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ABSTRACT  

Transformer is one of the major and most important high-cost components of electrical power 

systems,  so it is necessary to prolong their life span , reduce downtime and maintenance. There 

are many types of electrical and chemical diagnostic methods for monitoring insulation 

conditions for the transformer, like Doerneburg’s and Roger’s revised IEC-599r methods. This 

study introduces fuzzy logic, which handles vague, imprecise, and uncertain fault diagnoses for 

transformers. This work applies fuzzy logic for three methods: Doerneburg’s, IEC 599r, and 

proposed methods by using MATLAB to measure the dissolved gas in the mineral oil of 

transformers to explain if the transformer is faulty or NOR., and when the transformer is faulty, 

what must be done for accumulation of gases. The results explain that the correct diagnosis for 

the three methods: Doernenburg’s, IEC-599r, and the proposed method is 12%, 76%, and 92%, 

and the certainty is 83.3%, 90.3%, and 89.1%, respectively. 
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1. INTRODUCTION 

The infrastructure of electrical utilities is essential to providing a steady power supply to their 

customers. Power transformers are some of the most expensive and important pieces of 

equipment in the power system, and their reliability directly affects the safety of power 

operations (Sdood, H., 2013). Any issue with the power transformer might lead to the power 

supply being off, which would also mean large financial losses. Mechanical, electrical, or 

thermal stress can cause defects in transformer oil insulators. Power transformer fault categories 

that frequently arise include ARC, partial discharge, low-energy sparking, severe overloading, 

pump motor failure, and insulation system overheating (Elmabrouk, et.al..2020). Carbon 

monoxide (CO), ethylene (C2H4), acetylene (C2H2), ethane (C2H6), hydrogen (H2), and 

methane (CH4) The application of fuzzy logic for power transformer fault detection has been 

the subject of several studies. The fuzzy inference system (FIS) is a technology that was created 

to solve the problem of inconsistent DGA interpretations and related faults. 250 different 

situations were used to assess the accuracy of various DGA techniques in understanding the 

transformer state (Nitin, and Helonde, 2014). Research on classic DGA methods for fault 

detection in power transformers indicates a promising result: the approach can monitor the 

gases released by imminent faults and indicate the health of the transformer. Consequently, it 

exhibits a low susceptibility to initial mistakes and depends on expert evaluation (Ghani, et.al. 

2022)- (Demirci and Taplamacioglu, 2023). Furthermore, the fuzzy inference system, a fuzzy 

logic tool, was presented in (Yousif, 2016) and used to detect and monitor multiple transformer 

faults. It has proven to be a very useful tool for transformer diagnosis and maintenance 

scheduling. MOVHammed et al. 2023, transformer failure detection method was presented in 

response to the fact that DGA can be ineffective in diagnosing certain situations. However, it 

has some drawbacks, including complexity, accuracy that depends on the quality of the input 

data, potential modelling errors, and challenges capturing real-world dynamics for fault 

diagnosis and optimization. Three techniques for identifying transformer defects were 

combined by Iregar and Lumbanraja 2012; however, their methods lacked a sufficient cooling 

system, resulting in an unintentional failure. Ahmed et al. 2013 , created a system that combines 

three different DGA techniques—Rogers, IEC, and Duval—into just one diagnosis scheme. 

2. METHDOLOGY  

2.1. Dissolved gas analysis (DGA): 

There are several methods for identifying such fault gases. The most successful approach is 

DGA, as it has been acknowledged. A small amount of oil is sampled from the transformer to 
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determine the quantity of dissolved gases and to diagnose the defect causing the gases that have 

been identified (Siregar and Lumbanraja , 2023). 

2.2. Fault diagnosis techniques 

Doernenburg’s ratio method and Roger’s revised IEC-599r ratio method is used in this study 

and fuzzy logic is applied on it with proposed method. 

The standard of concentrations of dissolved gas served as the foundation for defect diagnostics 

in the ratio techniques. R1 = CH4/H2, R2 = C2H2 / C2H4, R3 = C2H2/CH4,  R4 = C2H6 / 

C2H2, and R5 = C2H4 / C2H6 are the five ratios that have been employed. Parts per million 

(PPM) of dissolved gas analysis (DGA) is used to extract the concentration of gases such as 

ethylene, ethane, and methane (Dhini,2018).  

