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Abstract.  

The rapid proliferation of Internet of Things (IoT) devices, spanning from smart home appliances to 

wearable technology, has significantly heightened concerns regarding security and privacy across 

various sectors. As cyber threats become increasingly sophisticated and frequent, the urgency for 

robust, adaptable security frameworks within IoT infrastructures is more critical than ever. This study 

introduces a cutting-edge security framework tailored for IoT-based smart door locks, which employs 

a novel integration of the Chameleon Swarm Algorithm (CSA), Secure Hash Algorithm SHA-256, 

and Elliptic Curve Cryptography (ECC). We conducted comprehensive performance evaluations in a 

Microsoft Visual Studio 2012 environment, where our proposed framework was benchmarked against 

conventional hybrid methods based on Genetic Algorithms (GA) and Firefly Algorithm such as - 

SHA-256-ECC-GA and SHA-256-ECC-FA. These evaluations demonstrated that our framework 

significantly enhances security performance, achieving up to 15.17% faster encoding times at 100 

iterations and markedly quicker decoding times at 150 iterations compared to the benchmark 

techniques. The improvements confirm the framework’s effectiveness in not only bolstering IoT 

device security but also in its potential for scalability and adaptability across diverse IoT applications.  

 

Keywords: Information Security; Chameleon Swarm Algorithm (CSA); Internet of Things (IoT) 
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Introduction 

The Internet of Things (IoT) has become a 

transformative force in modern technology, 

interconnecting an ever-growing number of 

devices from home appliances and vehicles to 

healthcare systems and industrial machinery 

[1-3]. This technological evolution is not just 

reshaping consumer behavior but also 

redefining the operational paradigms of 

numerous industries. As these devices 

proliferate, they form a network of 

interconnected digital entities that create and 

share data continuously. While this integration 

promises enhanced operational efficiency and 

access to real-time data, it also introduces 

significant security vulnerabilities that could 

be exploited to cause widespread harm. In the 

context of smart home technology, one of the 

most sensitive points of vulnerability lies in 

IoT-based smart door locks. These devices, 

pivotal in ensuring physical security, face 

unique challenges as they blend digital and 

mechanical functionalities. Given the potential 

consequences of security breaches, which can 

range from unauthorized home entry to data 

theft, the need for robust security measures is 

not merely beneficial but critical [4, 5]. 

Addressing these concerns, our paper 

introduces a novel security framework that 

integrates the CSA, SHA-256 hash function, 

and ECC. Each of these technologies has been 

specifically chosen for its strengths in securing 

digital communications and enhancing the 

integrity and confidentiality of data [6, 7]. 

CSA, for example, offers adaptive solutions 

that are highly effective in complex, dynamic 

environments like those found in IoT systems. 

SHA-256 provides a strong hashing 

mechanism ensuring data integrity and 

verifying authenticity. ECC is employed for its 

strength in creating secure cryptographic keys 

with relatively smaller key sizes, which is ideal 

for the resource-constrained environments 

typical of many IoT devices. The integration of 

these technologies aims to fortify the security 

of smart door locks significantly, thereby 

reducing the risk of unauthorized access while 

maintaining user convenience and efficiency. 

This paper not only discusses the technical 

implementation of these algorithms but also 

evaluates their effectiveness in real-world 

scenarios. Comparative analysis against 

existing security measures such as SHA-256-

ECC-GA and SHA-256-ECC-Fais provided, 

illustrating our framework's improvements in 

encoding and decoding times, which are 
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critical for performance in real-time 

applications [8-10]. The findings and 

methodologies can be adapted for other IoT 

devices that require high levels of security, 

from wearable health monitors to automotive 

systems. By exploring the scalability and 

adaptability of the proposed security 

framework, this research contributes to the 

ongoing discourse on IoT security, proposing 

solutions that could be pivotal in securing a 

wide array of devices against an ever-evolving 

landscape of cyber threats [11-15].   This paper 

is structured as follows: Section 2 discusses 

related works. Section 3 explains the CSA, 

while Section 4 covers ECC. Section 5 

proposes the CSA-ECC secure communication 

model. Section 6 evaluates its performance, 

and Section 7 concludes the study. 

Related Works  

       From a detailed literature survey as shown 

in Table 1, it is clearly visible that there is a 

great advancement in securing IoT based on 

different cryptographic and optimization 

strategies. However, all of these studies focus 

on individual aspects of reducing resource 

utilization, secure data concealment, or power 

optimization rather than delivering an end-to-

end security solution capable of addressing the 

ever-changing situation of IoT environments. 

The proposed solutions in all of these studies 

have an individual optimization algorithm 

dependency, which is not sufficiently resilient 

in addressing new security threats in a timely 

matter. Gaps in these fields are filled in this 

proposed study, which implements a hybrid 

security system based on CSA, SHA-256, and 

ECC. In a difference compared to other 

conventional methods, the adaptive nature of 

CSA facilitates timely action on threats and 

network alterations, and the integration of ECC 

results in maximum cryptographic power 

utilizing minimal resources.  

