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Abstract.
The rapid proliferation of Internet of Things (IoT) devices, spanning from smart home appliances to

wearable technology, has significantly heightened concerns regarding security and privacy across
various sectors. As cyber threats become increasingly sophisticated and frequent, the urgency for
robust, adaptable security frameworks within [oT infrastructures is more critical than ever. This study
introduces a cutting-edge security framework tailored for [oT-based smart door locks, which employs
a novel integration of the Chameleon Swarm Algorithm (CSA), Secure Hash Algorithm SHA-256,
and Elliptic Curve Cryptography (ECC). We conducted comprehensive performance evaluations in a
Microsoft Visual Studio 2012 environment, where our proposed framework was benchmarked against
conventional hybrid methods based on Genetic Algorithms (GA) and Firefly Algorithm such as -
SHA-256-ECC-GA and SHA-256-ECC-FA. These evaluations demonstrated that our framework
significantly enhances security performance, achieving up to 15.17% faster encoding times at 100
iterations and markedly quicker decoding times at 150 iterations compared to the benchmark
techniques. The improvements confirm the framework’s effectiveness in not only bolstering IoT

device security but also in its potential for scalability and adaptability across diverse loT applications.

Keywords: Information Security; Chameleon Swarm Algorithm (CSA); Internet of Things (IoT)
security; Elliptic Curve Cryptography (ECC); SHA-256 algorithm
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Introduction

The Internet of Things (IoT) has become a
transformative force in modern technology,
interconnecting an ever-growing number of
devices from home appliances and vehicles to
healthcare systems and industrial machinery
[1-3]. This technological evolution is not just
reshaping consumer behavior but also
redefining the operational paradigms of
numerous industries. As these devices
proliferate, they form a network of
interconnected digital entities that create and
share data continuously. While this integration
promises enhanced operational efficiency and
access to real-time data, it also introduces
significant security vulnerabilities that could
be exploited to cause widespread harm. In the
context of smart home technology, one of the
most sensitive points of vulnerability lies in
IoT-based smart door locks. These devices,
pivotal in ensuring physical security, face
unique challenges as they blend digital and
mechanical functionalities. Given the potential
consequences of security breaches, which can
range from unauthorized home entry to data
theft, the need for robust security measures is
not merely beneficial but critical [4, 5].

Addressing these concerns, our paper

introduces a novel security framework that
integrates the CSA, SHA-256 hash function,
and ECC. Each of these technologies has been
specifically chosen for its strengths in securing
digital communications and enhancing the
integrity and confidentiality of data [6, 7].
CSA, for example, offers adaptive solutions
that are highly effective in complex, dynamic
environments like those found in [oT systems.
SHA-256 provides a strong hashing
mechanism ensuring data integrity and
verifying authenticity. ECC is employed for its
strength in creating secure cryptographic keys
with relatively smaller key sizes, which is ideal
for the resource-constrained environments
typical of many IoT devices. The integration of
these technologies aims to fortify the security
of smart door locks significantly, thereby
reducing the risk of unauthorized access while
maintaining user convenience and efficiency.
This paper not only discusses the technical
implementation of these algorithms but also
evaluates their effectiveness in real-world
scenarios. Comparative analysis against
existing security measures such as SHA-256-
ECC-GA and SHA-256-ECC-Fais provided,
illustrating our framework's improvements in

encoding and decoding times, which are
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critical for performance in real-time

applications [8-10]. The findings and
methodologies can be adapted for other IoT
devices that require high levels of security,
from wearable health monitors to automotive
systems. By exploring the scalability and
adaptability of the proposed security
framework, this research contributes to the
ongoing discourse on loT security, proposing
solutions that could be pivotal in securing a
wide array of devices against an ever-evolving
landscape of cyber threats [11-15]. This paper
is structured as follows: Section 2 discusses
related works. Section 3 explains the CSA,
while Section 4 covers ECC. Section 5
proposes the CSA-ECC secure communication
model. Section 6 evaluates its performance,

and Section 7 concludes the study.

