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ABSTRACT

Optimal reconfiguration is a significant alternative technique of increasing the efficacy of
Radial Distribution Networks (RDNs). Reconfiguration is carried out by adjusting the status of
RDN switches in such manner that the system's radiality is kept, energized wholly loads and
other restrictions are fulfilled. The original version of the Dolphin Echolocation Optimization
(DEO) algorithm is designed for solving continuous optimization issues only. As the
reconfiguration problem is a discrete issue, the original DEO algorithm cannot deal with this
problem. Fortunately, a Binary DEO (BDEO) algorithm was presented for solving discrete
optimization issues which is utilized for adapting the reconfiguration issue. This approach is a
powerful tool for rearranging systems by altering the status of the RDN switches in a way that
minimizes power loss and enhances voltage profile. The BDEO algorithm is evaluated on an
IEEE 33 bus RDN under three case studies in MATLAB to validate its performance. By
comparing the simulation results with those from previously published work, it is possible to
conclude that the suggested strategy is efficient in achieving the optimal outcome because it
enhances the system voltage profile while minimizing losses. The comparison results showed
that, in instance two, the BDEO for the test RDN greatly increased the minimum voltage from
0.9131 t0 0.9431 P.U. and reduced the power loss by 34.2%, from 202.67 to 133.17 KW.
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1. INTRODUCTION

1.1. Research Background

Every feeder in the distribution network has a common mix of load styles, including residential,
commercial, and industrial. It has also recently grown larger and more complex, with variations
in daily load, which leads to poor voltage regulation, lower power factor, higher system losses,
and poor power efficiency (Chidanandappa et al., 2015, Al-Jabari et al., 2022). Because of
distributed networks' radial architecture and the growing need for electricity, ensuring optimal
performance has become more difficult. The surge in power consumption over the past few
decades has forced distribution networks to run substantially closer to their maximum limits.
During times of high demand, the Radial Distribution Network (RDN), which is distinguished
by a higher resistance-to-reactance ratio in comparison to the transmission network, causes
notable power losses and voltage drops (Mhawesh et al., 2020). Research indicates that
approximately 10-13% of the total power generated is lost owing to distribution grid losses,
resulting in increased energy expenses and an unfavorable voltage profile near the distribution
line (Ng et al., 2000, Abed, 2024).

So, these losses should be minimized for enhancing the stability and efficiency of the power
network, the power factor and the profile of the voltage. Therefore, improving the quality of
power transfer within distribution networks has become essential (Neda, 2024). Owing to the
hourly fluctuations in network loads across several feeders and the constant escalation in
demand, the operation and control of distribution systems are considerably more complex,
particularly in regions with elevated load densities (Jumaa et al., 2021). The literature has
developed a number of solution methodologies during the last few decades, including optimal
reconfiguration. So, the network reconfiguration is the most effective and economic method
used for refining voltage profile and diminishing loss in power distribution system that it's not
needed any operating cost (De Oliveira et al., 2014, Al-Mamoori et al., 2019). For maximizing
the merits and dropping their impact on the power system, network configuration must be
optimal. Thus, the optimal reconfiguration problem has become a critical and complicated
problem (Mam et al., 2016).

1.2.  Literature Review

Over the last 2 decades, several researchers have addressed the network reconfiguration
problems utilizing various Artificial Intelligence (Al) and mathematical and heuristics
optimization methods. In (Sarfi et al., 1994, Salkuti and Battu, 2021) offers a review of the

latest technology in the reconfiguration for reducing network losses. These strategies can be
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divided into two types: (1) Mathematical and Heuristics optimization methods (Su et al., 2005,
Kumar and Rudramoorthy, 2021, Nguyen et al., 2022, Fadhil et al., 2021). Use of the heuristics
was motivated because of the need for reducing the issue of reconfiguration search space; (2)
Meta-heuristic or Artificial Intelligence (Al) techniques (De Oliveiraetal., 2014, Neda, 2020a).
Earliest reconfiguration approaches are based on heuristic methodologies. Later on, a large
number of optimization methods (meta-heuristic algorithms) were developed for either loss
elimination or voltage profile augmentation.

