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ABSTRACT  

Image denoising is a key challenge in the field of image processing, focusing on eliminating 

undesirable noise while maintaining essential features like edges and textures. This research 

comparatively analyzed various methods of the Undecimated Wavelet Transform (UWT) for 

achieving image denoising. The initial section examined the performance of Mean Squared 

Error (MSE) and Root Mean Squared Error (RMSE) utilizing MATLAB, indicating that 

biorthogonal wavelets provide optimal noise reduction with minimal degradation of detail. 

The subsequent section investigated various thresholding techniques, specifically SURE, 

Hybrid, and Universal by calculating their processing times evaluated over four levels of 

decomposition in LabVIEW. Results demonstrated that SURE exhibits the longest 

computational duration, particularly at elevated levels of decomposition, whereas the Hybrid 

approach offered a favorable balance between performance and processing time. Conversely, 

the Universal thresholding method is identified as the most expedient, proving to be the most 

efficient at greater levels of wavelet decomposition. 
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1. INTRODUCTION 

The Undecimated Wavelet Transform (UWT) is an effective tool in the field of signal 

processing and plays a main role in providing advanced capabilities for feature extraction and 

data analysis. The Undecimated Wavelet Transform (UWT) offers advantages over traditional 

Discrete Wavelet Transform (DWT) by preserving all original signal samples since it avoids 

decimation. However, the UWT is prone to aliasing due to its down-sampling step. Despite this, 

the UWT effectively retains temporal and spatial correlations in data, making it a suitable 

choice for audio analysis and image processing (Jebur et al., 2024). While UWT does 

experience aliasing, the resulting artifacts are generally less problematic for denoising tasks 

compared to those encountered in typical image reconstruction or compression processes. To 

counteract the effects of aliasing and improve noise removal, techniques such as wavelet 

thresholding and cycle spinning are frequently used in conjunction with UWT. Moreover, the 

translation invariance characteristic of UWT aids in reducing noise without producing the 

artifacts often seen with DWT-based methods (Bnou, Raghay and Hakim, 2020). Another 

important attribute of UWT is its inherent shift-invariance, which enhances robustness during 

the image denoising process. This quality is particularly crucial for security applications and 

processing multi-language data. Researchers have effectively utilized UWT as a feature 

extraction tool to bolster security measures by detecting anomalies and differentiating between 

legitimate and harmful content (Engineering, 2019). Incorporating the UWT into sophisticated 

frameworks like the Word Embedded Semantic Marginal Auto encoder enhances semantic 

understanding during image denoising and improves image quality. The versatility and 

effectiveness of the UWT make it a valuable tool for developing security systems and ensuring 

high-level data integrity that necessitate various languages and contexts. (Abdulazeez, Zeebaree 

and Abdulqader, 2020). To successfully minimize noise within a signal, it is crucial to begin a 

decomposition process by utilizing wavelet transform. The UWT allows for the division of a 

signal into a set of coefficients that relate to different frequency ranges. Upon successful 

completion of this initial phase, relevant information pertaining to the signal's characteristics 

can be extracted. A comprehensive understanding of the signal's behavior across different 

frequency segments will enable the selection of the most appropriate threshold during the 

subsequent phase. The following step involves identifying and applying optimal threshold 

techniques to the derived coefficients, thereby enabling the removal of extraneous data (Patil 

and Pawar, 2012). 

2. IMAGE DENOISING USING UNDECIMATED WAVELET  

Nowadays, enhancing image content is important to understand and learn the structured features 
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of images, as well as initiate end-to-end large data training in image analysis ( Mohammed et 

al, 2022). This enhancing process of image quality can be achieved usefully by using the 

Undecimated Wavelet Transform (UWT), which has become one of the most common, 

important and effective in many applications, especially medical imaging to obtain a maximum 

image resolution (Larbi, Naimi and Bourennane, 2023). Unlike the discrete wavelet transform 

(DWT), which down samples the approximation coefficients and detail coefficients at each 

decomposition level, the undecimated wavelet transform (UWT) does not incorporate the down 

sampling operations (Li et al., 2023). Thus, the approximation coefficients and detail 

coefficients at each level are the same length as the original signal. The UWT up samples the 

coefficients of the lowpass and high pass filters at each level. The up-sampling operation is 

equivalent to dilating wavelets. The resolution of the UWT coefficients decreases with 

increasing levels of decomposition (Rodriguez-Hernandez and Emeterio, 2016). 

