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ABSTRACT  

Optimal reconfiguration is a significant alternative technique of increasing the efficacy of 

Radial Distribution Networks (RDNs). Reconfiguration is carried out by adjusting the status of 

RDN switches in such manner that the system's radiality is kept, energized wholly loads and 

other restrictions are fulfilled. The original version of the Dolphin Echolocation Optimization 

(DEO) algorithm is designed for solving continuous optimization issues only. As the 

reconfiguration problem is a discrete issue, the original DEO algorithm cannot deal with this 

problem. Fortunately, a Binary DEO (BDEO) algorithm was presented for solving discrete 

optimization issues which is utilized for adapting the reconfiguration issue. This approach is a 

powerful tool for rearranging systems by altering the status of the RDN switches in a way that 

minimizes power loss and enhances voltage profile. The BDEO algorithm is evaluated on an 

IEEE 33 bus RDN under three case studies in MATLAB to validate its performance. By 

comparing the simulation results with those from previously published work, it is possible to 

conclude that the suggested strategy is efficient in achieving the optimal outcome because it 

enhances the system voltage profile while minimizing losses. The comparison results showed 

that, in instance two, the BDEO for the test RDN greatly increased the minimum voltage from 

0.9131 to 0.9431 P.U. and reduced the power loss by 34.2%, from 202.67 to 133.17 KW. 
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1. INTRODUCTION 

1.1. Research Background 

Every feeder in the distribution network has a common mix of load styles, including residential, 

commercial, and industrial. It has also recently grown larger and more complex, with variations 

in daily load, which leads to poor voltage regulation, lower power factor, higher system losses, 

and poor power efficiency (Chidanandappa et al., 2015, Al-Jabari et al., 2022). Because of 

distributed networks' radial architecture and the growing need for electricity, ensuring optimal 

performance has become more difficult. The surge in power consumption over the past few 

decades has forced distribution networks to run substantially closer to their maximum limits. 

During times of high demand, the Radial Distribution Network (RDN), which is distinguished 

by a higher resistance-to-reactance ratio in comparison to the transmission network, causes 

notable power losses and voltage drops (Mhawesh et al., 2020). Research indicates that 

approximately 10-13% of the total power generated is lost owing to distribution grid losses, 

resulting in increased energy expenses and an unfavorable voltage profile near the distribution 

line (Ng et al., 2000, Abed, 2024).  

So, these losses should be minimized for enhancing the stability and efficiency of the power 

network, the power factor and the profile of the voltage. Therefore, improving the quality of 

power transfer within distribution networks has become essential (Neda, 2024). Owing to the 

hourly fluctuations in network loads across several feeders and the constant escalation in 

demand, the operation and control of distribution systems are considerably more complex, 

particularly in regions with elevated load densities (Jumaa et al., 2021). The literature has 

developed a number of solution methodologies during the last few decades, including optimal 

reconfiguration. So, the network reconfiguration is the most effective and economic method 

used for refining voltage profile and diminishing loss in power distribution system that it's not 

needed any operating cost (De Oliveira et al., 2014, Al-Mamoori et al., 2019). For maximizing 

the merits and dropping their impact on the power system, network configuration must be 

optimal. Thus, the optimal reconfiguration problem has become a critical and complicated 

problem (Mam et al., 2016). 

1.2. Literature Review 

Over the last 2 decades, several researchers have addressed the network reconfiguration 

problems utilizing various Artificial Intelligence (AI) and mathematical and heuristics 

optimization methods. In (Sarfi et al., 1994, Salkuti and Battu, 2021) offers a review of the 

latest technology in the reconfiguration for reducing network losses. These strategies can be 
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divided into two types: (1) Mathematical and Heuristics optimization methods (Su et al., 2005, 

Kumar and Rudramoorthy, 2021, Nguyen et al., 2022, Fadhil et al., 2021). Use of the heuristics 

was motivated because of the need for reducing the issue of reconfiguration search space; (2) 

Meta-heuristic or Artificial Intelligence (AI) techniques (De Oliveira et al., 2014, Neda, 2020a). 