In (Aman et al., 2014) utilized a Discrete Artificial Bee Colony (DABC) to evaluate the
maximum load capacity through optimizing distribution grid and then utilized continuous load
flow together with graph theory for calculating load flow. Particle Swarm Optimization (PSO)
has also been effectively utilized to address the issue of reconfiguration for multi-objective
functions (Andervazh et al., 2013). Mohamed Imran and Kowsalya have been used Fireworks
Algorithm (FWA) for tackling reconfiguration of the RDN in orders to diminish power loss and
improve voltage levels (Imran and Kowsalya, 2014).

Verma and Singh presented in 2018 a Modified Culture Algorithm (MCA) for tackling
reconfiguration problem (Verma and Singh, 2018). This algorithm is tested on two standards
RDN for diminishing actual power loss. Most of the previous work focused on solving
reconfiguration problem with constant loads only and ignoring the variability of the loads and
also suffer from the problem of the premature convergence which leads to poor convergence
rate and its make difficult for these techniques to reach accurate solutions in short time. In
addition, many of these studies using a conventional load flow algorithm which are not
appropriate for solving RDN problems because of limitations in the distribution system.

1.3. Research Gap and Contributions

The reconfiguration is a discrete optimization problem while the Dolphin Echolocation
Optimization (DEO) and Particle Swarm Optimization (PSO) are a continuous optimization
algorithm. So, this work presents a method for modifying the original version of the PSO and
DEO from continuous optimization algorithms to a Binary PSO (BPSO) and Binary DEO
(BDEO) algorithms so as to solve the discrete reconfiguration problem. The BPSO and BDEO
algorithms are proposed as a tool for solving reconfiguration individually. The objective
function in this paper is power loss minimization and revamp the voltage. This objective can be
accomplished by altering the state of the system switches optimally by using the BDEO
algorithm in parallel with Forward/Backward Sweep Power Flow (FBSPF) algorithm. The
presented algorithm was verified on IEEE 33 bus RDN under three loading demands (50%,
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100% and 160%) utilizing MATLAB program and the outcomes obtained are compared with
BPSO and other methods in the literature for assessing the ability and flexibility of the BDEO
algorithm. The competitive results of the simulation highlighted that the suggested BDEO can
effectively search for the best problem solutions and outperform the BPSO algorithm and other
techniques in the literature.
2. METHODOLOGY
2.1. Power Flow
The performance of any optimization algorithm relies on the efficiency of the load flow
algorithm. So, the advanced algorithm called Forward/Backward Sweep Power Flow (FBSPF)
is being used for achieving power flow analysis in the RDN in this paper. The additional
features of this algorithm include low memory requests, computational efficacy and strong
convergence (Bai et al., 2024). Fig.1 shows a simple RDN with two nodes. Actual power loss
(Poss(xk+1)) Of a line linked among sending bus (K) and receiving bus (K+ 1) can be
considered by using Eq. 1 as shown below (Neda and Ma’arif, 2022) (Al-Tameemi et al., 2019):
Plossack+1) = Rk X [Tkl? )
where, Rk denote resistance of the branch k and I ¢ represent current flow in the branch k.
The total actual power 10ss (Pryoss) In the system for a number of lines Ny, is calculated by using
Eq. (2) as shown below (Neda, 2022):

l:)Tloss = 211?;0 l:)loss(K,K+ 1) (2)
P. Q. Py, Qs
@ R+ JX,
Vi Vi
Pl.k+ ‘IQ Lk Pl.{la+] }'I' JQ LikH)

Fig. 1. Simple two buses RDN.

2.2.  Objective Function

The main objective of this work's optimal reconfiguration is to identify the best RDN
configuration that minimizes power loss, enhances the voltage profile, and satisfies all operating
constraints. The following is a description of the primary Objective Function (O. Fun.) of this
paper, which aims to minimize the overall actual power loss, along with associated

mathematical calculations:
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0.Fun. (x) = Minimize (Prjygs) 3)
X = [Sw1 Sw2 Sw3 Sw4 Sws] 4)

where, x is control variables which it representing the tie switches vector.