UWT waves facilitate reliable interpretation of visual information across a variety of 

application domains, enabling analytical innovations that manage and control the distortions of 

noisy data. This has led to a significant transformational step in the accuracy of interpreting 

data transmitted in the digital scene, facilitating researchers’ use of these waves in their imaging 

techniques (Gupta et al., no date). 

2.1. The Noise in digital images 

Noise in image processing occurred due to the random variation where caused a different 

intensity value of pixels in the recontacted image instead of true pixel values of the original 

image. The noise will lead to loss the essential information that is hidden inside images and 

then the image quality will decrease due to variation of image brightness or color. In general, 

the noise is added to the digital image during the image acquisition or transmission (Deswal, 

Gupta and Bhushan, 2015). The quality of image sensors is altered by various parameters like 

atmospheric conditions at the time of image acquisitions as well as the quality of sensor itself. 

The image degradation during its acquisition and transmission is occurred due to the 

electromagnetic interference in the channel (Gupta, Mishra and Singh, 2021).  

2.1.1. Sources of noise 

Digital images are frequently impacted by noise, which can diminish their quality. Common 

sources of noise include inadequate lighting conditions, environmental effects on image 

sensors, and transmission errors over networks. It is crucial to comprehend these sources in 

order to choose effective denoising techniques.(Nayak, S and Student, 2021)-(Jebur et al., 

2024). 

https://www.ni.com/docs/en-US/bundle/labview-advanced-signal-processing-toolkit-api-ref/page/lvasptconcepts/wa_dwt.html
https://www.ni.com/docs/en-US/bundle/labview-advanced-signal-processing-toolkit-api-ref/page/lvasptconcepts/wa_dwt.html
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2.1.2. Noise Types: 

Digital images can be affected by various types of noise, which can degrade their quality. A 

brief overview of the most common types of noise that might affect on the reconstructed image: 

1. Gaussian Noise: The Gaussian noise has a bell-curve distribution, where pixel values are 

altered by a random value drawn from a Gaussian distribution (Jebur et al., 2024). 

2. Salt-and-Pepper Noise: This noise adds random white and black pixels to an image, 

resembling salt-and-pepper sprinkled over it (Jebur et al., 2024). 

3. Poisson Noise: This noise, also known as shot noise, results from the discrete nature of light 

photons. It is prevalent in low-light conditions (Tun, Sugiura and Shimamura, 2024). 

4. Speckle Noise: Common in radar and medical imaging, speckle noise causes granular 

interference due to random variations in the reflected signals (Qun et al., 2023). 

5. Quantization Noise: Arises when continuous signal values are mapped to discrete levels, 

commonly seen in the analog-to-digital conversion process (Ilesanmi and Ilesanmi, 2021). 

6. Color Noise: Description: This affects the color channels of an image, introducing random 

variations in color values (Ilesanmi and Ilesanmi, 2021). 

2.1.3. The Gaussian White Noise Technique 

Gaussian white noise is one of the most important techniques used in signal processing fields, 

as it is characterized by its statistical properties due to the distribution of values in a symmetrical 

form around the mean, which in turn helps to hide signals in some applications, reducing the 

possibility of making an accurate interpretation of these signals. Therefore, the use of the 

Undivided Wavelet Transform (UWT) technique was resorted to in order to preserve critical 

temporal and spatial correlations within the data, which leads to the possibility of processing 

and interpreting signals correctly (Rodriguez-Hernandez and Emeterio, 2016). Additionally, 

advanced frameworks integrating UWT can polish semantic understanding while effectively 

reducing noise levels, which leads to improve the quality of data and facilitate the security 

measures through anomaly detection. Thereby, the incorporation of Gaussian white noise filters 

into these methodologies will deskill the researchers’ work in developing more practical and 

flexible systems with high-level data integrity across different contexts and applications (Aziz, 

2024). Analyzing the effects of Gaussian white noise with studying effective methods to 

mitigate it will help to achieve great progress in scientific fields such as telecommunications 

and artificial intelligence applications (Rajini, 2016). 