Earliest reconfiguration approaches are based on heuristic methodologies. Later on, a large 

number of optimization methods (meta-heuristic algorithms) were developed for either loss 

elimination or voltage profile augmentation.  

In (Aman et al., 2014) utilized a Discrete Artificial Bee Colony (DABC) to evaluate the 

maximum load capacity through optimizing distribution grid and then utilized continuous load 

flow together with graph theory for calculating load flow. Particle Swarm Optimization (PSO) 

has also been effectively utilized to address the issue of reconfiguration for multi-objective 

functions (Andervazh et al., 2013). Mohamed Imran and Kowsalya have been used Fireworks 

Algorithm (FWA) for tackling reconfiguration of the RDN in orders to diminish power loss and 

improve voltage levels (Imran and Kowsalya, 2014).  

Verma and Singh presented in 2018 a Modified Culture Algorithm (MCA) for tackling 

reconfiguration problem (Verma and Singh, 2018). This algorithm is tested on two standards 

RDN for diminishing actual power loss. Most of the previous work focused on solving 

reconfiguration problem with constant loads only and ignoring the variability of the loads and 

also suffer from the problem of the premature convergence which leads to poor convergence 

rate and its make difficult for these techniques to reach accurate solutions in short time. In 

addition, many of these studies using a conventional load flow algorithm which are not 

appropriate for solving RDN problems because of limitations in the distribution system. 

1.3. Research Gap and Contributions 

The reconfiguration is a discrete optimization problem while the Dolphin Echolocation 

Optimization (DEO) and Particle Swarm Optimization (PSO) are a continuous optimization 

algorithm. So, this work presents a method for modifying the original version of the PSO and 

DEO from continuous optimization algorithms to a Binary PSO (BPSO) and Binary DEO 

(BDEO) algorithms so as to solve the discrete reconfiguration problem. The BPSO and BDEO 

algorithms are proposed as a tool for solving reconfiguration individually. The objective 

function in this paper is power loss minimization and revamp the voltage. This objective can be 

accomplished by altering the state of the system switches optimally by using the BDEO 

algorithm in parallel with Forward/Backward Sweep Power Flow (FBSPF) algorithm. The 

presented algorithm was verified on IEEE 33 bus RDN under three loading demands (50%, 
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100% and 160%) utilizing MATLAB program and the outcomes obtained are compared with 

BPSO and other methods in the literature for assessing the ability and flexibility of the BDEO 

algorithm. The competitive results of the simulation highlighted that the suggested BDEO can 

effectively search for the best problem solutions and outperform the BPSO algorithm and other 

techniques in the literature.  

2. METHODOLOGY 

2.1. Power Flow 

The performance of any optimization algorithm relies on the efficiency of the load flow 

algorithm. So, the advanced algorithm called Forward/Backward Sweep Power Flow (FBSPF) 

is being used for achieving power flow analysis in the RDN in this paper. The additional 

features of this algorithm include low memory requests, computational efficacy and strong 

convergence (Bai et al., 2024). Fig.1 shows a simple RDN with two nodes. Actual power loss 

(Ploss(K,K+1)) of a line linked among sending bus (K) and receiving bus (K + 1) can be 

considered by using Eq. 1 as shown below (Neda and Ma’arif, 2022) (Al-Tameemi et al., 2019): 

Ploss(K,K+1) =  RK × |I K|2                              (1) 

 where, RK denote resistance of the branch k and I K represent current flow in the branch k. 

The total actual power loss (PTloss) in the system for a number of lines Nb is calculated by using 

Eq. (2) as shown below (Neda, 2022): 

PTloss = ∑ Ploss(K,K+1)
nb
K=0                                (2) 

Fig. 1. Simple two buses RDN. 