Related Works

From a detailed literature survey as shown

in Table 1, it is clearly visible that there is a

Table 1. Comprehensive Comparison Table

great advancement in securing IoT based on
different cryptographic and optimization
strategies. However, all of these studies focus
on individual aspects of reducing resource
utilization, secure data concealment, or power
optimization rather than delivering an end-to-
end security solution capable of addressing the
ever-changing situation of IoT environments.
The proposed solutions in all of these studies
have an individual optimization algorithm
dependency, which is not sufficiently resilient
in addressing new security threats in a timely
matter. Gaps in these fields are filled in this
proposed study, which implements a hybrid
security system based on CSA, SHA-256, and
ECC. In a difference compared to other
conventional methods, the adaptive nature of
CSA facilitates timely action on threats and
network alterations, and the integration of ECC
results in maximum cryptographic power

utilizing minimal resources.

Methodology Techniques Used

Limitations

Advantages of the work

Binary image
encryption [16]

Stream cipher, Ant
Colony Optimization
(ACO)

Visual Secret Sharing ECC with optimization
(VSS) [17] techniques

Limited to binary
images; lacks scalability  [oT environments.

Requires large numbers
of shares

Broader applicability in

Reduces computational
complexity and improves
efficiency.
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Image encoding [18]

Cryptanalysis of
encryption keys [19]

Energy optimization
for mobile devices
[20]

Image encoding with
chaotic map [21]

Enhanced
cryptographic security
[22]

Secure data hiding
[23]

Image encoding [24]

Cryptanalysis of
stream ciphers [25]

Big data access
control [26]

Cluster head selection
in HWSNs [27]

Smart irrigation
system security [28]

Improved ECC
encoding [29]

IoT attack detection
[30]

Smart home
automation analysis
[31]

Smart home
automation challenges
[32]

Genetic Algorithm
(GA), ECC

Genetic and Memetic
Algorithms

ABC algorithm
PSO-based chaotic map
PSO, Cuckoo Search,

ECC

Fruit Fly Optimization,
Seeker Algorithm

Adaptive Elephant
Herding Optimization

PSO techniques

ECC-based algorithm

Genetic Algorithm (GA)

ABC algorithm

Cuckoo Search
Algorithm

Firefly Optimization,
Global Search
Architecture and
technology review

Systematic analysis of
enabling technologies

High computational
costs

Key vulnerability
detection limited to
specific standards
Focus on energy
optimization, lacks
security

Limited security
coverage beyond image
encoding

Complexity in algorithm
integration

Risk of data loss in high-
stress scenarios

Scalability and real-time
adaptation issues

Identification of
loopholes without
solutions
Resource-intensive in
large datasets
Sub-optimal in complex
networks

Limited to
confidentiality and
authentication
Focused only on
performance
improvement

High computational
demand

Lack of strong security
focus

Limited to system
architecture insights

Efficient real-time key
generation with adaptive
performance.
Comprehensive
cryptographic key
generation.

Integrated security and
resource management.

Broader security scope for
IoT systems.

Simplified and scalable
cryptographic framework.

Secure data embedding
without quality
degradation.

Enhanced real-time
response and key
adaptability.

Resilient stream cipher
security mechanisms.

Lightweight ECC with
CSA for big data.
Optimized head selection
with extended network
lifetime.

Comprehensive loT
security framework.

Combines performance
with real-time security.

Real-time detection with
lower computational cost.
Integrates comprehensive
10T security solutions.

Practical implementation
with robust security.

CS and GA have been shown to be effective for
secure cryptographic key generation and
system optimization. CS is distinguished by its

capability for global search and convergence in

some search environments, while GA is
famous for its applicability and capability in

solving complex optimization problems.

However, these algorithms have severe
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drawbacks in real-time IoT environments

based on excessive computation and
susceptibility to premature convergence [16,
19, 22]. While CS and GA have an exploration
vs. exploitation trade-off, CSA attains a
balance between these, resulting in faster
overhead

convergence and  minimal

computations.