2.2. The Orthogonal and Bi-Orthogonal Undecimated Wavelets 

Orthogonal and bi-orthogonal waves are the two main types of UWT wavelets. In orthogonal 

waves, the wave functions are orthogonal to each other, meaning that their inner product is zero, 
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which helps in accurately and clearly reconstructing the original image based on the wave 

coefficients without repetition. Due to the orthogonality of these waves, the image 

decomposition and reconstruction process is efficient, accurate, and successful. Some common 

types of these wavelets are Haar, Dubuisches waves, and Symlets wavelets (Wang, Liu and 

Zhou, 2024). The Bi-orthogonal wavelets have two sets of waves: one for image decomposition 

and the other for image reconstruction. The most special feature of bi-orthogonal wavelets is 

that the wavelets and scaling functions used in image analysis are completely different from 

those that are used in image synthesis. This type of wavelet is also flexible and can be used in 

specific applications (C. and Chui, 1993). 

2.3. Different Thresholding Techniques 

There are various thresholding techniques that used with Undecimated Wavelet Transform 

(UWT) in the image denoising process. These thresholding techniques are played a very 

important and effective role in preserving the resolution and details of the transferred image 

and complex thresholding, basing on the shift-invariant property of UWT which enables it to 

adapt to different noise characteristics and image features (Ismael and Baykara, 2022). 

2.3.1. SURE-Based Thresholding (SureShrink) Technique 

SURE (Stein's Unbiased Risk Estimate) thresholds are adapted to UWT wavelets by calculating 

the number of thresholds that minimize the unbiased estimate of risk, designed according to the 

piecewise coefficients. The SURE value for a given threshold λ is calculated as in Eq.1: 

𝑆𝑈𝑅𝐸() =
1

𝑁
 ∑(𝑊𝑖 −  𝑊̂𝑖)

2
+ 22 −  

𝜎2

2

𝑁

𝑖=1

         (1) 

Where: 

• Wi    represents the original wavelet coefficient at index i. 

• 𝑊𝑖̂   represents the thresholded wavelet coefficient. 

• σ2     represents the estimated noise variance, and  

• N      represents the number of wavelet coefficients (Ismael and Baykara, 2022). 

Most recently, in most image denoising applications, SURE is combined with other statistical 

methods or within certain hybrid models by considering the frequency domain and spatial 

information. 

2.3.2. Universal Thresholding Technique 

Universal thresholding, also known as VisuShrink, is a well-known method for removing noise 

from images that preserves fine image details by applying a thresholding technique to the 
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waveforms. This threshold technique is calculated basing on the noise level of the image and is 

defined as in Eq. 2: 

 =  𝜎√2 log(𝑁)                                                                    (2) 

Where:  

σ represents the estimated noise standard deviation, and  

N represents the number of pixels in the image. 

The threshold value λ is applied uniformly to all wave coefficients. When the threshold is 

determined, all these coefficients are reduced to zero if their absolute value is less than the 

threshold value λ, otherwise they are reduced by λ (Zach et al., 2024). 

2.3.3. Hybrid Thresholding Technique 

Hybrid thresholding is achieved by combining multiple thresholding strategies, taking 

advantage of the features and strengths of each threshold. Hybrid thresholding typically 

combines hard and soft thresholding, Bayesian techniques, adaptive thresholding, and machine 

learning. 

As an example, Hybrid thresholding, the of combining of VisuShrink (universal thresholding) 

with adaptive thresholding, which can be represented in the following Eq. 3: 

Thybrid(i) = min (max (Tuniversal,Tadaptive(i)),Tmax)    (3) 

Where: 

Thybrid(i) represents the hybrid threshold for coefficient iii. 

Tuniversal represents the universal threshold (Ismael and Baykara , 2022). 

3. RELATED WORKS 

Over the past decades, researchers have done a lot of research on the topic of transmitted images 

de-noising, and in this section, many of these research articles are presented in this section.  

Zhou, X., & Yang, Z.2024 (Li et al., 2024), Investigated the UWT for denoising hyperspectral 

images and addressing the unique challenges posed by this imaging modality. W. Rahmann, 

2024 (Rahmann, 2024) encompassed common types of noise such as Gaussian noise, salt and 

pepper noise, and speckle noise, and evaluates the performance of filtering techniques including 

mean filtering, median filtering, and Gaussian filtering. M. Elad, B. Kawar 2023 (Elad, Kawar 

and Vaksman, 2023) , provided a broad view of the history of the field of image denoising and 

closely related topics in image processing to give a better context to recent discoveries, and to 

the influence of the AI revolution in the domain.R. Gondal & et al, 2021 (Gondal et al., 2021), 

in his research reviewed the types of noise generated in mammography images and reviewed 

the most important methods used to remove them. A. N. Amiri Golilarz, H. Gao.(Amiri Golilarz 



