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ABSTRACT

The Grey Wolf Optimizations GWO Algorithm, is the newer technique to optimize the
uncertain optimization problems by autotuning parameters. GWO algorithm is very useful due
to its ease of implementation, direct results, robustness, and low computation cost. However,
any application involving control systems can also use proportional integral derivative (PID)
controllers. Numerous researchers use a variety of techniques, including fuzzy logic, particle
swarm optimization, evolutionary algorithms, and others, to attempt to determine the ideal
values of P, I, and D. Nonetheless, the primary goal of this work is to determine how well the
intelligent algorithm GWO performs while autotuning the PID controller for a permanent
magnet direct current (PMDC) motor. The GWO algorithm was selected as an optimization
method, and the standard PID's settings were adjusted using integral time absolute error (ITAE).
The results proved that GWO as an autotuning PID Controller is better compared to classical
PID controller in terms of high performance of the motor’s speed, and good response with
steady -state error equal to zero moreover it can be used to obtain optimal position tracking by

using PMDC for many applications.

KEYWORDS

Speed Controller, Position controller, The Grey Wolf Optimizations GWO Algorithm,
Proportional integral derivative (PID), Permanent magnet direct current (PMDC) motor.

@ @ This work is licensed under a Creative Commons Attribution 4.0 International License.
E:.'I'.


https://creativecommons.org/licenses/by/4.0/
mailto:50071@uotechnology.edu.iq
mailto:sahar.r.faraj@uotechnology.edu.iq
mailto:ghassan.bilal@uotechnology.edu.iq

Kufa Journal of Engineering, Vol. 16, No. 3, July 2025 147

1. INTRODUCTION

Numerous industrial applications have made extensive use of PMDC motors. Position and
speed control are the primary focal points of these applications. Many control strategies are
used, including PID as a conventional controller, linear quadratic regulator LQR which is used
in optimal control theory, and fuzzy logic controller FLC. Nonetheless, due to its resilience and
simplicity, the PID method is the most often used approach (Sanprasit and Artrit,2019; Aloo,
et al.2016).

In order to ensure that the process variable and set point are equal, the PID controllers keep the
output at a certain level (Jasim et al., 2021). PID controllers are widely utilized in industrial
facilities because of their dependability and simplicity of usage. Numerous methods, including
Ziegler-Nichols, Cohen-coon tuning, and Z-N step response, are available in the literature to
adjust the settings of PID controllers. However, a number of these traditional approaches have
drawbacks (Johnson and Moradi,2005).

For the design of a PMDC motor speed controller, a controlling restricted optimum PID
parameters (KP, KI, KD) is proposed (Molina et al.,2019; Potnuru et al.,2019). In order to
execute angle and speed tracking, a high-performance motor drive system frequently has to
have a strong dynamic reaction. In addition, the motor drive must to react to variations in the
load in real time (El-Deen et al.,2015; Gaing ,2004; Syafaah et al.2017).

In 2014, Mir Jalili et al. introduced the Grey Wolf Optimizer (GWO) algorithm, a novel meta-
heuristic approach inspired by the social hierarchy and hunting behavior of grey wolves in
nature (Mirjalili et al ,2014; Mirjalili et al.,2016; Mirjalili 2015; Shahrzad 2015). The GWO
algorithm mimics the leadership structure and collaborative hunting tactics of grey wolves in
the wild, offering a powerful optimization technique. The approach mimics the hunting
techniques and social structure of the grey wolf community. As seen in Fig. 1, the grey wolf
hierarchy applies four different types of simulations: Alpha (a), Beta (B), Delta (8), and Omega
(o). The Alpha (o) wolf, the group's leader, is mostly in charge of deciding on things like where
to hunt, where to sleep, when to get up, etc. The second place in the hierarchy is occupied by
Beta () wolves, who are subordinate to Alpha (o) wolves. The Beta (f) wolf is referred to as
an Alfa (o) decision-assistant.

The following are the primary stages of grey wolf hunting (Song, et al,2015)

* Following, tracking, and getting close to the prey.

* Challenging, surrounding, and irritating the victim until it yields.

* Make an assault on the target.

