Evaluation of 2-(4-Chlorophenyl)-4-(4-fluorophenyl)-5-pyridin-4-yl-1,2-dihydropyrazol-3-one as a p38 MAPK inhibitor in MCF-7 and MDA-MB-231 breast cancer cell lines.

Mustafa Abdul Jabbar a Qader*, Intesar Tarik Numan**, Basma Talib Al-Sudani*, Mohammed A. Abdalqader***

Article Info:

Received 3 July 2024

Revised 1 Aug 2024 Accepted 11 Aug 2024

Published 31 Aug 2025

Corresponding Author email:

basma_alsudani@uomustansiriyah.edu.iq

Orcid: https://orcid.org/0000-0001-6253-3599

DOI: https://doi.org/10.32947/ajps.v25i3.1224 **Abstract:**

Breast cancer is a diverse disease with high mortality rates, often due to metastasis. Breast cancer subtypes vary by the expression of progesterone receptor, human epidermal growth factor receptor 2, and estrogen receptor. About 15%-20% of breast cancer cases are triple-negative, which lack these receptors and have poor prognosis and limited treatment options. The Mitogen-Activated Protein Kinase, particularly p38, are involved in cellular responses and cancer progression.

The study aimed to compare the cytotoxic effects of the compound 2-(4-Chlorophenyl)-4-(4-fluorophenyl)-5-pyridin-4-yl-1,2-dihydropyrazol-3-one as a p38 mitogen-activated protein kinase inhibitor in Breast cancer cell lines (MCF-7 and MDA-MB-231). The half-maximal inhibitory concentration values were calculated using nonlinear regression analysis. The half-maximal inhibitory concentration of the investigated compound p38 Mitogen-Activated Protein Kinase inhibitor was 5.355 μg in MCF-7 cells, whereas in MDA-MB-231 cells, it was 1.419 μg . In conclusion, the compound showed higher sensitivity and effectiveness in triple-negative breast cancer cells than estrogen receptor-positive cells.

Keywords: Breast cancer; p38 MAPK; MCF-7; MDA-MB-231.

4)-2كاينيز2-AP38 MAP مثبط

Chlorophenyl)-4-(4-fluorophenyl)-5-pyridin-4-yl-1,2-dihydropyrazol-3one کمضاد جدید لسرطان الثدی

مصطفى عبد الجبار عبد القادر *، انتصار طارق نعمان * *، بسمة طالب السوداني *، محمد عبد الجبار عبد القادر * * * فرع الادوية والسموم، كلية الصيدلة، الجامعة المستنصرية، بغداد، العراق.

** كلية النخبة الجامعة، الصيدلة، بغداد، العراق

*** كلية الطب،جامعة سابير جايا ، ماليزيا

خلاصة

^{*}Department of Pharmacology and Toxicology, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq.

^{**}Al-nukhba university college, department of pharmacy, Baghdad, Iraq.

^{***}Faculty of Medicine, University of Cyber 11,63000 Cyberjaya, Selangor Darul Ehsan, Malaysia.

يعد سرطان الثدي الأكثر تشخيصًا بين النساء وثاني أهم سبب لوفيات السرطان. في عام 2020 شكل سرطان الثدي 7.11 من الحالات الجديدة على مستوى المعالم. في المعراق، ارتفع معدل الإصابة بسرطان الثدي من 52.00 لكل 100,000 شخص في عام 2000 إلى 69.69 لكل 100,000 في عام 2019. سرطان الثدي (BC) مرض متنوع سريريًا وله معدلات وفيات مرتفعة، غالبا بسبب الانتشار. تختلف الأنواع الفرعية لسرطان الثدي بناء على تعبير PR ، PRP، و.ER حوالي 7.00 من حالات سرطان الثدي تصنف على أنها ثلاثية السلبية (TNBC) ، والتي تفتقر لهذه المستقبلات وتتمتع بتوقعات فقيرة وخيارات علاج سرطان الثدي تصنف على أنها ثلاثية السلبية (P38 ، والتي تفتقر لهذه المستقبلات وتتمتع بتوقعات فقيرة وخيارات علاج التحقيق في التأثيرات السامة للخلايا لمركب 7.00 الإستجابات الخلوية وتلعب دورًا في تطور السرطان .هدفت هذه الدراسة إلى التحقيق في التأثيرات السامة للخلايا لمركب 7.00 السنجابات الحركب 7.00 بينما كانت في خلايا الانحدار غير الخطي. كانت قيمة 1.40 المثبط P38 MAPK هي 231 ميكروغرام في خلايا مستقبلات في خلايا سرطان الثدي الثلاثي السلبية مقارنة بخلايا مستقبلات الإستروجين الإيجابية.