The above O. Fun. (x) is subjected to:

1. Operational (Equality) constrains

These restrictions contain:

¢ Radiality restriction:

The system must be kept in radial in nature as displayed in Eqg. 5.

det(A) = 1 or — 1 (Radial Network)}
det(A) = 0 (Not Radial )

where, A is the incidence matrix of node.

()

e Connectivity of load restriction:
The wholly loads have to be covered and no one out of service in the distribution networks.

2. Technical (Inequality) restrictions

These constraints are:

¢ \Voltage restriction:

The voltage in the RDN (Vi) must be kept with their operating limits i.e. minimum (V,,,;,) and
maximum (V,,,x) limits as demonstrate in Eq. 6. The Max. and Min. limits in this study are 0.9
and 1.05P.U.

Vmin < VK < Vmax: (6)
e Branch current restriction:

For preventing the over load of the feeders, the current of each line (I x k1) should be kept

under or equal maximum limit (I 41 max) @ shown in Eq. 7.

[Tikr1] < [Tiks1,max] (7

3. BDEO ALGORITHM

In order to mimic the echo of clicks that dolphins make as they search for food and learn about
their surroundings, Kaveh and Farhoudi developed a novel technique in 2013 (Neda, 2021,
Neda, 2020b, Kaveh and Farhoudi, 2013). So, the DEO optimization is made based on the
ability of Dolphins when hunting and catching the preys. Also, the original version of the DEO
algorithm is designed for solving continuous optimization issues only and it does not aimed for
solving discrete optimization issues.

To investigate the performance of recently developed meta-heuristic techniques in terms of
convergence rate improvement, the optimal reconfiguration problem has been solved in this

study utilizing the modified dolphin echolocation method known as BDEO (Saedi Daryan et
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al., 2021). For adapting the DEO algorithm to the problem of reconfiguration and also for
preventing the poorer performance due to differ nature of DEO so that easily slip in the local
minima, a BDEO is utilized in this work. The following are the chief stages of dolphin
echolocation for discrete optimization (Daryan et al., 2019):

Step 1: Choosing the BDEO parameters for example, maximum number of iterations/loops
(Max. Loop. N), No. of Locations (NL) and Number of Variables (NV). The NV dependent on
the optimization variables.

Step 2: This algorithm modifies the Convergence Factor (CF) according to a function that is
established for the convergence rate. Selecting CF of the first loop (Loop;) randomly equal to
(CF; = 0.1) to calculate the Predefined Possibility (PP) as:

B _ __Loop,
PP = CF; + (1 — CFy) = Max.Loop.N ©

Step 3: Computing the Objective Function (Obj. F.), as displayed in below:
O.Fun.= Minimize (Prjss) 9

Step 4: Defining Suitability (S,) for each Location (L).

Step 5: Outlining bounds of factor (K) which depends on active radius (R,.) as:
K = — Ry to Rye (10)

Step 6: Defining Incremental Function (IF) for each L based on K rate:

- If K| # R, then,

IF(L) = (1/Rac) X (Rac - | K[) x Sy (L) +IF(L) (11)
- If|K|] = R, which denote the top/best L is developed then,
IF=0 (12)

Step 7: Taking into account a partial value of € to the IF of all alternatives (ideally, the value of
¢ is smaller than any ftting number): This is the likelihood that a choice would exist in the event
that there was no chance during the random procedure.

IF=1IF +¢ (13)
Step 8: Determine where this loop is most effective, then zero the IF variables at that precise
location.

Step 9: Calculating Probability (P) of select IF for Variable (V) for best L as:

IF(L)y

Fenoy = ST ray (14)

where, Pcp,,, denote selection probability.