The function of each group has also been defended in Fig.1. (Faris et al.2018; Soni et al,2021)
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Fig. 1. Hierarchy of GWO (Faris et al., 2018)
Several studies will be presented as a related work:
(Zaber et al., 2017) presented PID controller based on slope variation method to controlling on
position of a radio telescope the results of the response were without overshot.
(Deshpande and Bhavikatti, 2018) presented artificial neural network integrated PID controller
for mor efficient tracking performance (Idir et al., 2018) presented Proportional-Integral
Derivative PID (FOPID) for speed control DC motor. used Differential Evolution (DE) and
Particle Swarm Optimization (PSO) for designing fractional order PID controller. The results
showed improve the tracking proses, minimize the error and measurement noise attenuation.
(Saputra et al., 2019) used PID controller as a speed control for servo motor to stabilize the
antenna. (Alsayed et al., 2020) presented speed control of DC motor based on a Krill Herd
Optimization (KHA) algorithm. (Sule et al., 2020) to overcome the limitation of PSO and GA
technique used Grey Wolf algorithim to tun the parameter of PI controller for speed wind
turbine. (Abedulabbas and Yaseen, 2022), used PI controller for BLDC motor the improve the
speed performance for a proposed motor by using GWO and PSO. the results which are
obtained by using GWO is more efficient under different mechanical loads and speeds. (Paul et
al., 2022) designed PID with GA for four models of transfer function of direct current motor
the results had a much faster response than the response of the classical method. (Rahayu et al.,
2022) presented tunning PID based PSO algorithm for DC motor. The results showed optimal
performance using Simulink MATLAB, then entering the optimal value of PID in hardware
Arduino (IDE) software to produce a stable speed response.
The main problem statement in the present research is autotuning PID parameters to obtain
optimal speed and position of PMDC motor, where the conventional methods take a long time
to reach optimal values.

In the current work the first step: study the response of speed and position of a PMDC motor
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without controller then with using conventional PID controller, as main objective achieves
optimal speed and optimal position tracing for PMDC motor using intelligent algorithm GWO

to tune the parameters of PID controller.

2. MODELING OF PMDC MOTOR
the motor's velocity and the voltage provided to the armature is the aim of the mathematical
model's creation. By taking the system's mechanical and electrical properties, two balancing

equations may be created. (Khanam and Parmar, 2017)

2.1.  Electrical Properties

The graphic illustrates the electrical circuit of a PMDC motor. a voltage source (Va) placed
across the coil of the armature. The electrical equivalent of an armature coil can be represented
as an inductance (La) in series with a resistance (Ra) in series with an induced voltage (Vc) that
opposes the voltage source. The induced voltage is created when the electrical coil rotates

across the fixed flux lines of the permanent magnets. (Suresh Kumar et al., 2008)

Fig.2 . Electrical representation of a PMDC motor. (Muruganandam and Madheswaran, 2009)
A differential equation for the matching circuit may be found by applying Kirchoff's voltage
law around the electrical loop. Kirchoff's voltage rule states that all of the surrounding voltages

must either sum up to zero as in Eq.1.(Muruganandam and Madheswaran, 2009).

Vo= Vea = Vg =V.=0 (D
Where:
Vea = laRq ()
d .
Via = Lqg it lg (3)
Ve = kywq 4)

V. is input voltage, V. output voltage. armature current denoted ia, ky is the velocity constant
that is derived from the armature's iron core's reluctance, the flux density of the permanent
magnets, and the winding's number of turns. The armature's rotational velocity is represented

by wa.
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The differential equation that results from substituting Eqs.2,3, and 4 into Eq.1 is as follows:
(Muruganandam and Madheswaran, 2009).

Vo = iaRa = La-ia — kywq = 0 (5)
2.2. Mechanical Features
The torques of the motor added together must equal zero in order to perform an energy balance
on the system. (Muruganandam and Madheswaran, 2009)

T, - Tw' =T, —T, =0 (6)
where T,is the electromagnetic torque, Tw' is the torque due to the rotor's rotational
acceleration, T}, is the torque of the mechanical load, and rotor velocity is the source of Tw. The
armature winding current is directly proportional to the electromagnetic torque.

T, = kig (7
where, ki the torque constant, depends on the iron core's reluctance, the flux density of the fixed
magnets, and the number of turns in the armature winding, much way the velocity constant does
T, may be expressed as

Tw' =] — 3

J represents the mechanical load that aligns with the rotor's inertia. The torque may be
represented as follows in relation to velocity:

T, = Bw, ©)
where B is the damping coefficient connected to the machine's mechanical rotating mechanism.