الكلمات المفتاحية :سرطان الثدي؛ MDA-MB-231. MCF-7 p38 MAPK

Introduction

Breast cancer (BC) is the most common malignancy in women worldwide, account 25% of all cancers [1]. Invasive BC remains the predominant form of cancer in women globally, constituting around 11.7% of new cases in 2020 [2]. In Iraq, the incidence of new cancer cases has increased significantly, rising from 52.00 per 100,000 individuals in 2000 to 91.66 per 100,000 in 2019. In that year, BC was the leading cause of death among Iraqi women, comprising around one-third of all reported cancer cases and holding the highest percentage (22.58%) and fatality rate (6.22 per 100,000) among all cancer types [3].

BC is a clinically diverse disease and is one of the most frequently diagnosed and lethal cancers in females, with high mortality and morbidity rates globally [4]. BC can be genetic and may result from radiation exposure, environmental toxins, alcohol consumption, and lifestyle factors [5, 6]. Metastasis, involving both migration and invasion, is the primary cause of death in cancer patients [7]; hence, it is crucial to inhibit the migration and invasion of cancer cells [8]. BC classification of cancer is determined by the levels of expression of progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2),

and estrogen receptor (ER), which vary morphologically and clinically [9].

Approximately 15%-20% of BC cases are classified as triple-negative breast cancer (TNBC), lacking expression of ER, PR, and HER2 receptors [10]. TNBC is clinically associated with a poor prognosis, highly proliferative cancer cells. and rapid development compared to other BC types [11]. The molecular mechanisms are not fully understood [12]; therefore, it is important to understand the molecular mechanisms of TNBC and identify effective therapeutic targets. Mitogen -activate protein kinases (MAPK) are Ser/Thr kinases involved in cellular responses to stimuli; they play essential roles in multiple biological processes [13]. The four main Mammals MAPKs (ERK 1/2, c-Jun N terminal kinase (JNK)1-3, p38, and ERK5) [14]. ERK1 and ERK2 mainly function in cell proliferation and sur ival, while the JNK and p38 MAPK pathways are mainly associated with cellular stress responses and apoptosis regulation [15]. p38 activation has been demonstrated in response to many external stimuli ex (UV light, heat, osmotic shock, inflammatory cytokines (TNF-alpha & IL-1), and growth factors (CSF-1)). Also, p38 activation depends on the specific cell type [16]. p38 is relatively inactive when unphosphorylated, rapidly activated but it's upon phosphorylation of its two Thr-Gly-Tyr motifs. p38 is activated by dual kinases known as MKKs. MKK3 and MKK6 are the primary upstream kinases responsible for activating it, particularly in response to TNF [17]. Increased expression of MKK kinases activates both p38 and JNK pathways [18].

Cellular responses vary significantly based on cell type and the stimulus. The involvement of p38 in cancer progression and therapy is remarkably intricate owing to these attributes. Elevated p38 levels have been associated with aggressive and poor prognoses in BC cases [19]

The investigated compound, C20H13ClFN3O, obtained from Santa was Biotechnology. Santa Cruz Biotechnology is a well-known provider of research chemicals and biochemicals, including antibodies, proteins, and other reagents used in biomedical research. These compound p38 MAP Kinase Inhibitor, (C20H13ClFN3O) also referenced under CAS 219138-24-6 which was, is selectively inhibits the activity of p38 MAPK, which are a class of enzymes involved in cellular responses to stress and inflammatory cytokines [20]. This inhibitor compound is a tool for dissecting the signaling pathways mediated by p38 MAPK, which include regulating pro-inflammatory cytokine production, apoptosis, and cell differentiation. Researchers employ p38 MAP Kinase Inhibitors (C20H13ClFN3O) to study their role in modulating the inflammatory response and to understand the molecular basis of diseases where p38 MAPK is implicated [21 22]. By inhibiting p38 MAPK activity, researchers can explore the kinase's contributions to cellular processes and its interactions with other signaling molecules [23].

