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ABSTRACT

Transformer is one of the major and most important high-cost components of electrical power
systems, so it is necessary to prolong their life span , reduce downtime and maintenance. There
are many types of electrical and chemical diagnostic methods for monitoring insulation
conditions for the transformer, like Doerneburg’s and Roger’s revised IEC-599r methods. This
study introduces fuzzy logic, which handles vague, imprecise, and uncertain fault diagnoses for
transformers. This work applies fuzzy logic for three methods: Doerneburg’s, IEC 599r, and
proposed methods by using MATLAB to measure the dissolved gas in the mineral oil of
transformers to explain if the transformer is faulty or NOR., and when the transformer is faulty,
what must be done for accumulation of gases. The results explain that the correct diagnosis for
the three methods: Doernenburg’s, IEC-599r, and the proposed method is 12%, 76%, and 92%,
and the certainty is 83.3%, 90.3%, and 89.1%, respectively.
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1. INTRODUCTION

The infrastructure of electrical utilities is essential to providing a steady power supply to their
customers. Power transformers are some of the most expensive and important pieces of
equipment in the power system, and their reliability directly affects the safety of power
operations (Sdood, H., 2013). Any issue with the power transformer might lead to the power
supply being off, which would also mean large financial losses. Mechanical, electrical, or
thermal stress can cause defects in transformer oil insulators. Power transformer fault categories
that frequently arise include ARC, partial discharge, low-energy sparking, severe overloading,
pump motor failure, and insulation system overheating (Elmabrouk, et.al..2020). Carbon
monoxide (CO), ethylene (C2H4), acetylene (C2H2), ethane (C2H6), hydrogen (H2), and
methane (CH4) The application of fuzzy logic for power transformer fault detection has been
the subject of several studies. The fuzzy inference system (FIS) is a technology that was created
to solve the problem of inconsistent DGA interpretations and related faults. 250 different
situations were used to assess the accuracy of various DGA techniques in understanding the
transformer state (Nitin, and Helonde, 2014). Research on classic DGA methods for fault
detection in power transformers indicates a promising result: the approach can monitor the
gases released by imminent faults and indicate the health of the transformer. Consequently, it
exhibits a low susceptibility to initial mistakes and depends on expert evaluation (Ghani, et.al.
2022)- (Demirci and Taplamacioglu, 2023). Furthermore, the fuzzy inference system, a fuzzy
logic tool, was presented in (Yousif, 2016) and used to detect and monitor multiple transformer
faults. It has proven to be a very useful tool for transformer diagnosis and maintenance
scheduling. MOVHammed et al. 2023, transformer failure detection method was presented in
response to the fact that DGA can be ineffective in diagnosing certain situations. However, it
has some drawbacks, including complexity, accuracy that depends on the quality of the input
data, potential modelling errors, and challenges capturing real-world dynamics for fault
diagnosis and optimization. Three techniques for identifying transformer defects were
combined by Iregar and Lumbanraja 2012; however, their methods lacked a sufficient cooling
system, resulting in an unintentional failure. Ahmed et al. 2013 , created a system that combines

three different DGA techniques—Rogers, IEC, and Duval—into just one diagnosis scheme.

2. METHDOLOGY

2.1. Dissolved gas analysis (DGA):
There are several methods for identifying such fault gases. The most successful approach is

DGA, as it has been acknowledged. A small amount of oil is sampled from the transformer to
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determine the quantity of dissolved gases and to diagnose the defect causing the gases that have
been identified (Siregar and Lumbanraja , 2023).
2.2.  Fault diagnosis techniques
Doernenburg’s ratio method and Roger’s revised IEC-599r ratio method is used in this study
and fuzzy logic is applied on it with proposed method.
The standard of concentrations of dissolved gas served as the foundation for defect diagnostics
in the ratio techniques. R1 = CH4/H2, R2 = C2H2 / C2H4, R3 = C2H2/CH4, R4 = C2H6 /
C2H2, and R5 = C2H4 / C2H6 are the five ratios that have been employed. Parts per million
(PPM) of dissolved gas analysis (DGA) is used to extract the concentration of gases such as
ethylene, ethane, and methane (Dhini,2018).
Each ratio method uses some of these ratios that may be not used by another ratio method.
Doernenburg’s ratio method used only four ratios (R1, R2, R3 and R4). The diagnosis values
and the four ratios are shown in Table 1 for Doernenburg’s ratio method and the diagnosis
value. While Roger’s ratio method uses three ratios only (R1, R2 and RS). The diagnosis values
and the three ratios are shown in Table 2 for Roger’s revised ratio method. (Nitin and Helonde,
2011).