Chameleon Swarm Algorithm

The CSA is one of the nature-inspired
metaheuristic optimization algorithms
developed recently [12], which draws
inspiration from the adaptive and intelligent
behavior of chameleons while hunting for food
and/or survival. Chameleons possess a unique
combination of rapid adaptability, effective
camouflage, and precision in targeting prey.
CSA exploits the unique ability of chameleons
in balancing their exploration globally-

contrasting against local exploitation-for

X;(t+1) = X;(t) + r; - Camouflage(Xpes: (t)
RandomWalk

where r; and r, are random numbers between
0 and 1, used to control the influence of
camouflage and hunting behavior. Camouflage
represents the chameleon's ability to blend with

its environment, focusing on fine-tuning the

refining what is possibly the best-found
solution for solving different optimization
problems in a highly effective manner. Another
inspiration of CSA is found in the rapid
adaptation of chameleons to their environment.
Indeed, this algorithm dynamically tunes the
trade-off between its exploration and
exploitation phases, in that the moving pattern
of the chameleons, or the candidate solutions,
is updated differently in these two phases. The
proposed mathematical models present a
combination of equations defining both
random movements related to the exploration
phase and movements oriented towards
promising areas related to the exploitation one.
Let X;(t) represent the position of the it"
chameleon at iteration t, and Xj.z (t) denote
the best-known solution at that iteration. The

movement of each chameleon is controlled by

Eq. (1):

- X))+ 1y Hunting(Xprey(t) -Xi(t)+a-

(1)
solution by adjusting towards the best current
position. Hunting describes the aggressive
targeting of the best prey (solution), enhancing
exploitation by directing solutions towards

promising regions. RandomWalk introduces
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stochasticity to ensure diversity in the search
space, thus preventing premature convergence
to local optima. a is the adaptive factor that
controls the magnitude of random

perturbations based on the progress of the

search. The camouflage behavior of
chameleons is modeled through a balance
between exploration and exploitation. The
adaptation of solutions is mathematically

represented as Eq. (2):

Camouflage(Xpest, Xi) = ¥ * (Xpest — Xi) + (1 —¥) - LevyFlight(4) 2)

where y is a weighting factor controlling the
balance between direct exploitation of the best
solution and stochastic exploration. Levy
Flight represents a form of random walk
characterized by Lévy flights, which allow for
occasional large steps that help explore new
areas in the search space. A is a parameter
governing the step size of the Lévy flight,

facilitating long jumps to escape local optima.

_ S
Ty

where s and y are random variables sampled
from a normal distribution. § is the Lévy
distribution parameter, typically set between 1
and 2, ensuring a balance between short
exploratory movements and longer jumps.
Chameleons are known for their precise and
Hunting(Xprey, X;) = 6 - (Xprey — Xi)

where & is a factor that controls how

aggressively the algorithm exploits the best

solution. X

prey Tepresents the best-known

Similar to other algorithms using Lévy flights
[30], CSA employs this mechanism to enhance
exploration. Lévy flights enable occasional far-
reaching jumps, modeled using a power-law
distribution that favors small steps with rare
but large jumps, allowing the algorithm to
explore distant regions of the solution space.
The step length L for the Lévy flight can
defined as Eq. (3):

3)
focused approach to hunting prey. In CSA, this
behavior is mimicked by directing candidate
solutions towards the best-known solution or
prey. The hunting behavior introduces a
controlled bias towards the current best

solution in Eq. (4):

4
solution or a near-optimal point in the solution
space. To prevent the algorithm from getting
stuck in local optima, CSA incorporates a
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random walk component, which ensures

diversity and allows the algorithm to escape

RandomWalk = € - (X;anq(t) — X;(t))

where X ,,q 1S a randomly selected solution
from the population, and € is a small
perturbation factor that introduces
randomness. For highly effective
cryptographic key generation, particularly for
enhancing the security of systems, the CSA has

been used with ECC. By utilizing the CSA's

Ky

rivate = CSAXinitiar, N)

where X, 1S the initial population of
candidate solutions (chameleons). N represents
the number of iterations or chameleon
movements. CSA is a powerful algorithm that
solves complex optimization problems [33].
Adaptation is performed based on chameleon
behavioral traits, thereby offering effective
balancing  between exploration and
exploitation. By integrating Lévy flights, the
hunting of prey, and camouflage behavior, the
proposed algorithm will definitely work in
different areas of applications where high
unpredictability and robustness have to be
considered, as in security systems. The
application of CSA in key generation for
cryptographic systems, such as ECC, provides

better security with high performance and,

suboptimal regions. The random walk is

generated by Eq. (4).

“4)
adaptive hunting and camouflage mechanisms,
highly unpredictable private keys can be
generated, making it resistant to various types
of attacks, including brute-force and dictionary
attacks. In an encryption scheme using CSA

for key generation, the private key Kpiyace 18

generated by Eq. (5):

(5)
hence, makes secure communications possible
in IoT-based environments and other very
high-security applications.