2.2. Objective Function 

The main objective of this work's optimal reconfiguration is to identify the best RDN 

configuration that minimizes power loss, enhances the voltage profile, and satisfies all operating 

constraints. The following is a description of the primary Objective Function (O. Fun. ) of this 

paper, which aims to minimize the overall actual power loss, along with associated 

mathematical calculations:  
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O. Fun. (x) =  Minimize (PTloss)                                            (3) 

x = [sw1 sw2 sw3 sw4 sw5]                                                     (4) 

where, x is control variables which it representing the tie switches vector.  

The above O. Fun. (x) is subjected to: 

1. Operational (Equality) constrains  

These restrictions contain: 

 Radiality restriction: 

The system must be kept in radial in nature as displayed in Eq. 5. 

det (A) = 1 or − 1 (Radial Network)
det (A) = 0 (Not Radial )

}                                       (5) 

where, A is the incidence matrix of node. 

 Connectivity of load restriction: 

The wholly loads have to be covered and no one out of service in the distribution networks. 

2. Technical (Inequality) restrictions 

These constraints are: 

 Voltage restriction: 

The voltage in the RDN (VK) must be kept with their operating limits i.e. minimum (Vmin) and 

maximum (Vmax) limits as demonstrate in Eq. 6. The Max. and Min. limits in this study are 0.9 

and 1.05 P.U.  

Vmin  ≤  VK  ≤  Vmax,                                      (6) 

 Branch current restriction: 

For preventing the over load of the feeders, the current of each line (I K,K+1) should be kept 

under or equal maximum limit (I K,K+1,max) as shown in Eq. 7. 

|I K,K+1| ≤ |I K,K+1,max|                                    (7) 

3. BDEO ALGORITHM 

In order to mimic the echo of clicks that dolphins make as they search for food and learn about 

their surroundings, Kaveh and Farhoudi developed a novel technique in 2013 (Neda, 2021, 

Neda, 2020b, Kaveh and Farhoudi, 2013). So, the DEO optimization is made based on the 

ability of Dolphins when hunting and catching the preys. Also, the original version of the DEO 

algorithm is designed for solving continuous optimization issues only and it does not aimed for 

solving discrete optimization issues.  

To investigate the performance of recently developed meta-heuristic techniques in terms of 

convergence rate improvement, the optimal reconfiguration problem has been solved in this 

study utilizing the modified dolphin echolocation method known as BDEO (Saedi Daryan et 
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al., 2021). For adapting the DEO algorithm to the problem of reconfiguration and also for 

preventing the poorer performance due to differ nature of DEO so that easily slip in the local 

minima, a BDEO is utilized in this work. The following are the chief stages of dolphin 

echolocation for discrete optimization (Daryan et al., 2019): 

Step 1: Choosing the BDEO parameters for example, maximum number of iterations/loops 

(Max. Loop. N), No. of Locations (NL) and Number of Variables (NV). The NV dependent on 

the optimization variables. 

Step 2: This algorithm modifies the Convergence Factor (CF) according to a function that is 

established for the convergence rate. Selecting CF of the first loop (Loop1) randomly equal to 

(CF1 = 0.1) to calculate the Predefined Possibility (PP) as:  

PP = CF1 + (1 − CF1) ∗
Loop1

Max.Loop.N
                                (8) 

Step 3: Computing the Objective Function (Obj. F. ), as displayed in below:  

O. Fun. =  Minimize (PTloss)                                         (9) 

Step 4: Defining Suitability (Su) for each Location (L). 

Step 5: Outlining bounds of factor (K) which depends on active radius (Rac) as:  

K =  − Rac to Rac                                                         (10) 

Step 6: Defining Incremental Function (IF) for each L based on K rate:  

- If |K| ≠  Rac then, 

IF(L) = (1/Rac) × ( Rac - | K |) × Su(L) + IF(L)            (11) 

- If |K| =  Rac which denote the top/best L is developed then, 

IF = 0                                                                             (12) 

Step 7: Taking into account a partial value of ε to the IF of all alternatives (ideally, the value of 

ε is smaller than any ftting number): This is the likelihood that a choice would exist in the event 

that there was no chance during the random procedure. 