Table 1. Doernenburg’s method (Arakelian, 2002).

Fault Ri1 R2 R3 R4
Thermal decomposition >1.0 <0.75 <0.3 >04
Low intensity PRD (corona) <1.0 Not significant <0.3 >0.4
high intensity PRD (ARC) >0.1and<1.0 >0.75 >0.3 <04
Table 2. Roger’s revised method (IEEE Power and Energy Society, 2019)

Fault Ri1 R2 Rs
NOR. <0.1 0.1-1.0 <0.1
Low intensity PRD <0.1 <0.1 <0.1
high intensity PRD 0.1-3.0 0.1-1.0 >3.0
Low temperature thermal <0.1 0.1-1.0 0.1-3.0
Thermal fault < 700 C° <0.1 > 1.0 0.1-3.0
Thermal fault > 700 C° <0.1 > 1.0 >3.0

3. SELECTION TOOL AND CASES

To develop of any system, there should be a suitable selection for development tool. The
computer language is flexible and the users can develop his methodology program
formulations. The chosen for language should be declarative and very simple. The MATLAB
has these benefits. By the help for this interface a capability of explaining, training and tracing
in system is greatly signified.

Through a review of the literature, fifty real data cases as shown in Table 3,were gathered.
Papers involving actual DGA readings from actual power transformers used by power

distribution companies worldwide were gathered online. Each DGA reading or sample had a
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real fault that was found following an examination by real experts. Attempts were made to
gather cases from the AL-Dorra Refinery Company and other energy distribution stations;
however, these attempts were unsuccessful as it was discovered that they had not yet adopted
the DGA method for maintaining their power transformers in Iraq.

Table 3. Data cases (PPM)

Cases H2 CH4 C2H6 C2H4 C2H2 Co Real Fault
1 317 335 58 580 642 0 ARC
2 245 44 0 23 52 219 ARC
3 233 23 161 10 0 231 PRD
4 0.3 55 10 135 4 252 OVH
5 160 53 28 6 0 190 NOR.
6 911 104 231 153 363 82 ARC
7 24 31.76 5.8 44 60 0.3 ARC
8 802 1391 301 2818 3002 0.4 ARC
9 21 42 32 7 1.3 191 OVH
10 86 30 10 35 29 131 DHE
11 22 35 62 1 0.2 48 NOR.
12 32 31 61 6 0.1 49 NOR.
13 99 97 46 162 0 0.09 OVH
14 63 17 13 83 0.8 453 OVH
15 7 22 423 8 0.3 390 OVH
16 81 618 325 2481 0.9 267 OVH
17 415 696 72 868 0.21 203 OVH
18 237 22 150 10.2 0.9 223 PRD
19 5 72 60 162 <1 193 OVH
20 46 42 2 71 80 0.1 ARC
21 6.3 12 5 1.8 0.1 216 OVH
22 496 1772.9 277 2437 2.8 292 OVH
23 443 206 42 223 263 160 ARC
24 17 14 160 70 2.02 157 NOR.
25 115 1416 298 2092 0.2 0 OVH
26 11 12 18 11 0.3 0.1 NOR.
27 1361 2551 1331 560 0.8 551 OVH
28 1773 3632 1071 8484 79 831 OVH
29 5.3 106 105 4 0.2 73 NOR.
30 11 63 6 3 0.9 0.1 OVH
31 36 78 124 6 0.2 0.1 OVH
32 22 22 25 96 0 158 OVH
33 9475 4065 352 6551 12996 554 ARC
34 232 21 162 11 1.8 230 PRD
35 237 22 150 10.2 0.9 223 PRD
36 1 66 11 149 5 177 OVH
37 39 34 57 2.7 0.2 53 NOR.
38 33 37 10 42 7 47 DHE
39 57 337 43 395 1.8 0 OVH
40 3 5 7 1 1 0.5 NOR.
41 6 13 5 2 0 216 OVH
42 239 25 23.22 3.5 0 104 OVH
43 230 3996 1724 5587 0.2 0 OVH
44 3 14 45 36 2 1 OVH
45 126 23 0 33 83 0 ARC
46 5 72 60 162 <1 193 OVH
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Cases H2 CH4 C2H6 C2H4 C2H2 Co Real Fault
47 45 17 0.11 9 0 117 ARC
48 55 04 0 5 0 105 ARC
49 505 1055 294 1443 18 20 OVH
50 336 36 1.7 329 52 0.1 PRD
Where:

OVH : for overheat; PRD : for partial discharge; PRDLE : for partial discharge low energy;
DHE : for discharge high energy and ND : for not diagnosable.