1. Elliptic-Curve Cryptography

ECC is a modern cryptographic technique
that relies on the mathematics of elliptic
curves, which are algebraic structures defined
by equations over finite fields. By performing
mathematical operations on these curves, ECC
enables the secure encoding, encryption, and
decryption of data. This method is highly
efficient, offering strong security with smaller
key sizes compared to other cryptographic
algorithms, making it particularly useful in
environments with limited computational

resources, such as mobile devices and IoT
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applications. The main advantage of ECC lies

in its efficiency: strong security can be
achieved with relatively small key sizes
compared to other cr yptographic techniques.

The security of ECC is based on the hardness

y2=x3+ax+b

The points on the curve form a set denoted by

E(F,), and Q is one such point on the curve.

The ECC encryption process involves several

key steps:

1. Initialization: The algorithm is initialized
by setting parameters such as the elliptic
curve E, the base point Q, and the field p.
This step may include generating random
numbers or other required initial values.

2. Public Key Generation: A key pair
comprising a public key and a private key
is generated. The private key, x, is a
randomly selected number within the range

1 ton — 1 (where n is the order of Q). The

Ciphertext = Enc(data) = {

Here, r is a random number selected during the

encryption process.

Ciphertext, =7 -Q
Ciphertext, = data +r - H (7)

of'the elliptic curve discrete logarithm problem
(ECDLP) [13]. To implement ECC, two
constants, a and b, are selected from a finite

field F,, which defines an elliptic curve as

represented in Eq (6):

(6)
public key, H, is derived using the equation
H = x - Q. While the private key is used
for decryption, the public key is used for
encryption, ensuring the process remains
secure and computationally resistant to
deriving the private key from the public
key.

3. Encoding: In this step, plaintext data is
encrypted using the public key, then is first
converted into bits and mapped to points
(x,y) on the elliptic curve. These points
are then encrypted using the public key.
The ciphertext consists of two components,

as shown in Eq (7):

4. Decoding: The decryption process involves

recovering the original plaintext using the

private key, x, as shown in Eq (8):

Dec(Ciphertext) = Ciphertext, — x - Ciphertext, = data+7-H —x - (r- Q) = data (8)
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Decryption is a procedure that turns encrypted
data into its plaintext state in its native form.
The decryption is obtained with a private key
that makes it accessible to those with a valid
key. The procedure protects data and keeps it
confidential by not permitting unwarranted
parties from having access to valuable

information.

5. The Proposed Model: Chameleon Swarm

Algorithm for ECC-based Secure

Communication

In the proposed model, the CSA is
employed to generate a random private key for

ECC, ensuring secure data encoding and

f(Pr) = —h(Dec(CP,Pr),B)

In the proposed framework, CP denotes the
ciphertext generated after the encoding
process, while B represents the original
plaintext. =~ The function Dec(CP,Pr)
corresponds to the decrypted ciphertext, which
is derived using the private key Pr. h(x,y) is a
metric function designed to evaluate the
similarity or dissimilarity between the
decrypted text x and the original text y. The
primary objective of the CSA is to minimize
the discrepancy between the decrypted

plaintext and the original plaintext, thereby

decoding in IoT systems. The randomness of
the private key is critical to the security and
robustness of ECC, and CSA is introduced as
an optimization technique to improve the
quality of the key generation process. By using
CSA, the model aims to identify the optimal
private key (denoted as Pr) that maximizes the
accuracy and security of ECC-based
encryption and decryption. The fitness of a
generated private key is evaluated by
comparing the original plain text with the
decrypted ciphertext, ensuring that the private
key produces a result as close as possible to the
original message. The fitness function used in

the CSA optimization is defined as Eq. (9):
9

ensuring the accuracy and reliability of the
decoding process. This objective is formalized
as a minimization problem, where the inclusion
of a negative sign in the objective function
facilitates this transformation. Within this
framework, a smaller value of the fitness
function indicates a more optimal solution. The
steps comprising the proposed model are as
follows:
1. Initialization: The Chameleon Swarm
Algorithm begins by setting important

parameters, including the number of
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solutions or nests n, the size of each nest
m, the probability of discovering alien
solutions p,, the step size a, and the
maximum number of iterations.