The current study aimed to Evaluation analysis of 2-(4-Chlorophenyl)-4-(4-fluorophenyl)-5-pyridin-4-yl-1,2-dihydropyrazol-3-one as a p38 MAPK

inhibitor on the proliferation between MCF-7 and MDA-MB-231 cell lines for BC.

Materials and method

Study Design

This research examined the effects of p38 MAPK inhibitor compound on BC cell lines (MCF-7 and MDA-MB-231) to assess its potential as a therapeutic approach for BC. The methodology involved testing the inhibitory effects of the p38 MAPK inhibitor on MCF-7 and MDA-MB-231 cell lines by exposing the cell lines to various concentrations of (C₂₀H₁₃ClFN₃O).

Sample Preparation

To prepare a stock solution of $(C_{20}H_{13}ClFN_3O)$ at a concentration of 500 μ g/ml, 500 μ g of the inhibitor is dissolved in 1 ml of dimethyl sulfoxide (DMSO).

Cell Lines

MCF-7 is classified as a "Luminal A" subtype of BC [24, 25]. Also, The MDA-MB-231 cell line is derived from a pleural effusion from a patient with invasive ductal carcinoma and is commonly used as a model for advanced BC. This cell line is characterised by its lack of estrogen receptor, progesterone receptor, and E-cadherin expression. Additionally, MDA-MB-231 cells do not express the growth factor receptor HER2, making them representative model of TNBC [26].

Cell Culturing

The cells were cultivated in a completely supplied Dulbecco's Modified Eagle's Medium (DMEM) containing high glucose levels. (Capricorn Scientific, GmbH) Then, it is supplemented with 10% fetal bovine serum (FBS) (Capricorn Scientific, GmbH) and 1% antibiotic/antimycotic (Capricorn Scientific, GmbH). Cells were seeded in 75 cm³ culture flasks at 3 × 10³ cells/ml density and

© **1**

maintained in an incubator (Hermle, Germany) at a constant temperature of 37°C with 5% CO₂. Subculturing was performed twice weekly when confluency exceeded 70% by washing the cell monolayers with phosphate-buffered saline (PBS) (Capricorn Scientific, GmbH), followed by incubation with 0.05% trypsin/EDTA (Capricorn Scientific, GmbH) to detach the cells. The trypsinised cells were resuspended in complete media and separated using a centrifuge (Hettich, Germany) [27].

Cell Proliferation Assay

The colourimetric MTT assay is convenient for measuring cell viability and proliferation [28]. After trypsinisation, cell suspensions were prepared and plated into 96-well plates at concentrations of 3×10^3 , 4×10^3 , and 5×10^3 cells/well for incubation periods of 24, 48, and 72 hours, respectively. Serial dilutions of $(C_{20}H_{13}ClFN_3O)$ dissolved in **DMSO** (Thomas Baker, India) were prepared at concentrations of 50, 25, 12.5, 6.25, 3.125, 1.5, 0.75, 0.32, 0.15, 0.05, and 0.025 µg. When cell confluency reached 80–90%, cells were exposed to the different concentrations of the (C20H13ClFN3O) compound. After incubation, 20 µL of MTT (Bidepharm, Shanghai, China) diluted in PBS was added to each well and incubated at 37°C for 4 hours. To prevent DMSO crystallisation, 100 ul of the solvent was added to each well on the plates at room temperature and under conditions of full darkness. The absorbance at 540 nm, which matches the wavelength of the standard reference, might be measured using a microplate reader. The substance's cytotoxicity was assessed by comparing the absorption of cells treated with it to that of control cells. The compound utilised for the experiment was obtained from Promega, USA [29]. The experiment was conducted in triplicate for each treatment.

Statistical analysis.

All statistical analyses of the p38 Mitogenactivated Protein Kinase Inhibitor data were performed using MedCalc 14.8.1 (Ostend, Belgium). The choice of MedCalc was based on its comprehensive suite of statistical tools and its capability to handle a variety of analyses required for this study.

Results

Cytotoxicity assay

The MCF-7 cells were treated with different concentrations ranging from 0.025 to 50 µg (C₂₀H₁₃ClFN₃O); after 72 h, the cytotoxicity analysis was conducted using the MTT test to determine the level of toxicity on MCF-7 cell lines. The half-maximal growth inhibitory concentration (IC₅₀) of the investigated compound in MCF-7 cells was obtained following incubation for 72h; the doseresponse curve was obtained by plotting the concentrations of p38 MAPK inhibitor after log transformation. The IC₅₀ values were using nonlinear regression calculated analysis, as shown in (Figure 1), where it shows the IC₅₀ of the investigation compound was 5.355µg.