Step 10: Distributing Pcp,,, in to:
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PP for better location
Choy = {

(1= PP) x Pcp,, else (15)

Step 11: Calculating the following places based on the likelihood that is given to each

alternative.

Step 12: Repeat step (2) to (10) till gotten Max. Loop/Iterations (N).
Step 13: End.

Finally, the BDEO's flowchart is shown in Fig.2 and the control parameters of the BDEO and

BPSO algorithms were recorded in Table 1.

Table 1. Optimization control parameters.

BPSO Value BDEO Value
Population No. 20 Population No. 20
and Wy, inWinin (0.4-0.9) CF, 0.1

and C,C; (2-2) R 2

Select the parameters of the BDEO
algorithm

!

Read system data and run the FBSPF
calculations

.

Set NL location contain NV variable

.

R Calculate the PP by using equation (8)

!

Calculate the fitness of each location

}

Calculate the cumulative fitness IF for each variable by using
equations (11), (12) and (17)

Determine probability distribution function by normalizing
cumulative fitness (equation 14)

!

Select the option of each variable in the next generation by
assigning PP percent of solution to the best solution and select
other by probability distribution function (equation 15)

!

Stopping criteria is
satisfied?

lYes

Print optimal solution

>
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150 501
Fig. 2. Flowchart of the BDEO technique-based reconfiguration problem.

Max. iterations Max. iterations

4. RESULTS AND DISCUSSION

To validate the efficacy of the current approach to issue solving, the BDEO is applied on IEEE
33 bus RDN (Gautam et al., 2024) under three different types of load. The IEEE 33 RDN basic
configuration, which is used to assess the recommended BDEO method, is shown in Fig.3.
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Fig. 3. IEEE 33 base reconfiguration.

The results of the BDEO are then compared to those gathered by using BPSO and other
methodologies found in the literature. In reconfiguration algorithm, the BDEO algorithm was
programmed by MATLAB R2013b and performed for three cases of load. This system includes
33 bus, 37 lines, 32 sectionalizing switches and five tie switches. The total actual and reactive
power consumption, losses, minimum voltage as well as other parameters at base case before
reconfiguration are exposed in Table 2.

Table 2. Parameters for IEEE 33 bus RDN at base case.

Parameters Value
Total load demand (KW) 2300
Total load demand (KVAR) 3715
Total real power loss (KW) 202.67
Minimum voltage (V,,,;,) in P.U. 0.9131
Voltage limit (V,,ir, and V,0x) [0.9-1.05]
Base Voltage in Kv 12.66
S Base in MVA 100
Sectionalizing Switches [Sw 1 to Sy,32]
Tie Switches [Sw 33 to Sy,37]

This study examines the superiority and resilience of the BDEO methodology when the load is
changed using three load case studies. The outcomes of the BDEO are compared to those of the

BPSO algorithm and other methods that have been published in the literature.
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Case 1: light load (50%).
Case 2: nominal load (100%).
Case 3: heavy load (160%).
These scenarios are used to evaluate and verify the BDEO algorithm's capability, potential, and
effectiveness in resolving reconfiguration problems at any load shift. The load demand at all
buses is changes within the range ( p™" < p < p™#* ) where (W™" =0.5) at light and
(um** = 1.6) at heavy loads. The load is varied through multiplying p with load at base case.
P = WX Py (16)
Qui = WX QLio 17)
where, u represent the magnitude of the load variation ratio and P;;,, Q.;o denote the initial
powers at load nodes. After reconfiguration, the optimal configuration of the tie attained by
BDEO algorithm are Sy, 7, Sy, 9, Sy 14, Sy, 32, Sy, 37 as display in Figure 4 at all three case

studies.

| swas | swad | w37

23 24 25 |Sw26 Sw27|5w28 Sw29|Sw30|SW3IISW32| Sw36

26 27 28 29 30 31 32 33
Sw34

Sw22
Sw25

Swl I Sw2 | Sw3 |_SW4 | SwS | Sw6 | Sw7 | Sw8 | sw9 | Swi0 I Swil | Sw12| Swl3| Swi4 Swis | Swlé I Swl7

| . |
3

4 5 6 7 9 10 11 12 13 14 15 16 17 18

Substation
132/12.66 Kv

Sw33
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| Swi19 | Sw20 | Sw2l | Sw35

9 20 21 22

Fig. 4. IEEE 33 after reconfiguration using BDEO algorithm at all cases.