Random Initialization of Private Keys:
Random private key candidates are
generated as binary sequences of length
256 bits (for ECC), representing the
possible  solutions  (nests).  These
candidates are evaluated based on their
ability to decode encrypted messages.

Key Generation and Optimization: New
key candidates are generated based on the
current best solution using a modified
version of the Lévy flight equation, except
for the best candidate, which remains
unchanged. If a new candidate is found to
perform better, it is selected, and the fitness
function is evaluated using the key and
ECC decryption.

Elimination of Poor Solutions: Bad
solutions or nests are discarded using a
probability p,, simulating the discovery of
alien solutions. If the fitness of a newly
generated solution is superior to the current
ones, the current solution is replaced.
Iterative Optimization: This process
continues for a predetermined number of
iterations or until the optimal private key

achieves the desired quality level. The

values of n, p,, and «a are fine-tuned
through experimentation to achieve the
best results in terms of computational
efficiency and security. The proposed
model incorporates ECC encoding and
decoding with additional cryptographic
functions for enhanced security. The

procedure works as shown in Figure (1)
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Figurel. Process diagram of the suggested framework

Public and Private Key Generation:
Using the CSA-optimized private key Pr,
a public key H is computed as Eq. (10),
where Q is a base point on the elliptic

curve.

H=Pr-Q (10)

Encryption: The plaintext is mapped onto
the elliptic curve and then encrypted using
the public key. A random number 7 is
selected to generate the ciphertext

components Eq. (11)

Ciphertext, = r - QCiphertext, =
data+7-H (11)

e Decoding: The recipient uses their private
key Pr to decrypt the ciphertext, reversing
the encryption process to retrieve the
original data. This is done by calculating

Eq. (12):

Dec(Ciphertext) = Ciphertext, — Pr -
Ciphertext, (12)

In a way to provide security for sent
information, a new model does a left-shift and
does an XOR on encrypted information. The
processes make it hard for an attacker to reverse
encrypting information. The secure

communication method consists in four steps:
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1. Encoding (Phase 1): The plaintext is

encrypted using ECC and the XOR
operation.

2. Encoding (Phase 2): A shift-left operation
is applied to further obfuscate the
encrypted data.

3. Decoding (Phase 1): The shift-left
operation is reversed before ECC
decryption.

4. Decoding (Phase 2): The XOR operation
is reversed to fully recover the original
plaintext.

By combining ECC with CSA and additional

cryptographic techniques, the proposed model

ensures secure and efficient communication in

IoT systems. The optimized private key

generation process guarantees high

randomness, enhancing the overall security of
the encrypted messages. This makes the model
suitable for IoT applications where data

confidentiality, integrity, and security are

critical.

6. Evaluation and Results

The provided experimental was utilizing the C#
programming paradigm in Microsoft Visual
Studio 2012 outfitted in a Windows 10
professional operating system. The central
process unit was an AMD®: E-350 processor
1.60 GHz, and 4 GB of RAM. The initial

population was randomly generated, with its

size dependent on the defined key length. The
key length used in this work was defined
through the random generation of integers in the
range 0 to 127, while the size of the initial
population is determined by that. In this way,
the performance of encoding and decoding was
systematically performed under the

experimental conditions described in this study.

6.1. Performance Analysis (Decoding and

Encoding Times)

This portion provides a detailed discussion
of the proposed model's encoding performance.
The parameters of its performance have been
illustrated in Figure 2, in which time taken for
encoding in milliseconds is illustrated along
various counts of iterations, in which an initial
population size of 25 is given. The figure clearly
illustrates a definite trend in data, which is such
that when iterations increase, time taken for
encoding continues reducing, ultimately
reaching a point of minimal time taken when
there are 100 iterations. The trend is indicative
of a situation in which successive optimization
of the proposed model is being conducted,
hence reducing overhead cost in computations
and maximizing processing efficiency. This
reduction of time taken for encoding can be of
great utility in actual usage in which time and
efficiency matter a great deal, so it can process

large datasets or data encryptions in a timely and
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hassle-free manner. Thus, results support the

capability of the proposed work in providing an
ideal solution for cryptographic purposes in

which time is of great issue. Execution, for
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instance, has recorded that in the case of file size
50,000 KB, for iterations of 10, 100, and 200,
4200, 3800, and 4350 milliseconds are spent,

respectively.
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Figure 2. Time taken for encoding based on the Figure 3. Decoding time as a function of the number
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Figure 4. Times on average for encoding and decoding at various iterations.