  

Table 1. Comprehensive Comparison Table 

Methodology Techniques Used Limitations Advantages of  the work 

Binary image 

encryption [16] 

Stream cipher, Ant 

Colony Optimization 

(ACO) 

Limited to binary 

images; lacks scalability 

Broader applicability in 

IoT environments. 

Visual Secret Sharing 

(VSS) [17] 

ECC with optimization 

techniques 

Requires large numbers 

of shares 

Reduces computational 

complexity and improves 

efficiency. 
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Image encoding [18] Genetic Algorithm 

(GA), ECC 

High computational 

costs 

Efficient real-time key 

generation with adaptive 

performance. 

Cryptanalysis of 

encryption keys [19] 

Genetic and Memetic 

Algorithms 

Key vulnerability 

detection limited to 

specific standards 

Comprehensive 

cryptographic key 

generation. 

Energy optimization 

for mobile devices 

[20] 

ABC algorithm Focus on energy 

optimization, lacks 

security 

Integrated security and 

resource management. 

Image encoding with 

chaotic map [21] 

PSO-based chaotic map Limited security 

coverage beyond image 

encoding 

Broader security scope for 

IoT systems. 

Enhanced 

cryptographic security 

[22] 

PSO, Cuckoo Search, 

ECC 

Complexity in algorithm 

integration 

Simplified and scalable 

cryptographic framework. 

Secure data hiding 

[23] 

Fruit Fly Optimization, 

Seeker Algorithm 

Risk of data loss in high-

stress scenarios 

Secure data embedding 

without quality 

degradation. 

Image encoding [24] Adaptive Elephant 

Herding Optimization 

Scalability and real-time 

adaptation issues 

Enhanced real-time 

response and key 

adaptability. 

Cryptanalysis of 

stream ciphers [25] 

PSO techniques Identification of 

loopholes without 

solutions 

Resilient stream cipher 

security mechanisms. 

Big data access 

control [26] 

ECC-based algorithm Resource-intensive in 

large datasets 

Lightweight ECC with 

CSA for big data. 

Cluster head selection 

in HWSNs [27] 

Genetic Algorithm (GA) Sub-optimal in complex 

networks 

Optimized head selection 

with extended network 

lifetime. 

Smart irrigation 

system security [28] 

ABC algorithm Limited to 

confidentiality and 

authentication 

Comprehensive IoT 

security framework. 

Improved ECC 

encoding [29] 

Cuckoo Search 

Algorithm 

Focused only on 

performance 

improvement 

Combines performance 

with real-time security. 

IoT attack detection 

[30] 

Firefly Optimization, 

Global Search 

High computational 

demand 

Real-time detection with 

lower computational cost. 

Smart home 

automation analysis 

[31] 

Architecture and 

technology review 

Lack of strong security 

focus 

Integrates comprehensive 

IoT security solutions. 

Smart home 

automation challenges 

[32] 

Systematic analysis of 

enabling technologies 

Limited to system 

architecture insights 

Practical implementation 

with robust security. 

 

CS and GA have been shown to be effective for 

secure cryptographic key generation and 

system optimization. CS is distinguished by its 

capability for global search and convergence in 

some search environments, while GA is 

famous for its applicability and capability in 

solving complex optimization problems. 

However, these algorithms have severe 
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drawbacks in real-time IoT environments 

based on excessive computation and 

susceptibility to premature convergence [16, 

19, 22]. While CS and GA have an exploration 

vs. exploitation trade-off, CSA attains a 

balance between these, resulting in faster 

convergence and minimal overhead 

computations.  

 

Chameleon Swarm Algorithm 

 The CSA is one of the nature-inspired 

metaheuristic optimization algorithms 

developed recently [12], which draws 

inspiration from the adaptive and intelligent 

behavior of chameleons while hunting for food 

and/or survival. Chameleons possess a unique 

combination of rapid adaptability, effective 

camouflage, and precision in targeting prey. 

CSA exploits the unique ability of chameleons 

in balancing their exploration globally-

contrasting against local exploitation-for 

refining what is possibly the best-found 

solution for solving different optimization 

problems in a highly effective manner. Another 

inspiration of CSA is found in the rapid 

adaptation of chameleons to their environment. 

Indeed, this algorithm dynamically tunes the 

trade-off between its exploration and 

exploitation phases, in that the moving pattern 

of the chameleons, or the candidate solutions, 

is updated differently in these two phases. The 

proposed mathematical models present a 

combination of equations defining both 

random movements related to the exploration 

phase and movements oriented towards 

promising areas related to the exploitation one. 