4.1. At Light Load

In this case, the BDEO can be offered for solving reconfiguration at light load. In light load,
the RDN active and reactive power loads are P,= 1.83 MW and Q.= 1.14 MVAR, as well as,
the power loss before reconfiguration Pr;,s; =47.06 KW and the poorest voltage V,,,;,, = 0.9583
P.U. at bus 18 acquired utilizing a factor of 0.5 which it’s multiplied by constant actual and
reactive power loads. For comparing BDEO efficiency, the results of the light load case with
other algorithms, BPSO, Harmony Search Algorithm (HSA) (Rao et al., 2012), FWA (Imran et
al., 2014), Sine-Cosine Algorithm (SCA) (Raut and Mishra, 2020), Salp Swarm Algorithm
(SSA) (Sambaiah and Jayabarathi, 2021), Heap-Based Optimizer (HBO) (Otuo-Acheampong
et al., 2023) and presented algorithm results are providing in Table 3. Clearly, from Table 3,
after reconfiguration using BDEO algorithm, [Sw 7, Sw 9, Sw 14, Sw 32, Sw 37] at light load
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are opened and the total RDN power loss was diminished from 47.06 to 32.32 KW, whilst the
structure remains radial. Also, from this table, it was obvious that BDEO achieved 34.7% power
loss reduction (Ppyss (%) Which is more than the power loss reduction ((Pross (%)) at BPSO
that achieves only 33.09%, HSA achieves only 29.3%, FWA achieves only 29%, SCA achieves
only 29.3%, SSA achieves only 29.3% and HBO achieves only 29.45%. Obviously, after
reconfiguration using BDEO algorithm, Table 3 also reveals that the lowest voltage amplitude
(P.U.) after reconfiguration using BDEO algorithm is boosted from 0.9583 to 0.9723 at light
load. The results display that the BDEO algorithm is attain less power loss and also the lowest
voltage is boost impressively in comparisons with other algorithms at light load case. So, the
BDEO algorithm is superior among all rival algorithms. Figures 5 and 6 compare and illustrates
the voltage profile that was attained at light load using the BPSO and BDEO algorithms, and it
is clear that the voltage profile obtained with BDEO is superior to that obtained with BPSO.
The results obtained indicated that BDEO is superior than BPSO and other algorithms in the
literature in improving the system's voltage profile significantly.

Table 3. Outcomes after and before reconfiguration of 33—bus RDN at case 1.
Approach Year Open Switches (KW)Prioss  (%0)Prioss  Vimin(P-U.) Vinax(p-u.)

Base case - 33,34,35,36,37 47.06 - 0.9583 1
BDEO 2024 7,9,14,32,37 32.32 34.7% 0.9723 1
BPSO 2024 7,9,13,32,37 33.09 29.6% 0.9713 1
HSA 2013 7,9,14,32,37 33.27 29.3% 0.9698 1
FWA 2014 7,9,14,28,32 33.39 29.0% 0.9714 1
SCA 2020 37,32,9,14,7 33.26 29.3% 0.9698 1
SSA 2021 7,14,9,32,37 33.27 29.3% 0.9698 1
HBO 2023 7,9,14,32,37 33.20 29.45% 0.9719 1

Voltage profile

Voltage profile
—H&— Before REC. 1 T T
—¥X— After REC/BPSO

—FH— Before REC.
—%— After REC./BDEO

0.995

0.99F

0.985

“Woltage (p.u)
“aoltage (p.u)
=
=
T

0.9751

0.97F

0.965

0.96-

Il 1 1 1
No. of buses 0 5 10 15 20 25 30 35
Mo. of buses

0 é 1|[] 1|5 Qh QIE Slﬂ 35 0.955 L :
Fig. 5. Voltage profile after and before

reconfiguration of 33—bus RDN using BPSO at
case 1.