IF = IF + ε                                                                   (13) 

Step 8: Determine where this loop is most effective, then zero the IF variables at that precise 

location. 

Step 9: Calculating Probability (𝑃) of select 𝐼𝐹 for Variable (𝑉) for best 𝐿 as: 

𝑃𝐶ℎ𝑜𝑉
 =

𝐼𝐹(𝐿)𝑉

∑ 𝐼𝐹(𝐿)𝑉
𝑁𝑉
𝑉=1

                                       (14) 

where, 𝑃𝐶ℎ𝑜𝑉
 denote selection probability.  

Step 10: Distributing 𝑃𝐶ℎ𝑜𝑉
 in to: 
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𝑃𝐶ℎ𝑜𝑉
=  {

 𝑃𝑃 𝑓𝑜𝑟 𝑏𝑒𝑡𝑡𝑒𝑟 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛

(1 − 𝑃𝑃) ∗  𝑃𝐶ℎ𝑜𝑉
 𝑒𝑙𝑠𝑒 

                          (15) 

Step 11: Calculating the following places based on the likelihood that is given to each 

alternative. 

Step 12: Repeat step (2) to (10) till gotten Max. Loop/Iterations (N). 

Step 13: End. 

Finally, the BDEO's flowchart is shown in Fig.2 and the control parameters of the BDEO and 

BPSO algorithms were recorded in Table 1. 

Table 1. Optimization control parameters. 

BPSO Value BDEO Value 

Population No. 20 Population No. 20 

𝑊𝑚𝑖𝑛 and 𝑊𝑚𝑖𝑛 (0.4-0.9) 𝐶𝐹1 0.1 

𝐶1 and 𝐶2 (2-2)  𝑅𝑎𝑐 2 
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Max. iterations 150 Max. iterations 501 

Fig. 2. Flowchart of the BDEO technique-based reconfiguration problem. 

4. RESULTS AND DISCUSSION 

To validate the efficacy of the current approach to issue solving, the BDEO is applied on IEEE 

33 bus RDN (Gautam et al., 2024) under three different types of load. The IEEE 33 RDN basic 

configuration, which is used to assess the recommended BDEO method, is shown in Fig.3.  

Fig. 3. IEEE 33 base reconfiguration. 

The results of the BDEO are then compared to those gathered by using BPSO and other 

methodologies found in the literature. In reconfiguration algorithm, the BDEO algorithm was 

programmed by MATLAB R2013b and performed for three cases of load. This system includes 

33 bus, 37 lines, 32 sectionalizing switches and five tie switches. The total actual and reactive 

power consumption, losses, minimum voltage as well as other parameters at base case before 

reconfiguration are exposed in Table 2. 

Table 2. Parameters for IEEE 33 bus RDN at base case. 

Parameters Value 

Total load demand (KW) 2300 

Total load demand (KVAR) 3715 

Total real power loss (KW) 202.67 

Minimum voltage (𝑉𝑚𝑖𝑛) in P.U. 0.9131 

Voltage limit (𝑉𝑚𝑖𝑛 and 𝑉𝑚𝑎𝑥) [0.9-1.05] 

Base Voltage in Kv 12.66 

S Base in MVA 100 

Sectionalizing Switches [𝑆𝑊 1 𝑡𝑜 𝑆𝑊32] 

Tie Switches [𝑆𝑊 33 𝑡𝑜 𝑆𝑊37] 

This study examines the superiority and resilience of the BDEO methodology when the load is 

changed using three load case studies. The outcomes of the BDEO are compared to those of the 

BPSO algorithm and other methods that have been published in the literature. 
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Case 1: light load (50%). 

Case 2: nominal load (100%).  

Case 3: heavy load (160%). 

These scenarios are used to evaluate and verify the BDEO algorithm's capability, potential, and 

effectiveness in resolving reconfiguration problems at any load shift. The load demand at all 

buses is changes within the range ( µ𝑚𝑖𝑛 ≤  µ ≤  µ𝑚𝑎𝑥   ) where (µ𝑚𝑖𝑛  = 0.5 )  at light and  

(µ𝑚𝑎𝑥  = 1.6 )  at heavy loads. The load is varied through multiplying µ with load at base case. 