4. FUZZY DIAGNOSTIC SYSTEM:

Any real integer between 0 and 1 can be the truth value of a variable in fuzzy logic, a kind of
many-valued logic.The system's inputs and outputs are mapped as non-linear and static. Since
1=1,2,3,4,..,n,and j=1, 2, 3, 4,..., m, let us suppose that the system (fuzzy) has input from
Ui to Un and output from Yj to Ym. Crisp values make up the input and output. Instead of being
fuzzy sets, all of the values in the input and output are actual integers. The inference mechanism
uses fuzzy rules at the rule base to find fuzzy conclusions, which are then converted into crisp

outputs by the decussation block, as shown in Fig. 1 (Su, Q., and Austin 2000).

Rule Base
Crisp Fuzzification Rules Defuzzification | Crisp
input Module Module output
Y
Inference |
Fuzzy Enginee Fuzzy
Input Output

Fig. 1. Fuzzy System (Yang and Liao, 1999).
4.1.  Fuzzification:
The fuzzy set is used to quantify the information of the base rule, and the mechanism of
inference operates on a fuzzy set. Fuzzification is the conversion or transformation of the
numeric system’s input into a fuzzy set (Xu. and Wang, 1997).
4.2. Inference mechanism:
A fuzzy inference is a method that interprets values at the input vector based on several sets of
rules and assigns values to the output vector. Fuzzy inference is the process of mapping the
given input to the output by using fuzzy logic.
4.3. Defuzzification
A defuzzification is a driving the value of the fuzzy set. A typical technique of the

defuzzification for an implied fuzzy set is a center of gravity is given by
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Ucrisp SBif”(i) (1)
Where B;: the center of membership function, [ p(i): the area under the function on

pu(Q). s Uerisp : a numerical output. ( [EEE, 2009).

5. PROPOSED METHOD:

The program whose systematic diagram of proposed method is given in Fig. 2 is arranged as
follows:

1- It prompts the user to enter the value of the levels of gases concerned in the fault diagnostic
procedure of transformer (input step).

2- then the two methods are incorporated after fuzzifying the level of gases (fuzzification step).
3- the rules of each method are applied separately as the rule base using fuzzy logic in the
inference mechanism (analysis or processing step).

4-The process reach the end after defuzzifying the output to get crisp value indicting a certain
fault (defuzzification step).

5- the final results are displayed all together on the same screen, each method suggests a fault
along with a percentage indicating its certainty or its confidence in its diagnosis. If however the
certainty of the diagnosis is determined as zero the then the system proceeds in such a way as
to give a NOT Diagnosable (ND)result which means that the system was not able to determine
the fault responsible for these gases in the sample.

The proposed method has used three ratios (R1, R2, and RS5) as follows:

1. For ratio R1, four fuzzy subsets of the trapezoidal type have been assigned: very low (VL),
low (L), medium (M), and high (H).

2: The ratio R2 for fuzzy subsets of the trapezoidal membership function used in this study
has been assigned very low (VL), low (L), medium (M), and high (H).

For ratio RS, five fuzzy subsets of the trapezoidal type have been assigned: low (L), medium

(M), high (H), very high (VH), and very very high (VVH).

6. RESULTS AND DISCUSSION:

When imputing the data cases to developed system several points can be observed through
individual analysis of all fifty data cases that have been used in this new developed system.
In the first method, revised version IEC_599r as shown in Fig.3 the inference approach achieves the
detection results by assuming 3-dimebtions space patron (I, j, K ) and more than three fuzzy subsets
had to be used . For ratio R2 four fuzzy subsets have been used Very Low (VL), Low (L), Medium

(M), and High (H). The same number and assignments of fuzzy subsets have been used for ratio R1
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whereas for ratio R5 six fuzzy subsets have been used or assigned as Very Low (VL), Low (L),

Medium (M), High (H), Very High (VH)and Very Very High (VVH)).

anpulGas >

Calculate R{-R5

v
Convert R,to VL, L, M, H, VH, VH
R,to VL,L,M, H, VH, Ry to VL, M
Rs;to VL, L, M, H, VH, Ryto VL, M

F1 with C1

A

F,with C,

(DefuzzificatiorD

Fig.2. Systematic Diagram of the Proposed System
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MF

R2

VL L

R1

VH VVH

Fig.3. Fuzzy Relations Based on Roger’s Method IEC_599r

MF: Membership Function
Likewise, the second method Doernenburg’s which uses four ratios (R1, R2, R3, R4) have been

incorporated making the general form of a rule look a little bit different. The third method that
has been implemented in this study is the proposed method.