Let 𝑋𝑖(𝑡) represent the position of the 𝑖𝑡ℎ 

chameleon at iteration 𝑡, and 𝑋𝑏𝑒𝑠𝑡(𝑡) denote 

the best-known solution at that iteration. The 

movement of each chameleon is controlled by 

Eq. (1 ): 

 

 

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑟1 ⋅ Camouflage(𝑋𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑖(𝑡)) + 𝑟2 ⋅ Hunting(𝑋prey(𝑡) − 𝑋𝑖(𝑡)) + 𝛼 ⋅

RandomWalk                                                                                                                                (1)  

where 𝑟1 and 𝑟2 are random numbers between 

0 and 1, used to control the influence of 

camouflage and hunting behavior. Camouflage 

represents the chameleon's ability to blend with 

its environment, focusing on fine-tuning the 

solution by adjusting towards the best current 

position. Hunting describes the aggressive 

targeting of the best prey (solution), enhancing 

exploitation by directing solutions towards 

promising regions. RandomWalk introduces 
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stochasticity to ensure diversity in the search 

space, thus preventing premature convergence 

to local optima. 𝛼 is the adaptive factor that 

controls the magnitude of random 

perturbations based on the progress of the 

search. The camouflage behavior of 

chameleons is modeled through a balance 

between exploration and exploitation. The 

adaptation of solutions is mathematically 

represented as Eq. (2): 

 

 

Camouflage(𝑋best, 𝑋𝑖) = 𝛾 ⋅ (𝑋best − 𝑋𝑖) + (1 − 𝛾) ⋅ LevyFlight(𝜆)                      (2) 

where 𝛾 is a weighting factor controlling the 

balance between direct exploitation of the best 

solution and stochastic exploration. Levy 

Flight represents a form of random walk 

characterized by Lévy flights, which allow for 

occasional large steps that help explore new 

areas in the search space. 𝜆 is a parameter 

governing the step size of the Lévy flight, 

facilitating long jumps to escape local optima. 

Similar to other algorithms using Lévy flights 

[30], CSA employs this mechanism to enhance 

exploration. Lévy flights enable occasional far-

reaching jumps, modeled using a power-law 

distribution that favors small steps with rare 

but large jumps, allowing the algorithm to 

explore distant regions of the solution space. 

The step length 𝐿 for the Lévy flight can 

defined as Eq. (3): 

 

𝐿 =
𝑠

|𝑦|1/𝛽                                                               (3)

where 𝑠 and 𝑦 are random variables sampled 

from a normal distribution. 𝛽 is the Lévy 

distribution parameter, typically set between 1 

and 2, ensuring a balance between short 

exploratory movements and longer jumps. 

Chameleons are known for their precise and 

focused approach to hunting prey. In CSA, this 

behavior is mimicked by directing candidate 

solutions towards the best-known solution or 

prey. The hunting behavior introduces a 

controlled bias towards the current best 

solution in Eq. (4): 

 

Hunting(𝑋prey, 𝑋𝑖) = 𝛿 ⋅ (𝑋prey − 𝑋𝑖)                                      (4) 

where 𝛿 is a factor that controls how 

aggressively the algorithm exploits the best 

solution. 𝑋prey represents the best-known 

solution or a near-optimal point in the solution 

space. To prevent the algorithm from getting 

stuck in local optima, CSA incorporates a 
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random walk component, which ensures 

diversity and allows the algorithm to escape 

suboptimal regions. The random walk is 

generated by Eq. (4). 

 

RandomWalk = 𝜖 ⋅ (𝑋rand(𝑡) − 𝑋𝑖(𝑡))                                            (4) 

where 𝑋rand is a randomly selected solution 

from the population, and 𝜖 is a small 

perturbation factor that introduces 

randomness. For highly effective 

cryptographic key generation, particularly for 

enhancing the security of systems, the CSA has 

been used with ECC. By utilizing the CSA's 

adaptive hunting and camouflage mechanisms, 

highly unpredictable private keys can be 

generated, making it resistant to various types 

of attacks, including brute-force and dictionary 

attacks. In an encryption scheme using CSA 

for key generation, the private key 𝐾private is 

generated by Eq. (5): 

 

𝐾private = 𝐶𝑆𝐴(𝑋initial, 𝑁)                                          (5) 

where 𝑋initial is the initial population of 

candidate solutions (chameleons). 𝑁 represents 

the number of iterations or chameleon 

movements. CSA is a powerful algorithm that 

solves complex optimization problems [33]. 

Adaptation is performed based on chameleon 

behavioral traits, thereby offering effective 

balancing between exploration and 

exploitation. By integrating Lévy flights, the 

hunting of prey, and camouflage behavior, the 

proposed algorithm will definitely work in 

different areas of applications where high 

unpredictability and robustness have to be 

considered, as in security systems. The 

application of CSA in key generation for 

cryptographic systems, such as ECC, provides 

better security with high performance and, 

hence, makes secure communications possible 

in IoT-based environments and other very 

high-security applications. 