In MDA-MB-231 cell lines, the IC_{50} value was obtained from a range concentration from 0.025 to 50 μ g for $C_{20}H_{13}CIFN_3O$ compound by MTT assay. The result of IC_{50} for the investigation compound was 1.419 μ g in MDA-MB-231 cell lines, as shown in (**Figure 2**).

Comparison of percentage cell viability between MDA-MB-231 and MCF-7 cell lines were treated for 72h with 0.025, 0.05, 0.15, 0.32, 0.75, 1.56, 3.12, 6.25, 12.5, 25 and 50 μ g dose ranges of p38 MAPK inhibitor compound. The results represent the mean absorbance \pm SEM of 3 independent experiments using Excel software to drawbars, as shown in (**Figure 3**).

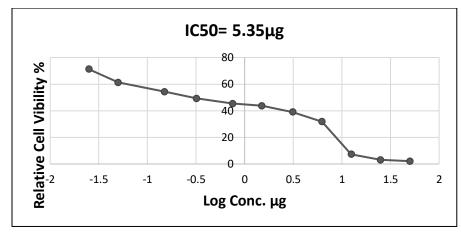


Figure 1: The IC50 for (C₂₀H₁₃CIFN₃O) P38 MAPK inhibitor in MCF-7

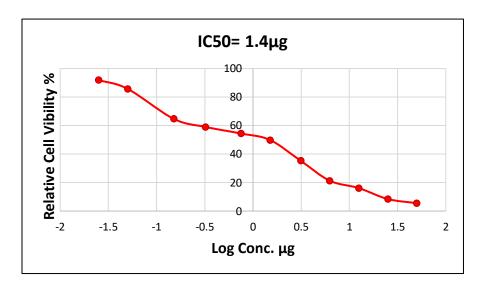


Figure 2: The IC50 for (C₂₀H₁₃CIFN₃O) P38 MAPK inhibitor in MDA-MB-231.

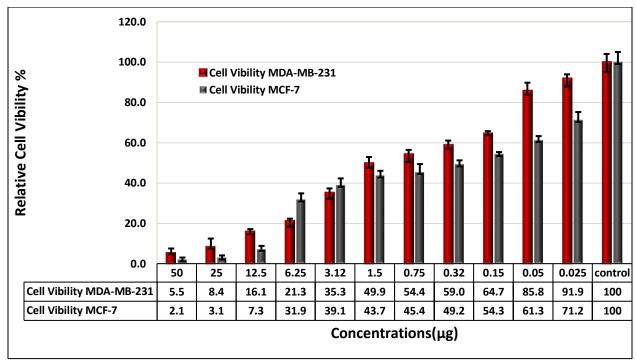


Figure 3: Comparison of percentage cell viability between MDA-MB-231 and MCF-7 cell lines.

Discussion

The cancers of the breast are classified into hormone receptor-positive and negative groups to guide patient treatment [30]. The involvement of p38 MAPK in cancer is multifaceted, leading to varying outcomes depending on different systems conditions. Nonetheless, increasing research indicates that p38 MAPK inhibitors show promise for treating cancer-related diseases. Further in vivo and clinical studies are needed to elucidate the therapeutic potential of these inhibitors in cancer treatment. Current evidence demonstrates that p38 MAPK inhibitors suppress cancer can cel1 proliferation, invasion, and migration in vitro [31, 32]. The p38 MAPK signaling pathway is crucial in cell proliferation, apoptosis, and motility, particularly in enhancing cell migration, tumor invasion, and metastasis [33, 34]. In BC patients, elevated p38 levels are linked to highly invasive tumors and poor prognosis [35, 36]. Depending on the nature of the stimuli and cellular context, p38 can mediate various cellular responses. The AJPS (2025)

cytotoxicity results presented here are consistent with previous studies showing that p38 MAPK inhibitors (SB203580 SB202190) exert ant-proliferative effects on MDA-MB-231 cells by downregulating ERK1/2 phosphorylation (which regulates NF-κB activation) and increasing Ser15 phosphorylation of mutant p53 (R280K) [37]. Another study reported that SB203580 downregulated p38 and NF-kB pathways in MDA-MB-231 cells treated with LyeTx II, aggressive which enhances BCcell proliferation [38]. Additionally, inhibitors of ERK1/2 (PD0325901), p38 (SB203580), and PI3K (LY294002) preferentially reduced proliferation in MCF-7 cells [39]. Chen et al. found that targeting the p38a isoform inhibited BC cell proliferation in MDA-MB-468 cells [40]. The complex interplay between cell survival and death is a critical area of research aiming to understand how tumor cells regulate these processes. Many effective anticancer drugs induce apoptosis in tumor cells, which is believed to significantly contribute to their

