements, the closet neighbor of facial 

landmark can help to estimate the structure around each landmark. So, the multivariate mutual 

information-based NNE involves calculating the MMI between each feature and the target label 

to identify the most informative features by using the nearest neighbor approach. Following the 

calculation of their MMI values, we sort the 3D facial landmarks in descending order based on 

their MMI values. The number of selected 3D facial landmarks was determined to be used with 

the GRU model. We repeatedly experimented with various numbers of selected 3D facial 

landmarks during the training of the GRU model until achieved the highest accuracy. This 

accuracy was achieved when used 35 facial landmarks, which represent facial muscles with the 

following indices: 361, 376, 132, 141, 360, 5, 459, 401, 288, 440, 94, 354, 25, 435, 209, 126, 
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64, 458, 241, 433, 49, 46, 456, 309, 275, 344, 102, 438, 26, 23, 125, 44, 19, 4, 1, as shown in 

Fig.4. They serve as indicators of deceitful behavior and have a major impact on the model, 

resulting in the GRU model's accuracy of 97%. 

Fig. 4. Selected facial landmarks using multivariate mutual information method 

3.5. Prediction using Gated Recurrent Unit (GRU) Model 

GRU is an advancement of the standard recurrent neural network (RNN) that learns the 

dependencies between time steps in videos. It preserves longer sequences by employing two 

gates: the reset gate and the update gate (Ramasamy et al., 2020). These gates control what 

information is permitted to pass through to the output and can be trained to retrieve information 

over an extended period of time. This enables it to pass on related information along a chain of 

events, resulting in better predictions, which is critical for processing facial landmark 

sequences. The reset gate (𝑟𝑡) determines how much memory is forgetting from previous hidden 

state ℎ𝑡 − 1 before proceeding to the next GRU cell. It takes the previous hidden state output 

and the current input (𝑥−𝑡) as input and applies a sigmoid function to it. The reset gate equation 

as follows (Xing and Xiao, 2019): 

𝑟𝑡 =  𝜎(𝑊𝑟[ℎ𝑡 − 1 + 𝑥−𝑡] + 𝑏𝑟)    (6) 

Where, the weight, sigmoid function, and bias denoted by 𝑊𝑟,σ, 𝑏𝑟 respectively. The update 

gate (𝑧_𝑡) consolidates the roles of the forget gate and input gate in an LSTM, determining the 

proportion of previous information that should be transmitted to the next GRU cell. The update 

gate equation as follows (Xing and Xiao, 2019): 

𝑧_𝑡 =  𝜎(𝑊𝑧[ℎ𝑡 − 1 +  𝑥𝑡] + 𝑏𝑧     (7) 

Where, the weight, sigmoid function, and bias denoted t by 𝑊_𝑧, σ, 𝑏𝑧 respectively. We used 

many layers in the model to acquire knowledge of the intermediate features that exist between 

the input data and the high-level classification, each one with a distinct role : 

1- Batch Normalization layers are used to normalize the activations of the preceding layer. It 

also acts as a regularizer to help prevent overfitting.  
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2- Dropout layers are employed to mitigate overfitting by randomly excluding a portion of 

input units during the training phase. 

3- The flattening layer converts the multidimensional output of convolutional layers into a one-

dimensional vector. This step aggregates spatial features into a format suitable for dense layer 

processing and prediction. 

4- The dense layers, or fully connected layers, learn high-level, abstract representations and 

complex patterns by connecting each neuron to every neuron in the previous layer. They are 

crucial for making final predictions in the network, whether for classification, regression, or 

other outputs.  

The GRU model has several advantages over other recurrent neural networks in certain 

situations. GRU is characterized by faster processing and lower memory consumption, which 

reduces training time.  