The results of Roger’s revised method IEC599r and Doernenburg’s method in the Table 4 and
5 respectively.

Table 4. Results of IEC 599r Method

Cases Actual Fault Correct Certainty Incorrect ND
1. ARC DHE 26.83

2. ARC DLE 100

3. PRD PRD 100

4. OVH OVH > 700 100

5. NOR. OVH <300
6. ARC ARC 100

7. ARC ND
8. ARC DHE 100

9. OVH OVH <300 100

10. DHE DHE 100

11. NOR. OVH <300
12. NOR. OVH <300
13. OVH OVH 300-700 52.92

14. OVH OVH 100

15. OVH OVH 300-700 100

16. OVH OVH > 700 100

17. OVH OVH > 700 100

18. PRD PRD 100

19. OVH OVH 300-700 100

20. ARC DHE 100

21. OVH OH <300 66.67

22. OVH OVH > 700 100

23. ARC DHE 100
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Cases Actual Fault Correct Certainty Incorrect ND
24, NOR. OVH <300
25. OVH OVH > 700 100
26. NOR. OVH <300
27. OVH OVH <300 100
28. OVH OVH > 700 100
29. NOR. OVH <300
30. OVH OVH < 300 66.67
31. OVH OVH <300 100
32. OVH OVH > 700 93.48
33. ARC DLE 100
34, PRD PRD 100
35. PRD PRD 100
36. OVH OVH > 700 100
37. NOR. OVH <300
38. DHE OVH > 700
39. OVH OVH > 700 100
40. NOR. OVH <300
41. OVH OH <300 66.67
42. OVH OVH <300 100
43, OVH OVH 300-700 100
44, OVH OVH <300 100
45. ARC DLE 100
46. OVH OVH <300 66.67
47. ARC ND
48. ARC ARC 100
49. OVH OVH > 700 100
50. PRD DLE 57.79
Table 5. Results of Doernenburg’s Method

Cases Real Fault Correct Certainty Incorrect ND
1. ARC ND
2. ARC ND
3. PRD ND
4, OVH ND
5. NOR. ND
6. ARC ND
7. ARC ND
8. ARC ND
9. OVH ND
10. DHE ND
11. NOR. ND
12. NOR. NOR. 100
13. OVH ND
14. OVH ND
15. OVH ND
16. OVH ND
17. OVH ND
18. PRD ND
19. OVH ND
20. ARC ND
21. OVH ND
22. OVH THERMAL 100
23. ARC ND
24, NOR. ND
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Cases Actual Fault Correct Certainty Incorrect ND
25. OVH ND
26. NOR. ND
27. OVH Thermal 100
28. OVH Thermal 100
29. NOR. ND
30. OVH ND
31. OVH ND
32. OVH ND
33. ARC ARC 100
34. PRD ND
35. PRD ND
36. OVH ND
37. NOR. ND
38. DHE ND
39. OVH ND
40. NOR. ND
41. OVH ND
42. OVH ND
43. OVH ND
44, OVH ND
45. ARC ND
46. OVH Thermal 22.94
47. ARC ND
48. ARC ND
49. OVH ND
50. PRD ND

e The Doernenburg’s method did not manage to get a satisfactory result, as it has diagnosed correctly
only 5 cases out of 50 which means 10.2% and that was expected, as this method has many validation
tests before reaching the final decision, showing this fact is another reason for involving this method
in the final program.

e The new revised method IEC 599r which has achieved about 72% (36 out of 50 data cases), and
this is probably because the latter does not have a code for the NOR. condition and so has failed to
diagnose such a condition, thereby decreasing its percentage of correct diagnosis.

e Proposed Method Table 6 which is a combination of the advantages of both of the Doernenburg’s
ratio method and the IEC 599r ratio method, Table 7 explain the results of proposed method which
has successfully yielded the best percentage of correct diagnosis which is 84% (41 of 50 data cases);
Table 8 shows the comparison between the three methods of DGA in percentage correct, percentage
of certainty, percentage incorrect, and percentage of NOT diagnosis, which represent the accuracy of

the work.