1. Elliptic-Curve Cryptography 

 

      ECC is a modern cryptographic technique 

that relies on the mathematics of elliptic 

curves, which are algebraic structures defined 

by equations over finite fields. By performing 

mathematical operations on these curves, ECC 

enables the secure encoding, encryption, and 

decryption of data. This method is highly 

efficient, offering strong security with smaller 

key sizes compared to other cryptographic 

algorithms, making it particularly useful in 

environments with limited computational 

resources, such as mobile devices and IoT 
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applications.  The main advantage of ECC lies 

in its efficiency: strong security can be 

achieved with relatively small key sizes 

compared to other cr yptographic techniques. 

The security of ECC is based on the hardness 

of the elliptic curve discrete logarithm problem 

(ECDLP) [13]. To implement ECC, two 

constants, 𝑎 and 𝑏, are selected from a finite 

field 𝐹𝑝, which defines an elliptic curve as 

represented in Eq (6): 

 

 

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏                                                                                                                                       (6) 

The points on the curve form a set denoted by 

𝐸(𝐹𝑝), and 𝑄 is one such point on the curve. 

The ECC encryption process involves several 

key steps: 

1. Initialization: The algorithm is initialized 

by setting parameters such as the elliptic 

curve 𝐸, the base point 𝑄, and the field 𝑝. 

This step may include generating random 

numbers or other required initial values. 

2. Public Key Generation: A key pair 

comprising a public key and a private key 

is generated. The private key, 𝑥, is a 

randomly selected number within the range 

1 to 𝑛 − 1 (where 𝑛 is the order of 𝑄). The 

public key, 𝐻, is derived using the equation 

𝐻 = 𝑥 ⋅ 𝑄. While the private key is used 

for decryption, the public key is used for 

encryption, ensuring the process remains 

secure and computationally resistant to 

deriving the private key from the public 

key. 

3. Encoding: In this step, plaintext data is 

encrypted using the public key, then is first 

converted into bits and mapped to points 

(𝑥, 𝑦) on the elliptic curve. These points 

are then encrypted using the public key. 

The ciphertext consists of two components, 

as shown in Eq (7): 

       Ciphertext = Enc(data) = {
Ciphertext

1
= 𝑟 ⋅ 𝑄

Ciphertext
2

= data + 𝑟 ⋅ 𝐻
                                                                 (7) 

 

Here, 𝑟 is a random number selected during the 

encryption process. 

4. Decoding: The decryption process involves 

recovering the original plaintext using the 

private key, 𝑥, as shown in Eq (8): 

 

Dec(Ciphertext) = Ciphertext
2

− 𝑥 ⋅ Ciphertext
1

= data + 𝑟 ⋅ 𝐻 − 𝑥 ⋅ (𝑟 ⋅ 𝑄) = data (8) 
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Decryption is a procedure that turns encrypted 

data into its plaintext state in its native form. 

The decryption is obtained with a private key 

that makes it accessible to those with a valid 

key. The procedure protects data and keeps it 

confidential by not permitting unwarranted 

parties from having access to valuable 

information. 

5. The Proposed Model: Chameleon Swarm 

Algorithm for ECC-based Secure 

Communication 

In the proposed model, the CSA is 

employed to generate a random private key for 

ECC, ensuring secure data encoding and 

decoding in IoT systems. The randomness of 

the private key is critical to the security and 

robustness of ECC, and CSA is introduced as 

an optimization technique to improve the 

quality of the key generation process. By using 

CSA, the model aims to identify the optimal 

private key (denoted as 𝑃𝑟) that maximizes the 

accuracy and security of ECC-based 

encryption and decryption. The fitness of a 

generated private key is evaluated by 

comparing the original plain text with the 

decrypted ciphertext, ensuring that the private 

key produces a result as close as possible to the 

original message. The fitness function used in 

the CSA optimization is defined as Eq. (9): 

𝑓(𝑃𝑟) = −ℎ(𝐷𝑒𝑐(𝐶𝑃, 𝑃𝑟), 𝐵)                                    (9) 

 

In the proposed framework, CP denotes the 

ciphertext generated after the encoding 

process, while B represents the original 

plaintext. The function 𝐷𝑒𝑐(𝐶𝑃, 𝑃𝑟) 

corresponds to the decrypted  ciphertext, which 

is derived using the private key 𝑃𝑟. ℎ(𝑥, 𝑦) is a 

metric function designed to evaluate the 

similarity or dissimilarity between the 

decrypted text 𝑥 and the original text 𝑦. The 

primary objective of the CSA is to minimize 

the discrepancy between the decrypted 

plaintext and the original plaintext, thereby 

ensuring the accuracy and reliability of the 

decoding process. This objective is formalized 

as a minimization problem, where the inclusion 

of a negative sign in the objective function 

facilitates this transformation. Within this 

framework, a smaller value of the fitness 

function indicates a more optimal solution. The 

steps comprising the proposed model are as 

follows: 

1. Initialization: The Chameleon Swarm 

Algorithm begins by setting important 

parameters, including the number of 
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solutions or nests 𝑛, the size of each nest 

𝑚, the probability of discovering alien 

solutions 𝑝𝑎, the step size 𝛼, and the 

maximum number of iterations. 