4. RESULT AND DISCUSSION 

The model was trained using robust 3D facial landmarks (features), extracting 478 of these 

features per frame from each video in the dataset. Their coverage extends to a broader spectrum 

of facial landmarks, allowing for a more comprehensive analysis of facial micro expressions 

that serve as indicators of deceitful behavior. In addition, we selected the important features 

using MMI that have the most influence on detecting liars from truthful tellers, which are 

35  facial landmarks. So, the training process involves concatenating samples (3D facial 

landmarks) and their labels, 35  selected facial landmarks. The used dataset is split into training, 

validation, and test sets randomly with 70%, 15%, and 15%, respectively. The weights are fine-

tuned to reduce the difference between actual and predicted outputs. This process is repeated 

until the model achieves a high level of accuracy in predicting the truth or lie. As a result, these 

informative 3D facial features enable the model to produce a satisfactory fit by striking a 

balance between overfitting and underfitting. Fig. 5 displays the learning loss graph for the 

proposed GRU model. The model is a good match because the training and validation losses 

are reduced to a point of stability. It has consistent learning features and illustrates the potential 

for better results from our strategy. As shown in Fig. 5, in the initial phase (epochs 0-10), the 

model rapidly improves, with training accuracy increasing quickly and validation accuracy 

rising with some fluctuations. Training loss drops sharply, while validation loss decreases but 

remains unstable, indicating early effective learning with some generalization challenges. 

While the middle phase (epochs 10–30) validation accuracy levels off with fewer fluctuations, 

training loss flattens, showing the model nearing convergence. Validation loss continues to 
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decrease, with minor fluctuations suggesting better generalization. Moreover, the final phase 

(epochs 30-50) Training accuracy stabilizes around 0.97, and training and validation losses 

remain steady, confirming the model has fully converged. 

(A)          (B) 
Fig. 5. (A) Training and validation accuracy. (B) Training and validation loss. 

Furthermore, the confusion matrix was used (Luque et al., 2019), to assess the effectiveness of 

a classification algorithm. It allows visualization of an algorithm's performance by comparing 

the actual and predicted classifications. The matrix consists of four quadrants true positive (TP) 

which represent the number of times the model correctly predicted the positive class, true 

negative (TN) which represent the number of times the model correctly predicted the negative 

class, false positive (FP) which represent the number of times the model incorrectly predicted 

the positive class when the actual class was negative, and false negative (FN) which represent 

the number of times the model incorrectly predicted the negative class when the actual class 

was positive. Also, it provides several key metrics for evaluating a classifier's performance: 

accuracy, precision, recall, and F1 score. In our case, using a confusion matrix to evaluate 

deception detection through facial expressions involves comparing the predicted labels with the 

actual labels. This helps in understanding how well the model distinguishes between deceptive 

and truthful tellers as shown in Tabel 1.  

Tabel 1: Confusion matrix of deception detection 
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The classification report based on confusion matrix that displays the numerical values of 

metrics accuracy, recall, F1-score, and precision for the truthful samples and for deceptive 

samples as shown in Tabel 2. The model has a high level of accuracy and performs well in both 

classes, with only minor discrepancies between precision and recall. The balanced F1-scores  

for both classes further support the idea that the model is effective in both detecting deception 

and correctly identifying truthful tellers. The slight differences in precision and recall across 

the classes suggest that the model is slightly better at correctly identifying deceptive instances 

(with higher recall for deceptive) but is more cautious with truthful predictions (higher precision 

for truthful). Overall, this indicates a well-performing model with a strong ability to 

differentiate between truthful and deceptive tellers. Consequently, this indicates that GRU 

model has demonstrated its capacity to capture long-term dependencies by preserving 

information over numerous time steps and from past steps. the GRU model adopted because of 

the nature of our problem, which requires tracking the movement of facial muscles in a 

sequential manner. 

Table 2: Classification report of GRU model 

Moreover, to evaluate the effectiveness of the suggested model, the comparison analysis with 

several state-of-the-art methods has been implemented as shown in Tabel 3. Although the 

dataset includes multiple modalities, which are extracted facial, audio, and text features from 

real videos and provided with the dataset. Our model uses raw videos to extract 478 facial 

landmarks with coordinates (x,y,z) per frame from each video; we only used facial features. 

The decision-making process for deception is based on the patterns identified in facial 

landmarks during the model's training phase. These patterns are learned by the model through 

training, where it associates specific facial micro expressions and movements with deceptive 

behavior. The selection of relevant facial landmarks is guided by the Multivariate Mutual 

Information (MMI) method, which identifies the most informative features related to deception. 