Each ratio method uses some of these ratios that may be not used by another ratio method. 

Doernenburg’s ratio method used only four ratios (R1, R2, R3 and R4). The diagnosis values 

and the four ratios are shown in Table 1 for Doernenburg’s ratio method and the diagnosis 

value. While Roger’s ratio method uses three ratios only (R1, R2 and R5). The diagnosis values 

and the three ratios are shown in Table 2 for Roger’s revised ratio method. (Nitin and Helonde, 

2011). 

Table 1.  Doernenburg’s method (Arakelian, 2002).  

Fault R1 R2 R3 R4 

Thermal decomposition ˃ 1.0 ˂ 0.75 ˂ 0.3 ˃ 0.4 

Low intensity PRD (corona) ˂ 1.0 Not significant ˂ 0.3 ˃ 0.4 

high intensity PRD (ARC) ˃ 0.1 and ˂ 1.0 ˃ 0.75 ˃ 0.3 ˂ 0.4 
 Table 2. Roger’s revised method (IEEE Power and Energy Society, 2019) 

Fault R1 R2 R5 

NOR.  ˂ 0.1 0.1-1.0 ˂ 0.1 

Low intensity PRD ˂ 0.1 ˂ 0.1 ˂ 0.1 

high intensity PRD  0.1-3.0 0.1-1.0 ˃ 3.0 

Low temperature thermal  ˂ 0.1 0.1-1.0 0.1-3.0 

Thermal fault ˂ 700 C0  ˂ 0.1 ˃ 1.0 0.1-3.0 

Thermal fault ˃ 700 C0 ˂ 0.1 ˃ 1.0 ˃ 3.0 

3. SELECTION TOOL AND CASES  

To develop of any system, there should be a suitable selection for development tool. The 

computer language is flexible and the users can develop his methodology program 

formulations. The chosen for language should be declarative and very simple. The MATLAB 

has these benefits. By the help for this interface a capability of explaining, training and tracing 

in system is greatly signified.  

Through a review of the literature, fifty real data cases as shown in Table 3,were gathered. 

Papers involving actual DGA readings from actual power transformers used by power 

distribution companies worldwide were gathered online. Each DGA reading or sample had a 
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real fault that was found following an examination by real experts. Attempts were made to 

gather cases from the AL-Dorra Refinery Company and other energy distribution stations; 

however, these attempts were unsuccessful as it was discovered that they had not yet adopted 

the DGA method for maintaining their power transformers in Iraq. 

Table 3. Data cases (PPM) 