2. Random Initialization of Private Keys: 

Random private key candidates are 

generated as binary sequences of length 

256 bits (for ECC), representing the 

possible solutions (nests). These 

candidates are evaluated based on their 

ability to decode encrypted messages. 

3. Key Generation and Optimization: New 

key candidates are generated based on the 

current best solution using a modified 

version of the Lévy flight equation, except 

for the best candidate, which remains 

unchanged. If a new candidate is found to 

perform better, it is selected, and the fitness 

function is evaluated using the key and 

ECC decryption. 

4. Elimination of Poor Solutions: Bad 

solutions or nests are discarded using a 

probability 𝑝𝑎, simulating the discovery of 

alien solutions. If the fitness of a newly 

generated solution is superior to the current 

ones, the current solution is replaced. 

5. Iterative Optimization: This process 

continues for a predetermined number of 

iterations or until the optimal private key 

achieves the desired quality level. The 

values of 𝑛, 𝑝𝑎, and  𝛼 are fine-tuned 

through experimentation to achieve the 

best results in terms of computational 

efficiency and security.  The proposed 

model incorporates ECC encoding and 

decoding with additional cryptographic 

functions for enhanced security. The 

procedure works as shown in Figure (1) 
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Figure1. Process diagram of the suggested framework 

 

• Public and Private Key Generation: 

Using the CSA-optimized private key 𝑃𝑟, 

a public key 𝐻 is computed as Eq. (10),  

where 𝑄 is a base point on the elliptic 

curve. 

𝐻 = 𝑃𝑟 ⋅ 𝑄                                (10)  

 

• Encryption: The plaintext is mapped onto 

the elliptic curve and then encrypted using 

the public key. A random number 𝑟 is 

selected to generate the ciphertext 

components Eq. (11) 

Ciphertext
1

= 𝑟 ⋅ 𝑄Ciphertext
2

=

data + 𝑟 ⋅ 𝐻                           (11) 

 

• Decoding: The recipient uses their private 

key 𝑃𝑟 to decrypt the ciphertext, reversing 

the encryption process to retrieve the 

original data. This is done by calculating 

Eq. (12): 

Dec(Ciphertext) = Ciphertext
2

− 𝑃𝑟 ⋅

Ciphertext
1
                          (12) 

In a way to provide security for sent 

information, a new model does a left-shift and 

does an XOR on encrypted information. The 

processes make it hard for an attacker to reverse 

encrypting information. The secure 

communication method consists in four steps: 
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1. Encoding (Phase 1): The plaintext is 

encrypted using ECC and the XOR 

operation. 

2. Encoding (Phase 2): A shift-left operation 

is applied to further obfuscate the 

encrypted data. 

3. Decoding (Phase 1): The shift-left 

operation is reversed before ECC 

decryption. 

4. Decoding (Phase 2): The XOR operation 

is reversed to fully recover the original 

plaintext. 

By combining ECC with CSA and additional 

cryptographic techniques, the proposed model 

ensures secure and efficient communication in 

IoT systems. The optimized private key 

generation process guarantees high 

randomness, enhancing the overall security of 

the encrypted messages. This makes the model 

suitable for IoT applications where data 

confidentiality, integrity, and security are 

critical. 

6. Evaluation and Results 

The provided experimental was utilizing the C# 

programming paradigm in Microsoft Visual 

Studio 2012 outfitted in a Windows 10 

professional operating system. The central 

process unit was an AMD®: E-350 processor 

1.60 GHz, and 4 GB of RAM. The initial 

population was randomly generated, with its 

size dependent on the defined key length. The 

key length used in this work was defined 

through the random generation of integers in the 

range 0 to 127, while the size of the initial 

population is determined by that. In this way, 

the performance of encoding and decoding was 

systematically performed under the 

experimental conditions described in this study. 

6.1. Performance Analysis (Decoding and 

Encoding Times) 

This portion provides a detailed discussion 

of the proposed model's encoding performance. 

The parameters of its performance have been 

illustrated in Figure 2, in which time taken for 

encoding in milliseconds is illustrated along 

various counts of iterations, in which an initial 

population size of 25 is given. The figure clearly 

illustrates a definite trend in data, which is such 

that when iterations increase, time taken for 

encoding continues reducing, ultimately 

reaching a point of minimal time taken when 

there are 100 iterations. The trend is indicative 

of a situation in which successive optimization 

of the proposed model is being conducted, 

hence reducing overhead cost in computations 

and maximizing processing efficiency. This 

reduction of time taken for encoding can be of 

great utility in actual usage in which time and 

efficiency matter a great deal, so it can process 

large datasets or data encryptions in a timely and 
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hassle-free manner. Thus, results support the 

capability of the proposed work in providing an 

ideal solution for cryptographic purposes in 

which time is of great issue. Execution, for 

instance, has recorded that in the case of file size 

50,000 KB, for iterations of 10, 100, and 200, 

4200, 3800, and 4350 milliseconds are spent, 

respectively. 