𝑃𝐿𝑖 =  µ × 𝑃𝐿𝑖0                                                    (16) 

𝑄𝐿𝑖 =  µ × 𝑄𝐿𝑖0                                                   (17) 

where, µ represent the magnitude of the load variation ratio and 𝑃𝐿𝑖0, 𝑄𝐿𝑖0 denote the initial 

powers at load nodes. After reconfiguration, the optimal configuration of the tie attained by 

BDEO algorithm are 𝑆𝑊 7, 𝑆𝑊 9, 𝑆𝑊 14, 𝑆𝑊 32, 𝑆𝑊 37 as display in Figure 4 at all three case 

studies. 

Fig. 4. IEEE 33 after reconfiguration using BDEO algorithm at all cases. 

4.1. At Light Load 

In this case, the BDEO can be offered for solving reconfiguration at light load. In light load, 

the RDN active and reactive power loads are 𝑃𝐿= 1.83 MW and 𝑄𝐿= 1.14 MVAR, as well as, 

the power loss before reconfiguration 𝑃𝑇𝑙𝑜𝑠𝑠 = 47.06 KW and the poorest voltage 𝑉𝑚𝑖𝑛 = 0.9583 

P.U. at bus 18 acquired utilizing a factor of 0.5 which it’s multiplied by constant actual and 

reactive power loads. For comparing BDEO efficiency, the results of the light load case with 

other algorithms, BPSO, Harmony Search Algorithm (HSA) (Rao et al., 2012), FWA (Imran et 

al., 2014), Sine-Cosine Algorithm (SCA) (Raut and Mishra, 2020), Salp Swarm Algorithm 

(SSA) (Sambaiah and Jayabarathi, 2021), Heap-Based Optimizer (HBO) (Otuo-Acheampong 

et al., 2023) and presented algorithm results are providing in Table 3. Clearly, from Table 3, 

after reconfiguration using BDEO algorithm, [SW 7, SW 9, SW 14, SW 32, SW 37] at light load 
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are opened and the total RDN power loss was diminished from 47.06 to 32.32 KW, whilst the 

structure remains radial. Also, from this table, it was obvious that BDEO achieved 34.7% power 

loss reduction (PTloss (%) which is more than the power loss reduction ((PTloss (%)) at BPSO 

that achieves only 33.09%, HSA achieves only 29.3%, FWA achieves only 29%, SCA achieves 

only 29.3%, SSA achieves only 29.3% and HBO achieves only 29.45%. Obviously, after 

reconfiguration using BDEO algorithm, Table 3 also reveals that the lowest voltage amplitude 

(P.U.) after reconfiguration using BDEO algorithm is boosted from 0.9583 to 0.9723 at light 

load. The results display that the BDEO algorithm is attain less power loss and also the lowest 

voltage is boost impressively in comparisons with other algorithms at light load case. So, the 

BDEO algorithm is superior among all rival algorithms. Figures 5 and 6 compare and illustrates 

the voltage profile that was attained at light load using the BPSO and BDEO algorithms, and it 

is clear that the voltage profile obtained with BDEO is superior to that obtained with BPSO. 

The results obtained indicated that BDEO is superior than BPSO and other algorithms in the 

literature in improving the system's voltage profile significantly. 

 Table 3. Outcomes after and before reconfiguration of 33−bus RDN at case 1. 