Cases H2 CH4 C2H6 C2H4 C2H2 Co Real   Fault 

1 317 335 58 580 642 0 ARC 

2 245 44 0 23 52 219 ARC 

3 233 23 161 10 0 231 PRD 

4 0.3 55 10 135 4 252 OVH 

5 160 53 28 6 0 190 NOR. 
6 911 104 231 153 363 82 ARC 

7 24 31.76 5.8 44 60 0.3 ARC 

8 802 1391 301 2818 3002 0.4 ARC 

9 21 42 32 7 1.3 191 OVH 

10 86 30 10 35 29 131 DHE 

11 22 35 62 1 0.2 48 NOR. 
12 32 31 61 6 0.1 49 NOR. 
13 99 97 46 162 0 0.09 OVH 

14 63 17 13 83 0.8 453 OVH 

15 7 22 4.23 8 0.3 390 OVH 

16 81 618 325 2481 0.9 267 OVH 

17 415 696 72 868 0.21 203 OVH 

18 237 22 150 10.2 0.9 223 PRD 

19 5 72 60 162 <1 193 OVH 

20 46 42 2 71 80 0.1 ARC 

21 6.3 12 5 1.8 0.1 216 OVH 

22 496 1772.9 277 2437 2.8 292 OVH 

23 443 206 42 223 263 160 ARC 

24 17 14 160 70 2.02 157 NOR. 
25 115 1416 298 2092 0.2 0 OVH 

26 11 12 18 11 0.3 0.1 NOR. 
27 1361 2551 1331 560 0.8 551 OVH 

28 1773 3632 1071 8484 79 831 OVH 

29 5.3 106 105 4 0.2 73 NOR. 
30 11 63 6 3 0.9 0.1 OVH 

31 36 78 124 6 0.2 0.1 OVH 

32 22 22 25 96 0 158 OVH 

33 9475 4065 352 6551 12996 554 ARC 

34 232 21 162 11 1.8 230 PRD 

35 237 22 150 10.2 0.9 223 PRD 

36 1 66 11 149 5 177 OVH 

37 39 34 57 2.7 0.2 53 NOR. 
38 33 37 10 42 7 47 DHE 

39 57 337 43 395 1.8 0 OVH 

40 3 5 7 1 1 0.5 NOR. 
41 6 13 5 2 0 216 OVH 

42 23.9 25 23.22 3.5 0 104 OVH 

43 230 3996 1724 5587 0.2 0 OVH 

44 3 14 45 36 2 1 OVH 

45 126 23 0 33 83 0 ARC 

46 5 72 60 162 <1 193 OVH 



Kufa Journal of Engineering, Vol. 16, No. 3, July 2025               357 

 
 

Cases H2 CH4 C2H6 C2H4 C2H2 Co Real   Fault 

47 45 17 0.11 9 0 117 ARC 

48 55 0.4 0 5 0 105 ARC 

49 505 1055 294 1443 18 20 OVH 

50 336 36 1.7 32.9 52 0.1 PRD 

Where: 

OVH : for overheat; PRD : for partial discharge; PRDLE : for partial discharge low energy; 

DHE : for discharge high energy and ND : for not diagnosable.  

4.  FUZZY DIAGNOSTIC SYSTEM: 

Any real integer between 0 and 1 can be the truth value of a variable in fuzzy logic, a kind of 

many-valued logic.The system's inputs and outputs are mapped as non-linear and static. Since 

i = 1, 2, 3, 4,..., n, and j = 1, 2, 3, 4,..., m, let us suppose that the system (fuzzy) has input from 

Ui to Un and output from Yj to Ym. Crisp values make up the input and output. Instead of being 

fuzzy sets, all of the values in the input and output are actual integers. The inference mechanism 

uses fuzzy rules at the rule base to find fuzzy conclusions, which are then converted into crisp 

outputs by the decussation block, as shown in Fig. 1 (Su, Q., and Austin 2000).  

Fig. 1. Fuzzy System (Yang and Liao, 1999). 

4.1. Fuzzification: 

The fuzzy set is used to quantify the information of the base rule, and the mechanism of 

inference operates on a fuzzy set. Fuzzification is the conversion or transformation of the 

numeric system’s input into a fuzzy set (Xu. and Wang, 1997). 

4.2. Inference mechanism: 

A fuzzy inference is a method that interprets values at the input vector based on several sets of 

rules and assigns values to the output vector. Fuzzy inference is the process of mapping the 

given input to the output by using fuzzy logic.  

4.3. Defuzzification  

A defuzzification is a driving the value of the fuzzy set. A typical technique of the 

defuzzification for an implied fuzzy set is a center of gravity is given by 
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Ucrisp = 
𝜺 𝑩𝒊 ∫ 𝝁(𝒊)

𝜺 ∫ 𝝁(𝒊)
          (1) 

Where  𝑩𝒊 : the center of membership function, ∫ 𝝁(𝒊): the area under the function on  

𝝁(𝒊). s Ucrisp : a numerical output. ( IEEE, 2009). 

5. PROPOSED METHOD:  

The program whose systematic diagram of proposed method is given in Fig. 2 is arranged as 

follows: 

1- It prompts the user to enter the value of the levels of gases concerned in the fault diagnostic 

procedure of transformer (input step). 

2- then the two methods are incorporated after fuzzifying the level of gases (fuzzification step).  

3- the rules of each method are applied separately as the rule base using fuzzy logic in the 

inference mechanism (analysis or processing step). 