 
Figure 2. Time taken for encoding based on the 

number of iterations. 

 
Figure 3. Decoding time as a function of the number 

of iterations. 

 

Figure 4. Times on average for encoding and decoding at various iterations. 

Contrarily, Figure 3 is a detailed breakdown of 

the proposed model's decoding time, in 

milliseconds, for different numbers of 

iterations, when an initial population size of 25 

is set. The figure illustrates a similar trend in the 

case of decoding time compared to encoding 

time based on differences in the number of 

iterations. Interestingly, it is shown here that the 

system is best when its decoding time is lower 

compared to its encoding time, which makes its 

total cryptographic process faster. With 

minimal decoding time, its entire process of 

encryption and decryption is faster, hence 

making its system perform well in actual 

applications, wherein there is a large amount of 

data, which must be handled in a timely and 

efficient manner. The result of this work is such 

that the shortest time of decoding is reached 
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when there are 150 iterations. For example, a 

file of size 50,000 KB needed 700.012 ms in 10 

iterations, 650.001 ms in 150 iterations, and 

800.022 ms in 250 iterations. Figure 4 illustrates 

the proposed model's mean time for encoding 

and for decoding based on various numbers of 

its iterations. The figure clearly indicates that 

time for encoding is best in its 100th position, 

which is its best point in the process. At this 

point, time for encoding is minimal, which 

indicates that the system is in a balance between 

functionality and computation efficiency. In all, 

hence, the proposed modeling shall make a 

realistic modeling and functionality of data 

encoding and data decryption process in a 

greater appropriateness in challenging cases of 

its requirements for its high levels of 

performances and improved cryptographic 

security. The results obtained through this 

assessment confirm that the proposed model is 

efficient in the processes of both encoding and 

decoding. The iteration count gives a minimum 

encoding time when set at 100, while for 

minimum decoding time, the iteration count 

works best when set at 150. Besides, given the 

high execution time of this proposed model, 

there is definitely an implication of significant 

practical advantages, especially within areas 

that involve large file sizes. In turn, this model 

will contribute much with regard to securing 

high performance in real-world data processing. 

6.2. Comparison (Encoding and Decoding 

Based on AES-RSA and Proposed Model) 

The following is a comparative study of this 

proposed system and the AES-RSA 

cryptographic system [34] in Table 2. The 

study is conducted based on a comparison of 

encoding time and decryption time for 

different input file sizes and numbers of 

iterations. The results point out differences in 

the performance of the two systems, noting in 

particular the speed and efficiency in the 

process of decryption and encryption. For the 

suggested model, time for encoding and 

decoding is quantified under various scenarios 

of iterations, depending on parameters that 

have been optimized in a quest for identifying 

best operation points. The suggested model, in 

a comparison of AES-RSA, demonstrates 

improvements in some instances, for example, 

in its time for decryption and encoding. The 

enhanced performance is clearly apparent 

when the best numbers of iterations for the 

model, in which its time for encoding is 

minimized, is reached, though this is attained 

without compromising the security of the 

system. Table 2 serves to further illustrate the 

relative strengths and weaknesses of each of 

these methods, producing insights on the 

applicability and utility of the proposed system 
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in cryptographic contexts. A total of 11 

different-length files, based on a key size of 

128 bits, were utilized in this study utilizing 

Visual Studio. The results show that the 

proposed model outperforms AES-RSA with a 

huge difference, especially for the case of 50 

MB. For AES-RSA, encoding took 

5.85081221 seconds, while the proposed 

model encoded it in 3.897667621 seconds, 

which is a huge difference in processing time. 

RSA is a widely known public-key 

cryptosystem that has been viewed as quite 

resistant to attacks, but its large key size 

renders the system computationally intensive 

and resource-consuming. In turn, the proposed 

model uses ECC, which allows for more 

efficiency since, for comparative security 

levels, ECC requires much smaller key sizes. 

This efficiency in computation means faster 

computation speed and lower usage of 

memory. Hence, ECC is perfectly suited to 

devices with low computational resources. 

This would, in turn, mean quicker 

computations for the proposed model, making 

it best suited for real-time applications.

Table 2. An evaluation of the suggested model in contrast to AES-RSA. 

Input File Size (MB) RSA-AES (second)  Proposed Model (second)   

 Encryption Decryption Encryption Decryption 

1 1.03309147 16.19099792 0.446219871 0.604796895 

5 2.10843833 21.146642 1.088401662 1.198846913 

10 2.86677779 23.72389669 1.597954877 1.609685631 

15 3.43121086 25.37474864 2.000422897 1.912506901 

20 3.89786828 26.61525524 2.346063845 2.16131668 

25 4.30311578 27.61908005 2.654785801 2.376391037 

30 4.6653103 28.46730536 2.936953916 2.567913253 

35 4.99522496 29.20476144 3.198797134 2.741836407 

40 5.29980983 29.85899916 3.444412382 2.901988874 

45 5.58385215 30.44823232 3.676668189 3.051000595 

50 5.85081221 30.98516549 3.897667621 3.190768115 

 

 

Figure 5 shows the encoding time of the 

proposed model in comparison with AES-RSA. 