Contrarily, Figure 3 is a detailed breakdown of
the proposed model's decoding time, in
milliseconds, for different numbers of
iterations, when an initial population size of 25
is set. The figure illustrates a similar trend in the
case of decoding time compared to encoding
time based on differences in the number of
iterations. Interestingly, it is shown here that the

system is best when its decoding time is lower

compared to its encoding time, which makes its
total cryptographic process faster. With
minimal decoding time, its entire process of
encryption and decryption is faster, hence
making its system perform well in actual
applications, wherein there is a large amount of
data, which must be handled in a timely and
efficient manner. The result of this work is such

that the shortest time of decoding is reached
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when there are 150 iterations. For example, a

file of size 50,000 KB needed 700.012 ms in 10
iterations, 650.001 ms in 150 iterations, and
800.022 ms in 250 iterations. Figure 4 illustrates
the proposed model's mean time for encoding
and for decoding based on various numbers of
its iterations. The figure clearly indicates that
time for encoding is best in its 100th position,
which is its best point in the process. At this
point, time for encoding is minimal, which
indicates that the system is in a balance between
functionality and computation efficiency. In all,
hence, the proposed modeling shall make a
realistic modeling and functionality of data
encoding and data decryption process in a
greater appropriateness in challenging cases of
its requirements for its high levels of
performances and improved cryptographic
security. The results obtained through this
assessment confirm that the proposed model is
efficient in the processes of both encoding and
decoding. The iteration count gives a minimum
encoding time when set at 100, while for
minimum decoding time, the iteration count
works best when set at 150. Besides, given the
high execution time of this proposed model,
there is definitely an implication of significant
practical advantages, especially within areas
that involve large file sizes. In turn, this model

will contribute much with regard to securing

high performance in real-world data processing.
6.2. Comparison (Encoding and Decoding

Based on AES-RSA and Proposed Model)

The following is a comparative study of this
proposed system and the AES-RSA
cryptographic system [34] in Table 2. The
study is conducted based on a comparison of
encoding time and decryption time for
different input file sizes and numbers of
iterations. The results point out differences in
the performance of the two systems, noting in
particular the speed and efficiency in the
process of decryption and encryption. For the
suggested model, time for encoding and
decoding is quantified under various scenarios
of iterations, depending on parameters that
have been optimized in a quest for identifying
best operation points. The suggested model, in
a comparison of AES-RSA, demonstrates
improvements in some instances, for example,
in its time for decryption and encoding. The
enhanced performance is clearly apparent
when the best numbers of iterations for the
model, in which its time for encoding is
minimized, is reached, though this is attained
without compromising the security of the
system. Table 2 serves to further illustrate the
relative strengths and weaknesses of each of
these methods, producing insights on the

applicability and utility of the proposed system
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in cryptographic contexts. A total of 11

different-length files, based on a key size of
128 bits, were utilized in this study utilizing
Visual Studio. The results show that the
proposed model outperforms AES-RSA with a
huge difference, especially for the case of 50
MB. For AES-RSA,
5.85081221 seconds, while the proposed
model encoded it in 3.897667621 seconds,

encoding  took

which is a huge difference in processing time.
RSA is a widely known public-key
cryptosystem that has been viewed as quite

resistant to attacks, but its large key size

renders the system computationally intensive
and resource-consuming. In turn, the proposed
model uses ECC, which allows for more
efficiency since, for comparative security
levels, ECC requires much smaller key sizes.
This efficiency in computation means faster
computation speed and lower usage of
memory. Hence, ECC is perfectly suited to
devices with low computational resources.
This would, in turn, mean quicker

computations for the proposed model, making

it best suited for real-time applications.

Table 2. An evaluation of the suggested model in contrast to AES-RSA.