4-The process reach the end after defuzzifying the output to get crisp value indicting a certain 

fault (defuzzification step). 

5- the final results are displayed all together on the same screen, each method suggests a fault 

along with a percentage indicating its certainty or its confidence in its diagnosis. If however the 

certainty of the diagnosis is determined as zero the then the system proceeds in such a way as 

to give a NOT Diagnosable (ND)result which means that the system was not able to determine 

the fault responsible for these gases in the sample. 

The proposed method has used three ratios (R1, R2, and R5) as follows: 

1. For ratio R1, four fuzzy subsets of the trapezoidal type have been assigned: very low (VL), 

low (L), medium (M), and high (H). 

2: The ratio R2 for fuzzy subsets of the trapezoidal membership function used in this study 

has been assigned very low (VL), low (L), medium (M), and high (H). 

For ratio R5, five fuzzy subsets of the trapezoidal type have been assigned: low (L), medium 

(M), high (H), very high (VH), and very very high (VVH). 

6. RESULTS AND DISCUSSION: 

     When imputing the data cases to developed system several points can be observed through 

individual analysis of all fifty  data cases that have been used in this new developed system.  

In the first method, revised version IEC_599r as shown in Fig.3 the inference approach achieves the 

detection results by assuming 3-dimebtions space patron ( I , j, K ) and  more than three fuzzy subsets 

had to be used . For ratio R2 four fuzzy subsets have been used Very Low (VL), Low (L), Medium 

(M), and High (H). The same number and assignments of fuzzy subsets have been used for ratio R1 
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whereas for ratio R5 six fuzzy subsets have been used or assigned as Very Low (VL), Low (L), 

Medium (M), High (H), Very High (VH)and Very Very High (VVH)). 

Fig.2.  Systematic Diagram of the Proposed System 
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Fig.3. Fuzzy Relations Based on Roger’s Method IEC_599r 

MF: Membership Function 

Likewise, the second method Doernenburg’s which uses four ratios (R1, R2, R3, R4) have been 

incorporated making the general form of a rule look a little bit different. The third method that 

has been implemented in this study is the proposed method. 

The results of Roger’s revised method IEC599r and Doernenburg’s method in the Table 4 and 

5 respectively. 

Table 4. Results of IEC_599r Method 

Cases Actual Fault Correct Certainty Incorrect ND 

1.  ARC DHE 26.83   

2.  ARC DLE 100   

3.  PRD PRD 100   

4.  OVH OVH > 700 100   

5.  NOR.   OVH < 300  

6.  ARC ARC 100   

7.  ARC    ND 

8.  ARC DHE 100   

9.  OVH OVH < 300 100   

10.  DHE DHE 100   

11.  NOR.   OVH < 300  

12.  NOR.   OVH < 300  

13.  OVH OVH 300-700 52.92   

14.  OVH OVH 100   

15.  OVH OVH 300-700 100   

16.  OVH OVH > 700 100   

17.  OVH OVH > 700 100   

18.  PRD PRD 100   

19.  OVH OVH 300-700 100   

20.  ARC DHE 100   

21.  OVH 0H < 300 66.67   

22.  OVH OVH > 700 100   

23.  ARC DHE 100   

 

1 

1 

1 

0 

0 

0 

R2 

R1 

R5 

H M 

MF 

VH VVH 

M H 

H M 

VL 

VL 

VL 

L 

L 

L 



Kufa Journal of Engineering, Vol. 16, No. 3, July 2025               361 

 
 