The results pointed out that the proposed model 

has a much lower encoding time and reduced 

the execution time by about 33.38% when 

encoding the file size to 50 MB. This high 

improvement indicates that the proposed model 

is efficient and further vindicates the capability 
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of the model to perform better than AES-RSA. 

The results hereby establish the proposed model 

as a better option than the current approach of 

AES-RSA in scenarios where high speed and 

efficiency in processing are needed. 

  

Figure 5. Comparison of Decoding Time by Proposed 

Model and AES-RSA 

Figure 6. Comparison of decoding times between the 

proposed model and AES-RSA. 

 

Figure 7. Comparison of encoding times for the 

proposed model, GA, and FA. 

 

Figure 8. Comparison of decoding times for the 

proposed model, GA, and FA. 

 

Figure 6 illustrates a direct comparison of the 

decoding times between the proposed model 

and the AES-RSA encryption scheme. The 

results clearly indicate that the proposed model 

outperforms AES-RSA in terms of speed. This 

performance advantage can be attributed to the 

inherent computational overhead associated 

with the RSA algorithm. Specifically, RSA 

suffers from slow processing times due to the 

extensive computational requirements for 

encoding and decoding. These operations 

involve modular exponentiation and calculation 

of the private key exponent, which are 

computationally intensive operations. Thus, 

RSA involves a large number of computations, 

which makes decryption processing time quite 

time-consuming. For this reason, unlike it, the 

system proposed here makes decryptions in 

milliseconds, owing to its optimization of vital 

operations. This makes it a more effective 
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solution for time-critical scenarios. The above 

difference highlights the potential of this 

proposed system in making cryptographic 

systems more effective, particularly for 

environments in which data decryption must be 

conducted quickly. The proposed model 

provides speeds during processing because 

computations set in its encoding and decoding 

processes are very few compared to RSA. Thus, 

the proposed model provides better 

performance for these applications where fast 

and efficient cryptographic processing is 

required.  However, the proposed model, at a 

file size of 50 MB, recorded approximately 

89.75% encoding execution time reduction 

against AES-RSA. Thus, it became very much 

proven that this preferred model outpaces AES-

RSA at the highest grade in terms of efficiency 

by its operational processes concerning both 

encoding and decoding of data. Integration with 

ECC reduces the computational overhead; 

therefore, it increases the speed in the proposed 

model. Therefore, this is very suitable for real-

time applications and also for those applications 

under constrained resources.  

6.3. Comparison of Encoding and Decoding 

Times Based on FA, GA, and the Proposed 

Model 

      This section provides a detailed 

comparative analysis of two well-known 

metaheuristic algorithms, the FA [35] and the 

GA [36], alongside the proposed model for 

generating ECC keys. The analysis evaluates 

the performance, efficiency, and effectiveness 

of these algorithms in the context of ECC key 

generation, highlighting their strengths and 

weaknesses in comparison to the novel 

approach being proposed. Both FA and GA 

employ selection, crossover, and mutation 

operators to optimize ECC solutions. The 

results, summarized in Table 3, demonstrate 

that the proposed CSA surpasses FA and GA 

in terms of encoding and decoding efficiency. 

Additionally, CSA achieves superior solutions 

due to its enhanced search efficiency and 

stronger convergence capabilities. The 

concrete outcome of the experiment indicates 

that the proposed CSA achieves considerably 

quicker encoding and decoding times, followed 

by FA, compared with GA. For example, the 

encoding of a 2500 KB file took 352.9763444 

ms for both the SHA-256-ECC-FA and SHA-

256-ECC-GAmodels, with decoding taking 

345.9605204 ms and 359.5499456 ms 

correspondingly.  In contrast, the proposed 

model shows a much-reduced encoding time of 

6.27047476 ms and decoding time of 

7.076964611 ms. 
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Table 3. Comparison of Encoding and Decoding Times: Proposed Model, FA, and GA 