© O

therapeutic effects [41]. The pathways through which these drugs induce apoptosis vary depending on the drug characteristics and the genetic background and origin of the tumor [42].

Conclusion

The C₂₀H₁₃ClFN₃O compound was more effective in the TNBC cell line (MDA-MB-231) than luminal A breast cancer cell line (MCF-7) according to more potent suppression of cellular proliferation in the MTT assay, our findings indicate that targeting the p38 MAPK-signaling pathway could be a promising therapeutic approach for treating breast cancer.

Conflict of interests

The authors declared no conflict of interest

Funding source

The authors did not receive any source of funds.

Data sharing statement

Supplementary data can be shared with the corresponding author upon reasonable request.

ACKNOWLEDGEMENTS

The authors thank the College of Pharmacy / Mustansiriyah University (www.uomustansiryiah.edu.iq), Baghdad, Iraq, for supporting this work.

References

- 1- Al-khafaji AHY, Arif IS. Evaluation of anti-proliferative activity of simvastatin and atorvastatin on MCF7 cell line compared with doxorubicin using MTT test. AJPS [Internet]. 2018 Dec. 1 [cited 2024 Jul. 2];18(2):163-9. Available from: https://ajps.uomustansiriyah.edu.iq/index .php/AJPS/article/view/490
- 2- Sung H, Ferlay J, Siegel RL, Laversanne M, *et al.* Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and

- Mortality Worldwide for 36 Cancers in 185 Countries. CA: a cancer journal for clinicians. 2021;71(3): 209-49.DOI:10.3322/caac.21660
- 3- Al-Hashimi MMY. Trends in Breast Cancer Incidence in Iraq During the Period 2000-2019. Asian Pac J Cancer Prev. 2021;22(12): 3889-96.DOI:10.31557/apjcp.2021.22.12.3889
- 4- Torre LA, Bray F, Siegel RL, Ferlay J, *et al.* Global cancer statistics, 2012. CA: a cancer journal for clinicians. 2015;65(2):87-108.
- 5- Tan G-Z, Li M, Tan X, Shi M-L, Mou K. MiR-491 suppresses migration and invasion via directly targeting TPX2 in breast cancer. European Review for Medical & Pharmacological Sciences. 2019;23(22),
- 6- Ferlay J, Colombet M, Soerjomataram I, Mathers C, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. International journal of cancer. 2019;144(8):1941-53.
- 7- Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science (New York, NY). 2011;331(6024): 1559-64.DOI:10.1126/science.1203543
- 8- Lanigan F, O'Connor D, Martin F, Gallagher WM. Molecular links between mammary gland development and breast cancer. Cellular and molecular life sciences: CMLS. 2007;64(24): 3159-84.DOI:10.1007/s00018-007-7386-2
- 9- Garrido-Castro AC, Lin NU, Polyak K. Insights into Molecular Classifications of Triple-Negative Breast Cancer: Improving Patient Selection for Treatment. Cancer discovery. 2019;9(2): 176-98.DOI:10.1158/2159-8290.Cd-18-1177
- 10- Yao H, He G, Yan S, Chen C, *et al.* Triple-negative breast cancer: is there a treatment on the horizon? Oncotarget. 2017;8(1): 1913-24.DOI:10.18632/oncotarget.12284