Cases Actual Fault Correct Certainty Incorrect ND 

24.  NOR.   OVH < 300  

25.  OVH OVH > 700 100   

26.  NOR.   OVH < 300  

27.  OVH OVH < 300 100   

28.  OVH OVH > 700 100   

29.  NOR.   OVH < 300  

30.  OVH OVH < 300 66.67   

31.  OVH OVH < 300 100   

32.  OVH OVH > 700 93.48   

33.  ARC DLE 100   

34.  PRD PRD 100   

35.  PRD PRD 100   

36.  OVH OVH > 700 100   

37.  NOR.   OVH < 300  

38.  DHE   OVH > 700  

39.  OVH OVH > 700 100   

40.  NOR.   OVH < 300  

41.  OVH 0H < 300 66.67   

42.  OVH OVH < 300 100   

43.  OVH OVH 300-700 100   

44.  OVH OVH < 300 100   

45.  ARC DLE 100   

46.  OVH OVH < 300 66.67   

47.  ARC    ND 

48.  ARC ARC 100   

49.  OVH OVH > 700 100   

50.  PRD DLE 57.79   

Table 5.  Results of Doernenburg’s Method 

Cases Real Fault Correct Certainty Incorrect ND 

1.  ARC    ND 

2.  ARC    ND 

3.  PRD    ND 

4.  OVH    ND 

5.  NOR.    ND 

6.  ARC    ND 

7.  ARC    ND 

8.  ARC    ND 

9.  OVH    ND 

10.  DHE    ND 

11.  NOR.    ND 

12.  NOR. NOR. 100   

13.  OVH    ND 

14.  OVH    ND 

15.  OVH    ND 

16.  OVH    ND 

17.  OVH    ND 

18.  PRD    ND 

19.  OVH    ND 

20.  ARC    ND 

21.  OVH    ND 

22.  OVH THERMAL 100   

23.  ARC    ND 

24.  NOR.    ND 
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Cases Actual Fault Correct Certainty Incorrect ND 

25.  OVH    ND 

26.  NOR.    ND 

27.  OVH Thermal 100   

28.  OVH Thermal 100   

29.  NOR.    ND 

30.  OVH    ND 

31.  OVH    ND 

32.  OVH    ND 

33.  ARC ARC 100   

34.  PRD    ND 

35.  PRD    ND 

36.  OVH    ND 

37.  NOR.    ND 

38.  DHE    ND 

39.  OVH    ND 

40.  NOR.    ND 

41.  OVH    ND 

42.  OVH    ND 

43.  OVH    ND 

44.  OVH    ND 

45.  ARC    ND 

46.  OVH Thermal 22.94   

47.  ARC    ND 

48.  ARC    ND 

49.  OVH    ND 

50.  PRD    ND 

 

• The Doernenburg’s method did not manage to get a satisfactory result, as it has diagnosed correctly 

only 5 cases out of 50 which means 10.2% and that was expected, as this method has many validation 

tests before reaching the final decision, showing this fact is another reason for involving this method 

in the final program. 

• The new revised method IEC_599r which has achieved about 72% (36 out of 50 data cases), and 

this is probably because the latter does not have a code for the NOR. condition and so has failed to 

diagnose such a condition, thereby decreasing its percentage of correct diagnosis. 

• Proposed Method Table 6  which is a combination of the advantages of both of the Doernenburg’s 

ratio  method and the IEC_599r  ratio method, Table 7 explain the results of proposed method which  

has successfully yielded the best percentage of correct diagnosis which is 84% ( 41 of 50 data cases); 

Table 8 shows the comparison between the three methods of DGA in percentage correct, percentage 

of certainty, percentage incorrect, and percentage of NOT diagnosis, which represent the accuracy of 

the work. 

Table 6. The Proposed Method 

Characteristic Fault C2H2/C2H4 (R2) CH4/H2 (R1) C2H4/C2H6(R5) 

NOR. <0.1 0.1-1 <1 

Partial Discharge Not significant <0.2 <1 

Discharge of Low Energy >1 0.1-0.5 >1 
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Characteristic Fault C2H2/C2H4 (R2) CH4/H2 (R1) C2H4/C2H6(R5) 