4.2. At Nominal Load
In this case, the BDEO can be offered for solving reconfiguration at light load. In light load,
the RDN active and reactive power loads are P,= 3.715 MW and Q= 2.300 MVAR, as well as,

Fig. 6. Voltage profile after and before
reconfiguration of 33—bus RDN using BDEO at case 1.

the power loss before reconfiguration Pr,s = 202.67 KW and the poorest voltage

Vinin = 0.9131 P.U. at bus 18. For comparing BDEO efficiency, the results of the light load case
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with other algorithms, BPSO, HSA, FWA, SCA, SSA, HBO and presented algorithm results
are listing in Table 4. Clearly, from Table 4, after network reconfiguration using BDEO
algorithm, [Sw 7, Sw 9, Sw 14, Sw 32, Sy 37] at nominal load are opened and the entire RDN
power loss was diminished from 202.67 to 133.17 KW, whilst the structure remains radial.
Also, from this table, it was obvious that BDEO achieved 342% power loss reduction ((Pross
(%)) which is more than the power loss reduction (Pross (%) at BPSO that achieves only
31.6%, HSA achieves only 31.8%, FWA achieves only 30.9%, SCA achieves only 31.14%,
SSA achieves only 31.14% and HBO achieves only 31.9%. Obviously, Table 4 also reveals that
the lowest voltage amplitude (P.U.) after reconfiguration using BDEO algorithm is boosted
from 0.9131 to 0.9431 at nominal load. The results display that the BDEO algorithm is attain
less power loss and also the lowest voltage is boost impressively in comparisons with other
algorithms at light load case. So, the BDEO algorithm is superior among all rival algorithms.
The attained voltage profile at nominal load after and before reconfiguration using BPSO and
BDEO algorithms is compared and demonstrated in Figures 7 and 8. The results obtained
indicated that BDEO is superior than BPSO and other algorithms in the literature in improving
the system's voltage profile significantly.

Table 4. Outcomes after and before reconfiguration of 33—bus RDN at case 2.

Approach Year Open Switches  Prygss (KW)  Priges (20)  Vinin(P.U.) Vo (P.UL)

Base case - 33,34,35,36,37 202.67 - 0.9131 1
BDEO 2024 7,9,14,32,37 133.17 34.2% 0.9431 1
BPSO 2024 7,9,13,32,37 138.61 31.6% 0.9412 1
HSA 2013 7,9,14,32,37 138.06 31.8% 0.9342 1
FWA 2014 7,9,14,28,32 139.98 30.9% 0.9413 1
SCA 2020 7,9,14,32,37 139.55 31.14% 0.9378 1
SSA 2021 7,14,9,32,37 139.55 31.14% 0.9378 1
HBO 2023 7,9,14,32,37 138.01 31.9% 0.9423 1

Voltage profile Voltage profile

—&— Before REC.
—%— After REC/BDED

—H&— Before REC.
—%— After REC./BPSO 099+

“aoltage (p.u)
= = =
2 =4 =

“oltage (paou)

=
o
3

1 1 1 []91 1 Il 1 1 1 L
5 10 15 20 25 30 3 0 5 10 15 20 25 30 35

Mo. of buses MNo. of buses
Fig. 7. Voltage profile after and before Fig. 8. Voltage profile after and before
reconfiguration of 33—bus RDN using BPSO at reconfiguration of 33—bus RDN using BDEO at
case 2. case 2.
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4.3. AtHeavy Load