Input File Size (MB) RSA-AES (second)

Proposed Model (second)

Encryption Decryption  Encryption  Decryption
1 1.03309147 16.19099792  0.446219871  0.604796895
5 2.10843833  21.146642 1.088401662 1.198846913
10 2.86677779  23.72389669 1.597954877 1.609685631
15 3.43121086 25.37474864 2.000422897 1.912506901
20 3.89786828 26.61525524 2.346063845 2.16131668
25 4.30311578  27.61908005 2.654785801 2.376391037
30 4.6653103 28.46730536  2.936953916 2.567913253
35 4.99522496  29.20476144 3.198797134  2.741836407
40 5.29980983  29.85899916  3.444412382 2.901988874
45 5.58385215 30.44823232 3.676668189 3.051000595
50 5.85081221 30.98516549 3.897667621 3.190768115

Figure 5 shows the encoding time of the
proposed model in comparison with AES-RSA.
The results pointed out that the proposed model

has a much lower encoding time and reduced
the execution time by about 33.38% when
encoding the file size to 50 MB. This high
improvement indicates that the proposed model

is efficient and further vindicates the capability
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of the model to perform better than AES-RSA.

The results hereby establish the proposed model

as a better option than the current approach of
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Figure 6 illustrates a direct comparison of the
decoding times between the proposed model
and the AES-RSA encryption scheme. The
results clearly indicate that the proposed model
outperforms AES-RSA in terms of speed. This
performance advantage can be attributed to the
inherent computational overhead associated
with the RSA algorithm. Specifically, RSA
suffers from slow processing times due to the

extensive computational requirements for

Figure 8. Comparison of decoding times for the
proposed model, GA, and FA.

encoding and decoding. These operations
involve modular exponentiation and calculation
of the private key exponent, which are
computationally intensive operations. Thus,
RSA involves a large number of computations,
which makes decryption processing time quite
time-consuming. For this reason, unlike it, the
system proposed here makes decryptions in
milliseconds, owing to its optimization of vital

operations. This makes it a more effective
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solution for time-critical scenarios. The above

difference highlights the potential of this
proposed system in making cryptographic
systems more effective, particularly for
environments in which data decryption must be
conducted quickly. The proposed model
provides speeds during processing because
computations set in its encoding and decoding
processes are very few compared to RSA. Thus,
the proposed model provides Dbetter
performance for these applications where fast
and efficient cryptographic processing is
required. However, the proposed model, at a
file size of 50 MB, recorded approximately
89.75% encoding execution time reduction
against AES-RSA. Thus, it became very much
proven that this preferred model outpaces AES-
RSA at the highest grade in terms of efficiency
by its operational processes concerning both
encoding and decoding of data. Integration with
ECC reduces the computational overhead;
therefore, it increases the speed in the proposed
model. Therefore, this is very suitable for real-
time applications and also for those applications
under constrained resources.

6.3. Comparison of Encoding and Decoding
Times Based on FA, GA, and the Proposed
Model

This  section provides a detailed

comparative analysis of two well-known
metaheuristic algorithms, the FA [35] and the
GA [36], alongside the proposed model for
generating ECC keys. The analysis evaluates
the performance, efficiency, and effectiveness
of these algorithms in the context of ECC key
generation, highlighting their strengths and
weaknesses in comparison to the novel
approach being proposed. Both FA and GA
employ selection, crossover, and mutation
operators to optimize ECC solutions. The
results, summarized in Table 3, demonstrate
that the proposed CSA surpasses FA and GA
in terms of encoding and decoding efficiency.
Additionally, CSA achieves superior solutions
due to its enhanced search efficiency and
stronger convergence capabilities. The
concrete outcome of the experiment indicates
that the proposed CSA achieves considerably
quicker encoding and decoding times, followed
by FA, compared with GA. For example, the
encoding of a 2500 KB file took 352.9763444
ms for both the SHA-256-ECC-FA and SHA-
256-ECC-GAmodels, with decoding taking
3459605204 ms and 359.5499456 ms
correspondingly. In contrast, the proposed
model shows a much-reduced encoding time of
6.27047476 ms and decoding time of
7.076964611 ms.
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Table 3. Comparison of Encoding and Decoding Times: Proposed Model, FA, and GA