Discharge of High Energy 0.5-3.5 0.1-1 >2 

Thermal Fault 

T < 300°C 
<0.2 Not significant <1 

Thermal Fault 

300°C < T < 700°C 
<0.1 >1 1-3 

Thermal Fault 

T > 700°C 
<0.2 >1 >3 

Table 7.  Results of the Proposed Method 

Cases Real Fault Correct Certainty Incorrect ND 

1.  ARC DHE 65.06   

2.  ARC DLE 100   

3.  PRD PRD 100   

4.  OVH OVH > 700 100   

5.  NOR. NOR. 100   

6.  ARC PRD 100   

7.  ARC    ND 

8.  ARC DHE 100   

9.  OVH OVH  < 300 100   

10.  DHE DHE 100   

11.  NOR.   OVH < 300  

12.  NOR. NOR. 55.4   

13.  OVH OVH 300-700 19.85   

14.  OVH OVH 100   

15.  OVH OVH 300-700 100   

16.  OVH OVH > 700 100   

17.  OVH OVH > 700 100   

18.  PRD PRD 100   

19.  OVH OVH 300-700 100   

20.  ARC DHE 100   

21.  OVH OVH 150-300 67.1   

22.  OVH OVH > 700 100   

23.  ARC DHE 100   

24.  NOR.   OVH < 300  

25.  OVH OVH > 700 100   

26.  NOR. NOR. 100   

27.  OVH OVH  < 300 100   

28.  OVH OVH  > 700 100   

29.  NOR.   OVH < 300  

30.  OVH OVH < 300 66.67   

31.  OVH OVH < 300 100   

32.  OVH OVH > 700 60.71   

33.  ARC DLE 100   

34.  PRD PRD 100   

35.  PRD PRD 100   

36.  OVH OVH > 700 100   

37.  NOR. NOR. 81.2   

38.  DHE DHE 37.14   

39.  OVH OVH > 700 100   
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• This proposed method is an effort that has been made to contribute to the problem of power 

transformer incipient fault diagnosis and hence to the power transformer reliability, which 

would in turn mean the reliability of the power distributing utility as a whole. 

• This effort was made possible by using the advantages of both of the Doernenburg’s ratio 

method and the revision IEC_599r so that a high percentage of correct diagnosis is ensured 

which is the most important advantage as far as fault diagnosis is concerned. 

Table 8.  Final Results 

Method% DOERNEN-BURG IEC_599r PROPOSED 

Correct 12 76 92 

Certainty 83.3 90.3 89.1 

ND 48 12 4 

Fig. 4.  Comparison of all DGA methods 

The percentage accuracy comparison of the three DGA techniques is shown in Fig.4. It is 

mentioned that the percentage accurate sample for the DOERNENBURG, IEC 599r, and 

suggested ratio approaches is 10.2%, 72%, and 84%, respectively. The aforementioned three 

approaches have percentage confidence values of 84.59%, 92.92%, and 88.8%, respectively. 

The DOERNENBURG ratio method's incorrect percentage is 0%, while the IEC_599r and 

suggested ratio techniques' respective percentages are 18.37% and 8.16%, respectively. Lastly, 

Cases Real Fault Correct Certainty Incorrect ND 

40.  NOR.   OVH 300-700  

41.  OVH OVH 150-300 65.7   

42.  OVH OVH < 300 100   

43.  OVH OVH  > 700 100   

44.  OVH OVH < 300 100   

45.  ARC DLE 100   

46.  OVH OVH < 300 22.94   

47.  ARC ARC 100   

48.  ARC ARC 100   

49.  OVH OVH > 700 100   

50.  PRD DLE 57.79   
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for the methodologies employed in this work, the proportion of non-diagnosis cases is 90%, 

10.2%, and 8.16%. 

This suggested approach has successfully reduced the workload of an engineer by more than 

84%. In addition, diagnosis can be made in a much shorter amount of time, reducing failure or 

downtime and raising overall power system reliability—a feature that is of utmost importance 

to any utility or power distribution company. 

7. CONCLUSION:  

The traditional and proposed methods developed and implemented for 50 cases in this study 

have been very successfully used for the detection of faults in different power transformers. 

The link between the variables is represented practically by the application of fuzzy logic. The 

fuzzy logic technique may also be used to diagnose several issues. Fuzzy logic may be used in 

DGA techniques to extend transformer life while correspondingly lowering maintenance costs. 

To improve this method's accuracy, additional transformer cases need to be examined in 

relation to real faults. To achieve adequate accuracy, suitable membership functions and 

regulations are also required. 
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