4.2. At Nominal Load 

In this case, the BDEO can be offered for solving reconfiguration at light load. In light load, 

the RDN active and reactive power loads are PL= 3.715 MW and QL= 2.300 MVAR, as well as, 

the power loss before reconfiguration PTloss = 202.67 KW and the poorest voltage  

Vmin = 0.9131 P.U. at bus 18. For comparing BDEO efficiency, the results of the light load case 

Approach Year Open Switches 𝐏𝐓𝐥𝐨𝐬𝐬 (KW) 𝐏𝐓𝐥𝐨𝐬𝐬 (%) 𝐕𝐦𝐢𝐧(𝐩. 𝐮. ) 𝐕𝐦𝐚𝐱(𝐩. 𝐮. ) 

Base case - 33,34,35,36,37 47.06 - 0.9583 1 

BDEO 2024 7,9,14,32,37 32.32 34.7% 0.9723 1 

BPSO 2024 7,9,13,32,37 33.09 29.6% 0.9713 1 

HSA  2013 7,9,14,32,37 33.27 29.3% 0.9698 1 

FWA  2014 7,9,14,28,32 33.39 29.0% 0.9714 1 

SCA 2020 37,32,9,14,7 33.26 29.3% 0.9698 1 

SSA  2021 7,14,9,32,37 33.27 29.3% 0.9698 1 

HBO  2023 7,9,14,32,37 33.20 29.45% 0.9719 1 

Fig. 5. Voltage profile after and before 

 reconfiguration of 33−bus RDN using BPSO at  

case 1. 

Fig. 6. Voltage profile after and before  

reconfiguration of 33−bus RDN using BDEO at case 1. 
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with other algorithms, BPSO, HSA, FWA, SCA, SSA, HBO and presented algorithm results 

are listing in Table 4. Clearly, from Table 4, after network reconfiguration using BDEO 

algorithm, [SW 7, SW 9, SW 14, SW 32, SW 37] at nominal load are opened and the entire RDN 

power loss was diminished from 202.67 to 133.17 KW, whilst the structure remains radial. 

Also, from this table, it was obvious that BDEO achieved 342% power loss reduction ((PTloss 

(%)) which is more than the power loss reduction (PTloss (%) at BPSO that achieves only  

31.6%, HSA achieves only 31.8%, FWA achieves only 30.9%, SCA achieves only 31.14%, 

SSA achieves only 31.14% and HBO achieves only 31.9%. Obviously, Table 4 also reveals that 

the lowest voltage amplitude (P.U.) after reconfiguration using BDEO algorithm is boosted 

from 0.9131 to 0.9431 at nominal load. The results display that the BDEO algorithm is attain 

less power loss and also the lowest voltage is boost impressively in comparisons with other 

algorithms at light load case. So, the BDEO algorithm is superior among all rival algorithms. 

The attained voltage profile at nominal load after and before reconfiguration using BPSO and 

BDEO algorithms is compared and demonstrated in Figures 7 and 8. The results obtained 

indicated that BDEO is superior than BPSO and other algorithms in the literature in improving 

the system's voltage profile significantly.  

Table 4. Outcomes after and before reconfiguration of 33−bus RDN at case 2. 

  
Fig. 7. Voltage profile after and before 

reconfiguration of 33−bus RDN using BPSO at 

case 2. 

Fig. 8. Voltage profile after and before 

reconfiguration of 33−bus RDN using BDEO at 

case 2. 

Approach Year Open Switches 𝐏𝐓𝐥𝐨𝐬𝐬 (KW) 𝐏𝐓𝐥𝐨𝐬𝐬 (%) 𝐕𝐦𝐢𝐧(𝐏. 𝐔. ) 𝐕𝐦𝐚𝐱(𝐏. 𝐔. ) 

Base case - 33,34,35,36,37 202.67 - 0.9131 1 

BDEO 2024 7,9,14,32,37 133.17 34.2% 0.9431 1 

BPSO 2024 7,9,13,32,37 138.61 31.6% 0.9412 1 

HSA  2013 7,9,14,32,37 138.06 31.8% 0.9342 1 

FWA  2014 7,9,14,28,32 139.98 30.9% 0.9413 1 

SCA  2020 7,9,14,32,37 139.55 31.14% 0.9378 1 

SSA  2021 7,14,9,32,37 139.55 31.14% 0.9378 1 

HBO  2023 7,9,14,32,37 138.01 31.9% 0.9423 1 
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4.3. At Heavy Load 