- 11- Geyer FC, Pareja F, Weigelt B, Rakha E, *et al.* The Spectrum of Triple-Negative Breast Disease: High- and Low-Grade Lesions. Am J Pathol. 2017;187(10): 2139-51.DOI: 10.1016/j.ajpath.2017.03.016
- 12- André F, Zielinski CC. Optimal strategies for the treatment of metastatic triplenegative breast cancer with currently approved agents. Annals of Oncology: official journal of the European Society for Medical Oncology. 2012;23 Suppl 6: vi46-51.DOI:10.1093/annonc/mds195
- 13-Smith J, Doe A, Brown L. Advanced techniques in MAP kinase pathway analysis. *Journal of Cellular Biochemistry*. 2023;120(4):789-805. DOI: 10.1002/jcb.29834.
- 14- Qi M, Elion EA. MAP kinase pathways. J Cell Sci. 2005;118(Pt 16): 3569-72.DOI:10.1242/jcs.02470
- 15-Ramos JW. The regulation of extracellular signal-regulated kinase (ERK) in mammalian cells. Int J Biochem Cell Biol. 2008;40(12): 2707-19.DOI: 10.1016/j.biocel.2008.04.009
- 16-Morales-Martínez M, Vega MI. p38 Molecular Targeting for Next-Generation Multiple Myeloma Therapy. Cancers. 2024;16(2):256.
- 17- Son SH, Lee N-R, Gee MS, Song CW, et Knockdown Chemical Phosphorylated p38 Mitogen-Activated Protein Kinase (MAPK) as a Novel Approach for the Treatment of Alzheimer's Disease. ACS Central 2023;9(3):417-Science. 26.DOI:10.1021/acscentsci.2c01369
- 18- Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiology and molecular biology reviews: MMBR. 2011;75(1): 50-83.DOI:10.1128/mmbr.00031-10
- 19-ohnston SJ, Ahmad D, Aleskandarany MA, Kurozumi S, *et al.* Co-expression of nuclear P38 and hormone receptors is

- prognostic of good long-term clinical outcomes in primary breast cancer and is linked to upregulation of DNA repair. BMC Cancer. 2018;18(1): 1027.DOI:10.1186/s12885-018-4924-2
- 20-Fang P, Yu M, Min W, Wan D, Han S, Shan Y, et al. Effect of baicalin on GLUT4 expression and glucose uptake in myotubes of rats. Life sciences. 2018;196:156-61.
- 21-Donatien P, Anand U, Yiangou Y, Sinisi M, Fox M, MacQuillan A, et al. Granulocyte-macrophage colonystimulating factor receptor expression in clinical pain disorder tissues and role in neuronal sensitisation. Pain reports. 2018;3(5):e676.
- 22- Fang P, Sun Y, Gu X, Shi M, Bo P, Zhang Z, et al. Baicalin ameliorates hepatic insulin resistance and gluconeogenic activity through inhibition of p38 MAPK/PGC-1α pathway. Phytomedicine: international journal of phytotherapy and phytopharmacology. 2019;64:153074.
- 23-Bernard E, Nannya Y, Hasserjian RP, Devlin SM, Tuechler H, Medina-Martinez JS, et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nature medicine. 2020;26(10):1549-56.
- 24-Burguin A, Diorio C, Durocher F. Breast Cancer Treatments: Updates and New Challenges. J Pers Med. 2021;11(8).
- 25- Amjad MT, Chidharla A, Kasi A. Cancer Chemotherapy. StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2024, StatPearls Publishing LLC.; 2024.
- 26-Syed YY. Oncotype DX Breast Recurrence Score(®): A Review of its Use in Early-Stage Breast Cancer. Mol Diagn Ther. 2020;24(5):621-32.
- 27- Andre F, Ismaila N, Allison KH, Barlow WE, Collyar DE, Damodaran S, et al. Biomarkers for Adjuvant Endocrine and