In the last case, BDEO can be offered for solving reconfiguration at light load. In light load, the
RDN active and reactive power loads are P,= 5.87 MW and Q= 3.63 MVAR, as well as, the
power loss before reconfiguration Pr,ss = 575.31 KW and the poorest voltage V,,;, = 0.8529
P.U. at bus 18 acquired utilizing a factor of 1.6 which it’s multiplied by constant actual and
reactive power loads. For comparing BDEO efficiency, the results of the heavy load case with
other algorithms, BPSO, HSA, FWA, SCA, SSA, HBO and presented algorithm results are
providing in Table 5. Clearly, from Table 5, after reconfiguration using BDEO algorithm, [Sy,
7, Sw 9, Sw 14, Sy 32, Sy 37] at heavy load are opened and the total RDN power loss was
diminished from 575.31 to 353.79 KW, whilst the structure remains radial. Also, from this
table, it was obvious that BDEO achieved 38.5% power loss reduction ((Prjoss (%)) which is
more than the power loss reduction (Pposs (%) at BPSO that achieves only 34.2%, HSA
achieves only 33.8%, FWA achieves only 33.7%, SCA achieves only 33.87%, SSA achieves
only 33.47% and HBO achieves only 38.31%. Obviously after DNR using BDEO algorithm,
Table 5 also reveals that the lowest voltage amplitude (P.U.) after reconfiguration using BDEO
algorithm is boosted from 0.8529 to 0.9158 at heavy load. The results display that the BDEO
algorithm is attain less power loss and also the lowest voltage is boost impressively in
comparisons with other algorithms at light load case. So, the BDEO algorithm is superior
among all rival algorithms. The voltage profile achieved at heavy load using the BPSO and
BDEO algorithms is compared and illustrated in Figures 9 and 10, where it is evident that the
voltage profile obtained with BDEO is better than that obtained with BPSO. The results
obtained indicated that BDEO is superior than BPSO and other algorithms in the literature in
improving the system's voltage profile significantly.

Table 5. Outcomes after and before reconfiguration of 33—bus RDN at case 3.

Approach  Year Open Switches 52‘\‘/’\5/3 P(};zis Viin(P- 1) Vipax(p-u.)
0.8529 1

Base case - 33,34,35,36,37 575.31 -
BDEO 2024 7,9,14,32,37 353.79 38.5% 0.9158
BPSO 2024  12,17,20,28,35 378.24 34.2% 0.8820

HSA 2013 7,9,14,32,37 380.43 33.8% 0.8697
FWA 2014 7,9,13,28,32 381.24 33.7% 0.9027
SCA 2020 7,9,14,32,37 380.44  33.87% 0.8967
SSA 2021 7,14,9,32,37 380.45 33.47% 0.8967
HBO 2023 2,10,12,28,31 354.9 38.31% 0.9115

PR R R R R
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Voltage profile

Voltage profile

—H— Before REC.
—%— After REC./BPSO

—FH— Before REC.
—%— After REC./BDEQ

I=
o
=
P=
o
o

“oltage ip.u)
“oltage (p.u)

o
w
=
w

0.85 0.85
0

1 1 1 1 1 1 1 1 Il Il Il Il
5 10 15 20 24 30 38 0 [ 10 15 20 2 30 35
No. of buses No. of buses

Fig. 9. Voltage profile after and before Fig. 10. Voltage profile after and before
reconfiguration of 33—bus RDN using BPSO  reconfiguration of 33—bus RDN using
at case 3. BDEO at case 3.

5. CONCLUSION

This article describes how the BDEO method was effectively applied as an optimization tool on
the medium-scale RDN to address the reconfiguration issue. By utilizing the dependable BDEO
algorithm to reduce power loss and improve voltage profile, an optimal RDN configuration may
be obtained by varying the on/off states of the switches while still adhering to all operating
restrictions. The supremacy of the presented algorithm is achieved by testing on IEEE 33 bus
RDN at three loading conditions. Additionally, a comparison was made between the overall
outcomes of the given BDEO algorithm and the outcomes of BPSO and other techniques that
were found in the literature. The comparison results clearly demonstrate that the BDEO is a
superior tool for attaining a minimum power system loss and enhancing the voltage profile when
compared to the BPSO, HSA, FWA, SCA, SSA, and HBO algorithms at all case studies.
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