     Samples Precision= 

TP/(TP+FP) 
(Kulkarni et 

al., 2020) 

Recall= 

TP/(TP+FN) 
(Kulkarni et 

al., 2020) 

F1-Score = 

2*(Recall*Precision)/ 

(Recall + Precision) 
(Kulkarni et al., 2020) 

Truthful Label 0.99 0.96 0.97 

Deceptive Label 0.96 0.99 0.97 

Accuracy= 

(TP+TN)/(TP+FP+FN+TN) 

(Kulkarni et al., 2020) 

97% 

Top–k (the number of 

selected 3D facial landmarks) 

35 
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The detection of deception, especially through the extraction of 3D facial landmarks, is a 

particularly effective approach due to the detailed and comprehensive analysis it provides. 

Unlike 2D methods, 3D facial landmarks can capture subtle and intricate facial expressions 

from a variety of angles, making it possible to detect micro expressions that might indicate 

deception. These 3D landmarks offer a more robust solution in real-world conditions, as they 

can account for variations in lighting, head movement, and facial orientation, which are 

common challenges in video analysis. Additionally, 3D analysis enables continuous tracking 

of facial movements, allowing for a dynamic and context-sensitive understanding of facial 

behavior over time. With this depth and spatial awareness, video, enhanced with 3D landmark 

extraction, is a powerful tool for detecting deception because it provides a richer, more accurate 

set of data for analysis. Thus, we have presented comparative studies using only unimodal 

accuracy-based facial features. As shown in Table 3, the GRU model works the best out of all 

the comparison methods, with an accuracy rate of 97%. The comparisons (Stathopoulos et al., 

2023) and (Şen et al., 2020) that used the well-known facial action coding system (FACS) rely 

on 2D techniques to find specific facial action units (AUs) that are linked to muscle movements. 

While FACS is effective in many contexts, its focus on predefined AUs and operation within a  

2D plane make it limited. This can lead to missed subtle expressions, inaccuracies in capturing  

facial details, and difficulties in handling head rotations or varying lighting conditions. In  

addition, it is also based on human. 

Table 3: Comparative methods of deception detection 

 

References Dataset Feature Method Accuracy 

(Stathopoulos 

et al., 2023) 

Multimodal 

real-life trial 

Facial action 

units 

OpenFace, Temporal 

Convolutional 

Network, Attention 

module. 

92.36% 

(Şen et al., 

2020) 

Multimodal 

real-life trial 

Facial action 

units, visual 

features 

provided with 

the dataset 

OpenFace, nearest 

neighbor classifier, 

random forest 

classifier 

Semi-automatic 

80.79%, 

Fully automatic 

61.58%. 

(Venkatesh, 

Ramachandra 

and Bours, 

2019) 

Multimodal 

real-life trial 

Micro 

expression 

provided with 

the dataset 

AdaBoost classifier 88% 

Our 

prediction 

model 

Multimodal 

real-life trial 

3D facial 

landmarks GRU model 97% 



Kufa Journal of Engineering, Vol. 16, No. 2, April 2025              193 

 
 

 

judgments, which introduces another layer of potential error. FACS requires trained coders to 

manually identify and categorize facial action units (AUs), which can lead to subjective and be 

prone to biases and inconsistencies across different coders.  

5. CONCLUSION 

In this paper, we present a new method for facial micro expression detection using the 3D facial 

landmark-based deep neural network. The Mediapipe Face Mesh model was employed to obtain 

478 facial landmarks with three coordinates (x, y, z) per frame for each video in the dataset. 

They capture more of the facial muscle movement and tracking of facial movements in a variety 

of angles and light conditions, which enables more analysis of the micro expressions that are 

used as indicators of deceitful behavior. Furthermore, to improve the accuracy of the 

classification, the feature selection-based multivariate mutual information method is used for 

selecting the 3D facial landmarks that have significant impact because they are most relevant 

to the movements that depict the facial micro expression. Besides, to take full advantage of 

GRU, we construct a model that can capture temporal dependencies and nuances to achieve 

97% accuracy. The model's findings demonstrate how successful our method is in the real world 

and how accurate it is compared to other methods. In contrast to conventional techniques that 

involve human observation and judgment in analyzing and detecting the facial micro expression 

such as FACS, the characteristic cognitive load and the inability to process big data make 

human-based deception detection unreliable. Additionally, the use of equipment like fMRI for 

deception detection is limited due to its basic functionality and the need for human involvement 

to identify deception. Furthermore, the tension and interference of the electrodes attached to the 

face can complicate fMRI's application, making it unsuitable for widespread use.  
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