File Size 

(KB) SHA-256- ECC- FA SHA-256- ECC- GA Proposed Model 

 Encryption Decryption Encryption Decryption Encryption Decryption 

250 

86.4667614

7 

83.3506630

9 

93.4718405

6 

89.2556626

5 

77.3525696

7 62.79172011 

500 

132.052715

4 

127.932522

2 

141.143878

7 

135.767583

4 

120.022779

5 100.8356139 

750 

169.169027

9 164.371322 

179.621934

5 

173.521397

9 

155.191543

3 133.0293592 

1000 

201.671941

4 

196.359928

5 

213.129369

9 

206.517280

2 

186.231273

9 161.9293278 

1250 

231.125284

1 

225.400377

2 

243.367395

8 236.373572 

214.522540

8 188.6035425 

1500 

258.356264

6 

252.288788

4 

271.231810

2 

263.944943

7 

240.800279

2 213.6284382 

1750 

283.868073

3 

277.510188

3 

297.265628

7 

289.750650

1 

265.513739

4 237.3601233 

2000 

307.994968

7 

301.387175

5 

321.828539

4 

314.135274

2 

288.962541

4 260.0381572 

2250 

330.972960

3 324.147769 

345.173895

6 

337.341907

9 311.358953 281.8335025 

2500 

352.976344

4 

345.960520

4 

367.488411

3 

359.549945

6 

332.860197

4 302.8735949 

13750 

2354.65434

2 

2298.70925

4 

2473.72270

5 

2406.15821

8 

2192.81641

8 1942.92338 

Throughput 

5.83949828

9 

5.98161771

6 

5.55842414

1 

5.71450368

4 6.27047476 7.076964611 

The results in Figures 7 and 8 once again 

confirm that the proposed model outperforms 

the existing methods regarding execution time 

and encoding efficiency. Hence, the proposed 

model provides better benefits compared with 

conventional approaches toward key generation 

within the CSA algorithm framework.  

 

6.4. Throughput  

In this paper, we have measured the proposed 

model's performance in its velocities of 

encoding and decoding, which have been 
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estimated by Eqs. (13) and (14) [37]. The higher 

these velocities, the better its performance. The 

proposed model is compared on a file of size 

13,750 KB and compared with SHA-256-ECC-

FA and SHA-256-ECC-GA models. The 

proposed model encodes and decodes in 

6.27047476 ms and 7.076964611 ms, 

respectively, which is a result in a favorable 

direction compared to SHA-256-ECC-

FA(encoding time = 5.839498289 ms, time of 

decoding = 5.981617716 ms) and SHA-256-

ECC-GA(encoding time = 5.558424141 ms, 

time of decoding = 5.714503684 ms). The 

results indicate the enhanced efficiency of the 

proposed model in its encoding and decoding.  

𝐸𝑛 − 𝑐𝑜𝑑𝑖𝑛𝑔 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = ∑(𝐼𝑛𝑝𝑢𝑡 𝐹𝑖𝑙𝑒)/ ∑(𝐸𝑛 − 𝑐𝑜𝑑𝑖𝑛𝑔 𝑇𝑖𝑚𝑒)         (12) 

𝐷𝑒 − 𝑐𝑜𝑑𝑖𝑛𝑔 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = ∑(𝐼𝑛𝑝𝑢𝑡 𝐹𝑖𝑙𝑒)/ ∑(𝐷𝑒 − 𝑐𝑜𝑑𝑖𝑛𝑔 𝑇𝑖𝑚𝑒)                       (13) 

It attained an encoding throughput of virtually 

7.38% higher and a decoding throughput of 

virtually 18.31% higher compared to the model 

identified as ECC-FA-SHA-256. The levels of 

its encoding and decoding throughput were also 

virtually 12.81% and 23.84% higher, 

respectively, compared to the model identified 

as ECC-GA-SHA-256. The results clearly 

demonstrate that the proposed model is indeed 

more efficient and effective in doing faster and 

secure encoding and decoding compared to 

other models.  

Conclusion 

Nowadays, IoT finds a deep root in 

everyday life. However, ensuring security for 

IoT devices themselves is still a big challenge 

due to their limited computation and storage 

resources. IoT devices send messages, images, 

and audio; thus, there is a dire need for 

confidentiality and integrity. This problem led 

to the finding that some security algorithms are 

more efficient as compared to others.  The goal 

of this paper is to propose a new scheme for 

securing the data transmitted by resource-

constrained IoT-based door locks with the aid of 

ECC and SHA-256 integrated with CSA. 

Accordingly, this mechanism is developed in 

such a manner that the operations of encoding 

and decoding can be performed with the least 

time consumption. The performed simulations 

showed optimum performance at 100, and the 

proposed model achieved optimal performance 

at 150 iterations for both encoding and 

decoding. When compared to the other 

methods, the proposed model demonstrated 

significant improvements in throughput. 

Specifically, the encoding throughput was 

approximately 7.38% higher, and the decoding 

throughput was about 18.31% better than the 
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SHA-256-ECC-FA model. Additionally, the 

proposed model outperformed the SHA-256-

ECC-GA model with encoding and decoding 

throughputs that were approximately 12.81% 

and 23.84% higher, respectively. These results 

underscore the proposed model's superior 

efficiency in both encoding and decoding 

processes, highlighting its potential for faster 

data handling in cryptographic applications.  

These affirm that the proposed approach 

enhances both speed and security. The focus in 

the future will be on investigation into 

alternative private key generation methods that 

also enhance the model's flexibility as well as 

robustness.  
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