File Size
(KB) SHA-256- ECC- FA SHA-256- ECC- GA Proposed Model
Encryption Decryption Encryption Decryption Encryption Decryption
86.4667614  83.3506630 93.4718405  89.2556626  77.3525696
250 7 9 6 5 7 62.79172011
132.052715  127.932522  141.143878  135.767583  120.022779
500 4 2 7 4 5 100.8356139
169.169027 179.621934  173.521397  155.191543
750 9 164371322 5 9 3 133.0293592
201.671941  196.359928  213.129369 206.517280  186.231273
1000 4 5 9 2 9 161.9293278
231.125284  225.400377  243.367395 214.522540
1250 1 2 8 236.373572 8 188.6035425
258.356264  252.288788  271.231810 263.944943  240.800279
1500 6 4 2 7 2 213.6284382
283.868073  277.510188  297.265628  289.750650  265.513739
1750 3 3 7 1 4 237.3601233
307.994968  301.387175 321.828539  314.135274  288.962541
2000 7 5 4 2 4 260.0381572
330.972960 345.173895  337.341907
2250 3 324.147769 6 9 311.358953  281.8335025
352.976344  345.960520 367.488411 359.549945 332.860197
2500 4 4 3 6 4 302.8735949
2354.65434  2298.70925  2473.72270 2406.15821 2192.81641
13750 2 4 5 8 8 1942.92338
5.83949828 5.98161771  5.55842414  5.71450368
Throughput 9 6 1 4 6.27047476  7.076964611

within the CSA algorithm framework.

The results in Figures 7 and 8 once again
confirm that the proposed model outperforms

the existing methods regarding execution time

6.4. Throughput

and encoding efficiency. Hence, the proposed

In this paper, we have measured the proposed

model provides better benefits compared with

model's performance in

conventional approaches toward key generation

its  velocities

encoding and decoding, which have been
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estimated by Egs. (13) and (14) [37]. The higher

these velocities, the better its performance. The
proposed model is compared on a file of size
13,750 KB and compared with SHA-256-ECC-
FA and SHA-256-ECC-GA models. The
proposed model encodes and decodes in
6.27047476 ms and 7.076964611 ms,

respectively, which is a result in a favorable

direction compared to SHA-256-ECC-
FA(encoding time = 5.839498289 ms, time of
decoding = 5.981617716 ms) and SHA-256-
ECC-GA(encoding time = 5.558424141 ms,
time of decoding = 5.714503684 ms). The
results indicate the enhanced efficiency of the

proposed model in its encoding and decoding.

En — coding Throughput = },(Input File)/ Y.(En — coding Time) (12)
De — coding Throughput = Y.(Input File)/ Y.(De — coding Time) (13)

It attained an encoding throughput of virtually
7.38% higher and a decoding throughput of
virtually 18.31% higher compared to the model
identified as ECC-FA-SHA-256. The levels of
its encoding and decoding throughput were also
virtually 12.81% and 23.84% higher,
respectively, compared to the model identified
as ECC-GA-SHA-256. The results clearly
demonstrate that the proposed model is indeed
more efficient and effective in doing faster and
secure encoding and decoding compared to

other models.

Conclusion

Nowadays, [oT finds a deep root in
everyday life. However, ensuring security for
IoT devices themselves is still a big challenge
due to their limited computation and storage
resources. [oT devices send messages, images,

and audio; thus, there is a dire need for

confidentiality and integrity. This problem led
to the finding that some security algorithms are
more efficient as compared to others. The goal
of this paper is to propose a new scheme for
securing the data transmitted by resource-
constrained loT-based door locks with the aid of
ECC and SHA-256 integrated with CSA.
Accordingly, this mechanism is developed in
such a manner that the operations of encoding
and decoding can be performed with the least
time consumption. The performed simulations
showed optimum performance at 100, and the
proposed model achieved optimal performance
at 150 iterations for both encoding and
decoding. When compared to the other
methods, the proposed model demonstrated
significant improvements in throughput.
Specifically, the encoding throughput was
approximately 7.38% higher, and the decoding
throughput was about 18.31% better than the
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SHA-256-ECC-FA model. Additionally, the

proposed model outperformed the SHA-256-
ECC-GA model with encoding and decoding
throughputs that were approximately 12.81%
and 23.84% higher, respectively. These results
underscore the proposed model's superior
efficiency in both encoding and decoding
processes, highlighting its potential for faster
data handling in cryptographic applications.
These affirm that the proposed approach
enhances both speed and security. The focus in
the future will be on investigation into
alternative private key generation methods that
also enhance the model's flexibility as well as

robustness.
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