- Chemotherapy in Early-Stage Breast Cancer: ASCO Guideline Update. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2022;40(16):1816-37.
- 28-Korde LA, Somerfield MR, Carey LA, Crews JR, Denduluri N, Hwang ES, et al. Neoadjuvant Chemotherapy, Endocrine Therapy, and Targeted Therapy for Breast Cancer: ASCO Guideline. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2021;39(13):1485-505.
- 29-Banan Kareem Bedewi, Ghaith Ali Jasim, Ibrahim Saleh Abbas, BasmaTalib AlSudani. Cytotoxicity of Cryptochlorogenic acid against Breast cancer cell line (MCF7) isolated from Moringa oleifera Leaves Cultivated in Iraq. AJPS [Internet]. 2022 Jul. 5 [cited 2024 Jul. 2];22(2):35-43. Available from: https://ajps.uomustansiriyah.edu.iq/index.php/AJPS/article/view/837
- 30-Abd-Ali Al-Hashemi EH, Abbas MJ, Al-Hadithi HK. Relation Between Salivary (Immunoglobulin A, Flow Rate and PH) level and Estrogen Receptor Expression Among Patients with Breast Cancer. AJPS [Internet]. 2018 Jun. 1 [cited 2024 Jul. 30];18(1):93-100. Available from: https://ajps.uomustansiriyah.edu.iq/index.php/AJPS/article/view/462
- 31-Ahmadi A, Ahrari S, Salimian J, Salehi Z, Karimi M, Emamvirdizadeh A, Jamalkandi SA, Ghanei M. p38 MAPK signaling in chronic obstructive pulmonary disease pathogenesis and inhibitor therapeutics. Cell Commun Signal. 2023 Nov 2;21(1):314. doi: 10.1186/s12964-023-01337-4. PMID: 37919729; PMCID: PMC10623820.
- 32-Davidson B, Givant-Horwitz V, Lazarovici P, Risberg B, *et al.* Matrix metalloproteinases (MMP), EMMPRIN (extracellular matrix metalloproteinase inducer) and mitogen-activated protein

- kinases (MAPK): co-expression in metastatic serous ovarian carcinoma. Clin Exp Metastasis. 2003;20(7): 621-31.DOI:10.1023/a:1027347932543
- 33- Pua LJW, Mai CW, Chung FF, Khoo AS, Leong CO, Lim WM, Hii LW. Functional Roles of JNK and p38 MAPK Signaling in Nasopharyngeal Carcinoma. Int J Mol Sci. 2022 Jan 20;23(3):1108. doi: 10.3390/ijms23031108. PMID: 35163030; PMCID: PMC8834850.
- 34-Huang X, Chen S, Xu L, Liu Y, et al. Genistein inhibits p38 map kinase activation, matrix metalloproteinase type 2, and cell invasion in human prostate epithelial cells. Cancer research. 2005;65(8): 3470-8.DOI:10.1158/0008-5472.Can-04-2807
- 35-Salh B, Marotta A, Wagey R, Sayed M, Pelech S. Dysregulation of phosphatidylinositol 3-kinase and downstream effectors in human breast cancer. International journal of cancer. 2002;98(1): 148-54.DOI:10.1002/ijc.10147
- 36-Davidson B, Konstantinovsky S, Kleinberg L, Nguyen MT, et al. The mitogen-activated protein kinases (MAPK) p38 and JNK are markers of tumor progression in breast carcinoma. Gynecologic oncology. 2006;102(3): 453-61.DOI: 10.1016/j.ygyno.2006.01.034
- 37-Düzgün Ş A, Yerlikaya A, Zeren S, Bayhan Z, et al. Differential effects of p38 MAP kinase inhibitors SB203580 and SB202190 on growth and migration of human MDA-MB-231 cancer cell line. Cytotechnology. 2017;69(4): 711-24.DOI:10.1007/s10616-017-0079-2
- 38-Huth HW, Santos DM, Gravina HD, Resende JM, *et al.* Upregulation of p38 pathway accelerates proliferation and migration of MDA-MB-231 breast cancer cells. Oncology reports. 2017;37(4): 2497-505.DOI:10.3892/or.2017.5452

© **1**

- 39-Khajah MA, Mathew PM, Luqmani YA. Inhibitors of PI3K/ERK1/2/p38 MAPK Show Preferential Activity Against Endocrine-Resistant Breast Cancer Cells. Oncol Res. 2017 ;25(8): 1283-95.DOI:10.3727/096504017x148832453 08282
- 40-Chen L, Mayer JA, Krisko TI, Speers CW, et al. Inhibition of the p38 Kinase Suppresses the Proliferation of Human ER-Negative Breast Cancer Cells. Cancer research. 2009;69(23): 8853-

- 61.DOI:10.1158/0008-5472.Can-09-1636
- 41- Sidi S, Sanda T, Kennedy RD, Hagen AT, et al. Chk1 suppresses a caspase-2 apoptotic response to DNA damage that bypasses p53, Bcl-2, and caspase-3. Cell. 2008;133(5): 864-77.DOI: 10.1016/j.cell.2008.03.037
- 42- Kaufmann SH, Earnshaw WC. Induction of apoptosis by cancer chemotherapy. Exp Cell Res. 2000;256(1): 42-9.DOI:10.1006/excr.2000.4838