Upon substituting Eqs.7,8, and 9 into Eq.6, the subsequent differential equation is obtained.
Ktia - ]

dwg
dt

Bw,—T, =0 (10)

The differential equations for the armature current and angular velocity found in Eqgs.5 and 10

may be expressed as

a . Rg . k Ve

_la:'_a la—_v (Da+_a (11)
d ki. B Ty
_(D =—1 _—(D -—_— 12
ETa B B (12)

2.3. Block Diagram and Transfer Function
It is possible to create a block diagram for the system by using the differential equations

provided in Egs.11 and 12. Using each equation's Laplace transform yields.(Siong et al., 2010)

. R k 1
Sl (s) — iq(0) = _ila(s)_iwa(s) +ZVa(s) (13)
K B 1
Sa(s) = 0g(0) = %1,() —Twa(s) =Ty (S)  (14)
The starting conditions go to zero and all the variables become some change around a reference
state if perturbations about some steady state values are taken into account. The equations may

be stated as follows:
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—kypq(5)—Va(s)

lo(s) = =2 o= (15)
— kila(s)=TL(s)

wa(s) = —HE (16)

The block diagram for a proposed model is shown in the Fig.3. by assuming that the torque
applied to the load is constant. The only load torque that has to be considered in the system is
friction, which remains mostly constant while the motor is operating. Tj is not necessary as
shown in the block diagram because its change is zero. Furthermore, apply block diagram
algebra then reduces this block diagram to find an overall transfer function for PMDC motor as

shown in Eq.17 (Shanmugasundram et al,2009).

Ia(s\)

‘ —)
7\ l 1Te ~ wals)
\ + 1 5+‘/ o™ 1
u’a_){é)_) Las + Ra _l% kt :—)\3)_%5 +B )
|
T )
] 1L

Ve

kv

Fig. 3. Block diagram of the PMDC motor as modeled in this study.(Suresh Kumar et al., 2008)
Ya _ Ky
Vg LaJs?+(RqJ+LgB)s+(RqB+KyKy) (7

3. SIMULATION MODEL OF PMDC MOTOR

The specifications and settings for the PMDC motor utilized in this paper have been provided
in Table 1 for simulation purposes (Moussavi et al.,2012). The modeling control systems are
very important in terms of examining the behavior of the system (Alyousuf, and Korkmaz,
2023) from this fact used conventional controller then enhancement the performance of the
system by artificial intelligent strategi

Table 1: Parameters of DC motors. (Moussavi et al.,2012)

PARAMETERS VALUES UNITS
R, 7.72 Q
L, 0.1627 H
K 1.25 Nm/A
B 0.003 N.m.s/r
J 0.023 Kg.m"2
K, 1.25 v.sec/rad

The main contribution for a present study is designing a PID controller and tuned it by GWO
to obtain optimal speed and position for PMDC motor, used MATLAB 2023b.Fig. 4 shows the
flow chart of the proposed GWO algorithm.
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The final expression of open loop PMDC motor for Speed and position control is in Eq.18 and

19 respectively

wg 325.5
Vg S2+47.575+412.9 (18)
) 3255

= (19)

vg  S3+47.5752+412.95s
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function

!
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|
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Yes

prmt the optimal
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Fig. 4. Flow chart for GWO
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4. SIMULATION RESULTS AND DISCUSSION

4.1. Results of PMDC Motor Without Controller

The simulation for open loop PMDC motor is tested in MATLAB-Simulink model as shown in
Fig. 5 where, the input is unit step and the output is position and speed. The results of speed
and position response respectively are shown in the Figs. 6 and 7. where the speed is
unacceptable with high study error and, the response of position is unstable. the Simulink model
for closed loop PMDC motor in Fig. 8.the response curves of speed and position still unstable

as shown in Figs. 9 and 10.

v J
speed
N 3255 1
I &+ 47575 +412.9 5 )
unit Step input PMDC motorT. Fcn -
position

Fig. 5 .Simulink model of open loop PMDC motor
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Fig. 6. speed response for open loop PMDC motor
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Fig. 7 position response of open loop PMDC motor
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Fig. 8 .simulinlk model for closed loop PMDC motor
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Fig. 9. speed response for closed loop PMDC motor
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Fig. 10. position response for closed loop PMDC motor

4.2. Results of PMDC Motor With Controller
The first controller is PID tuner controller .the value for gains of PID controller for speed

control are:k, = 4.7882,k; = 92.67,kq = 0.0516. ,for postion controller are: k, =

47.55,k; = 41.8,k; = 4.7406. the response for speed and position control have over shot so
the system excessively deviate from its desired value the syteme take long because has an
acceptable period for settiling time .to improve the performance of motor must be use optimal
parameter of PID controller by GWO algorithm. Fig. 11 shows the comparative between the
three speed response (witiout controller ,with PID controllere,and PID tunning with GWO

algorithm). The results when used the intelligent algorithm to tun the parameter of conventional
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controller is demonstrated the superiority of the optimum response speed, in term of time, a
stable state, and accuracy. Table 3 shows the comparative for the values of performance

parameter for PMDC motor when motor without controller ,at PID controller, and PID based

intelligent technique (GWO) for speed.