In the last case, BDEO can be offered for solving reconfiguration at light load. In light load, the 

RDN active and reactive power loads are PL= 5.87 MW and QL= 3.63 MVAR, as well as, the 

power loss before reconfiguration PTloss = 575.31 KW and the poorest voltage Vmin = 0.8529 

P.U. at bus 18 acquired utilizing a factor of 1.6 which it’s multiplied by constant actual and 

reactive power loads. For comparing BDEO efficiency, the results of the heavy load case with 

other algorithms, BPSO, HSA, FWA, SCA, SSA, HBO and presented algorithm results are 

providing in Table 5. Clearly, from Table 5, after reconfiguration using BDEO algorithm, [SW 

7, SW 9, SW 14, SW 32, SW 37] at heavy load are opened and the total RDN power loss was 

diminished from 575.31 to 353.79 KW, whilst the structure remains radial. Also, from this 

table, it was obvious that BDEO achieved 38.5% power loss reduction ((PTloss (%)) which is 

more than the power loss reduction (PTloss (%) at BPSO that achieves only 34.2%, HSA 

achieves only 33.8%, FWA achieves only 33.7%, SCA achieves only 33.87%, SSA achieves 

only 33.47% and HBO achieves only 38.31%. Obviously after DNR using BDEO algorithm, 

Table 5 also reveals that the lowest voltage amplitude (P.U.) after reconfiguration using BDEO 

algorithm is boosted from 0.8529 to 0.9158 at heavy load. The results display that the BDEO 

algorithm is attain less power loss and also the lowest voltage is boost impressively in 

comparisons with other algorithms at light load case. So, the BDEO algorithm is superior 

among all rival algorithms. The voltage profile achieved at heavy load using the BPSO and 

BDEO algorithms is compared and illustrated in Figures 9 and 10, where it is evident that the 

voltage profile obtained with BDEO is better than that obtained with BPSO. The results 

obtained indicated that BDEO is superior than BPSO and other algorithms in the literature in 

improving the system's voltage profile significantly. 

Table 5. Outcomes after and before reconfiguration of 33−bus RDN at case 3. 

 

Approach Year Open Switches 
𝐏𝐓𝐥𝐨𝐬𝐬 

(KW) 

𝐏𝐓𝐥𝐨𝐬𝐬 

(%) 
𝐕𝐦𝐢𝐧(𝐩. 𝐮. ) 𝐕𝐦𝐚𝐱(𝐩. 𝐮. ) 

Base case - 33,34,35,36,37 575.31 - 0.8529 1 

BDEO 2024 7,9,14,32,37 353.79 38.5% 0.9158 1 

BPSO 2024 12,17,20,28,35 378.24 34.2% 0.8820 1 

HSA  2013 7,9,14,32,37 380.43 33.8% 0.8697 1 

FWA  2014 7,9,13,28,32 381.24 33.7% 0.9027 1 

SCA  2020 7,9,14,32,37 380.44 33.87% 0.8967 1 

SSA  2021 7,14,9,32,37 380.45 33.47% 0.8967 1 

HBO  2023 2,10,12,28,31 354.9 38.31% 0.9115 1 
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5. CONCLUSION  

This article describes how the BDEO method was effectively applied as an optimization tool on 

the medium-scale RDN to address the reconfiguration issue. By utilizing the dependable BDEO 

algorithm to reduce power loss and improve voltage profile, an optimal RDN configuration may 

be obtained by varying the on/off states of the switches while still adhering to all operating 

restrictions. The supremacy of the presented algorithm is achieved by testing on IEEE 33 bus 

RDN at three loading conditions. Additionally, a comparison was made between the overall 

outcomes of the given BDEO algorithm and the outcomes of BPSO and other techniques that 

were found in the literature. The comparison results clearly demonstrate that the BDEO is a 

superior tool for attaining a minimum power system loss and enhancing the voltage profile when 

compared to the BPSO, HSA, FWA, SCA, SSA, and HBO algorithms at all case studies. 
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