Table 6. The Proposed Method
Characteristic Fault C2H2/C2H4 (R2) CH4/H2 (R1) C2H4/C2H6(RS)
NOR. <0.1 0.1-1 <1
Partial Discharge Not significant <0.2 <1
Discharge of Low Energy >1 0.1-0.5 >1
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Characteristic Fault C2H2/C2H4 (R2) CH4/H2 (R1) C2H4/C2H6(R5)
Discharge of High Energy 0.5-3.5 0.1-1 >2
%hjgrgglogault <0.2 Not significant <1
Thermal Fault
300°C < T < 700°C <01 -1 -3
Thermal Fault
T > 700°C <0.2 >1 >3

Table 7. Results of the Proposed Method
Cases Real Fault Correct Certainty Incorrect ND

1. ARC DHE 65.06

2. ARC DLE 100

3. PRD PRD 100

4. OVH OVH > 700 100

5. NOR. NOR. 100

6. ARC PRD 100

7. ARC ND

8. ARC DHE 100

9. OVH OVH <300 100

10. DHE DHE 100

11. NOR. OVH <300

12. NOR. NOR. 55.4

13. OVH OVH 300-700 19.85

14. OVH OVH 100

15. OVH OVH 300-700 100

16. OVH OVH > 700 100

17. OVH OVH > 700 100

18. PRD PRD 100

19. OVH OVH 300-700 100

20. ARC DHE 100

21. OVH OVH 150-300 67.1

22. OVH OVH > 700 100

23. ARC DHE 100

24, NOR. OVH <300

25. OVH OVH > 700 100

26. NOR. NOR. 100

217. OVH OVH <300 100

28. OVH OVH > 700 100

29. NOR. OVH <300

30. OVH OVH <300 66.67

31. OVH OVH <300 100

32. OVH OVH > 700 60.71

33. ARC DLE 100

34. PRD PRD 100

35. PRD PRD 100

36. OVH OVH > 700 100

37. NOR. NOR. 81.2

38. DHE DHE 37.14

39. OVH OVH > 700 100
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Cases Real Fault Correct Certainty Incorrect ND
40. NOR. OVH 300-700
41. OVH OVH 150-300 65.7
42. OVH OVH < 300 100
43. OVH OVH > 700 100
44. OVH OVH < 300 100
45. ARC DLE 100
46. OVH OVH <300 22.94
47. ARC ARC 100
48. ARC ARC 100
49. OVH OVH > 700 100
50. PRD DLE 57.79

¢ This proposed method is an effort that has been made to contribute to the problem of power

transformer incipient fault diagnosis and hence to the power transformer reliability, which

would in turn mean the reliability of the power distributing utility as a whole.

e This effort was made possible by using the advantages of both of the Doernenburg’s ratio

method and the revision IEC 599r so that a high percentage of correct diagnosis is ensured

which is the most important advantage as far as fault diagnosis is concerned.

Table 8. Final Results

Method % DOERNEN-BURG IEC 599r PROPOSED
Correct 12 76 92
Certainty 83.3 90.3 89.1
ND 48 12 4

%

Accurcacy comparision of each DGA method

Correct
Certainty
M incorrect

END

DOERNENBURG IEC_599r PROPOSED

Fig. 4. Comparison of all DGA methods

The percentage accuracy comparison of the three DGA techniques is shown in Fig.4. It is

mentioned that the percentage accurate sample for the DOERNENBURG, IEC 599r, and

suggested ratio approaches is 10.2%, 72%, and 84%, respectively. The aforementioned three

approaches have percentage confidence values of 84.59%, 92.92%, and 88.8%, respectively.
The DOERNENBURG ratio method's incorrect percentage is 0%, while the IEC 599r and

suggested ratio techniques' respective percentages are 18.37% and 8.16%, respectively. Lastly,
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for the methodologies employed in this work, the proportion of non-diagnosis cases is 90%,
10.2%, and 8.16%.

This suggested approach has successfully reduced the workload of an engineer by more than
84%. In addition, diagnosis can be made in a much shorter amount of time, reducing failure or
downtime and raising overall power system reliability—a feature that is of utmost importance
to any utility or power distribution company.

7. CONCLUSION:

The traditional and proposed methods developed and implemented for 50 cases in this study
have been very successfully used for the detection of faults in different power transformers.
The link between the variables is represented practically by the application of fuzzy logic. The
fuzzy logic technique may also be used to diagnose several issues. Fuzzy logic may be used in
DGA techniques to extend transformer life while correspondingly lowering maintenance costs.
To improve this method's accuracy, additional transformer cases need to be examined in
relation to real faults. To achieve adequate accuracy, suitable membership functions and
regulations are also required.
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