PMDCmotor

——without controller
12- e = =PID Controller
: - = —— Tunning PID Controller using GWO

I~

e
T

~

1

=3
T

o 8 peegl(rm_gqec)

=~
T

=
9
T

0 | 1 | | 1 | | | |
0 0.05 0.1 0.15 0.2 03 0.35 04 0.45 0.5

time O(i%gtmd:)

Fig. 11. speed response (witiout controller ,with PID controllere,and tunning PID
with GWO algorithm)

Table 3 performanse response for speed control

parameters  Without controller With PID controller Tunning PID using GWO

Rise time 0.1021 0.0428 6.835¢-06
Transient Time 0.1634 0.2471 1.218e-05
Settling Time 0.1634 0.2471 1.218e-05
Overshoot 0.3390% 20.0346% 0%
Peak Time 0.2381 0.0946 3.279¢-05

moreover, the Gray wolf technology algorithm was chosen as an optimization technique and
ITAE to adjust the parameters of the traditional PID controller to achieve optimum position
tracking response as shown in Fig. 12 where it’s more difficult to obtain perfect tracking
position with optimal performance parameter as shown in Table 4. Fig. 13 shows ITAE with
each iteration close to zero. Fig. 14. Shows Window of T.F code for PMDC motor. Fig. 15.
shows window of code for GWO-PID.

PMDC Motor

1.4 T T T T T T T I I

- ——closed Loop without contraller

" ~ - PID Controller
q2k 1 ———Tunning PID Coniroller using GWO

' [
1 )
S S
N

0 0.5 1 1.5 2 .25 3 35 4 a5 5
time {seconds)

Fig. 12 position response (witiout controller ,with PID controllere,
and tunning PID with GWO algorithm)
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Table 4 Performance Response for Position Control

parameters Without controller With PID controller Tunning PID using GWO

Rise time (s) non 0.0715 5.6708e-04
Transient Time (s) Non 0.9128 0.0010
Settling Time(s) Non 0.9128 0.0010
Overshoot Non 31.3324% 0%”
Peak Time(s) o0 0.1749 0.0028
15 TIAE with eack iteration
1 - .
&
= 057} 1
o
c
2
g 0 r--—-——-7"~"7""°"7T°"°T°TTTTToTTTmmoTETETIEIEIEIITIETTT .
o
051 T
-1 1 1 1 1 1

0 1000 2000 3000 4000 5000 6000
Iteration

Fig. 13 ITAE with each iteration at speed control
cf =

325.5

s~2 + 47.57 5 + T738.4

Continuocus—time transfer function.

ans =

struct with fields:

RiseTime: 0.1021
TransientTime: 0.1634
SettlingTime: 0.1634
SettlingMin: 0.35%78
SettlingMax: 0.4423
Overshoot: 0.3390
Undershoot: 0
Peak: 0.4423
PeakTime: 0.2381

Gcfl =

16.79 s~2 + 1559 s + 3.01l6=04

53 + €4.3¢6 s5~2 + 15872 s + 3.01l¢ée=04

fr Continuous—time transfer function.

Fig. 14. Window of T.F code for PMDC motor
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1 % PMDC

2 clc

3 close allj;

A clear;

5 n1=325.5;

6 di=1;

7 d2=47.57;

2 d2=412.9;

=] ns= [n1];
1@ ds = [d1 d2 d3];
11 G= tf(ns,ds)
12 Gf=feedback(G,1)
13 #%Contig = RespConfig('Delay”,.5);
14 step(Gf)
15 stepinfo (Gf)
16 grid on
17 hold on
18 kpl=4.7887;
19 kil=92.67;
20 kdl=©.0516;
21 Gecl=pid(kpl,kil,kd1);
22 Gcfl=feedback({(Gcl1*G,1)
23 %Conftig = RespConfig('Delay”,.5);
24 step(Gcti)
25 stepinfo (Gcf1)
26 hold on
27 %Gwo parameters
28 iter=100;
29 pop=6@;

3e a_gwo=2;

31 var=32;

32 % search space

23 al=6; Z%lower bound

34 au=18ee; Xupper bound

Fig. 15. Window’s code for GWO-PID

5. CONCLUSIONS

This study submitted behavior of PMDC motor in the case of open and closed loop, and study
the characteristics of the speed and position response without controller that gave an unstable
response. Then suggested a traditional PID controller. To get an optimal response must be used
an intelligent algorithm, so to improve the value of gains parameters of PID controller used
GWO algorithm. The results showed speed control without over shot and fast response with
study state error equal zero. also 100% position tracking has been achieved with study state

error equal zero and more accuracy for many applications.
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