318                 Latif 

et al., 2020) 2020, Focused on adaptive thresholding techniques within the UWT framework, 

aiming to improve denoising performance by dynamically adjusting thresholds based on local 

image characteristics. Nayak & A. Verma, 2018 (Nayak and Verma, 2018) presented detailed 

research on the topic of images denoise, by presenting the different used techniques, with their 

performance, and comparing these methods and their efficiency. S. Sumanth & A. Suresh, 2017 

(Sumanth and Suresh, 2017) reviewed many mechanisms for image denoise for some types of 

digital images during transmission. They also presented different types of image filtering 

methods to choose the appropriate filter in terms of efficiency and speed based on noise 

behavior. J. Nader & et al, 2017 (Nader, A. and Zahran, 2017) presented research on the type 

of salt and pepper with Gaussian noise effects and using many methods to reduce this type of 

noise. S. Tania & R. Rowaida, 2016 (Tania and Rowaida, 2016), presented research including 

an experimental study with comparative work on several models to improve corrupted and 

blurred images by checking the performance of all the applied models. The researchers G. Kaur 

& et al, 2016 (Boyat and Joshi, 2015), They reviewed different methods of removing noise from 

images with their masks to accurately transfer images while preserving their edges. The results 

showed the efficiency of some filters in removing noise from images, while showing some 

inefficient types that increased the deterioration of image quality and removed edges. P. Athira 

& et al, 2016 (P., K. and Krishnan, 2016), The researchers reviewed the field of biomedical 

research and focused on the types of methods used in image denoise from mammography 

images. M.Pious & et al, 2015  (Saha and Mandal, 2015) in their research presented many noise 

cases that have different impact on image quality and reviewed many effective image denoise 

methods that can attack the image collectively, sometimes the transmitted images are attacked 

by more than one type of noise, they showed in their research some methods to reduce this 

noise.  

S. Kaur, 2015 (Kaur, 2015), reviewed several axes in her research and focused on the form of 

noise and how it affects the quality of transmitted images, with a presentation of some 

algorithms used to purify these images and a presentation of some types of filters and their 

performance. A. Vijayalakshmi & et al, 2014 (Vijayalakshmi and Beaulah, 2014) presented a 

detailed and extensive work to describe and compare denoise models to demonstrate their 

efficiency in purifying images. The researchers M. Farooque & J. Rohankar, 2013 (Farooque, 

2013), divided their article into two stages: the first stage reviewed the types of noise, and the 

second stage discussed the use of each type in denoising process by using wavelets to prove its 

efficiency in improving transmitted images. Mallat 2013, (‘A Wavelet Tour of Signal 

Processing’, 1999) presented an introduction to UWT-Based Denoising with a seminal 
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reference providing comprehensive coverage of wavelet transforms, including UWT, and their 

applications in signal and image processing.  

4. METHODOLOGY 

1. First Comparative Analysis 

The first Comparative Analysis was achieved using MATLAB environments program to 

calculate the values of Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) 

quantitative metrics which are essential to evaluate the effectiveness of denoising algorithms. 

2. Second Comparative Analysis. 

For Evaluating Execution Time, a proposed LabVIEW 2023 simulation system is designed as 

shown in Fig. 1 and Fig. 2.: 

Fig.1. The front panel of LabVIEW 2023 simulation design for image denoising 

Fig.2 The block diagram of LabVIEW 2023 simulation design for image denoising 
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The LabVIEW2023 proposed system outlines a methodical approach. It uses the camera man 

as the test image which is contaminated by Gaussian white noise. The comparison is based on 

calculating the evaluated time values by using different Undecimated Wavelet Transforms 

(UWT), the orthogonal wavelets (e.g., Haar, Daubechies (db5, bd10 and db14), symlets (sym2 

and sym8), coiflets (coif2 and coif5) and biorthogonal wavelets (e.g., Bior2_4, Bior4_4 and 

Bior6_8) with different thresholding techniques (Universal, SURE, and Hybrid techniques. 

These choices will provide a range of wavelet transforms to be evaluated within four 

decomposition levels (1, 5, 10 and 15) in LabVIEW2023. 

Once the selection is made, the next step involves setting up the LabVIEW environment to 

facilitate UWT implementation. This includes utilizing LabVIEW’s Wavelet Toolkit or 

creating custom Virtual Instrument (VI) blocks to perform the wavelet transforms on prepared 

test images or signals that are standardized for consistent analysis. The computation of UWT is 

carried out for each selected wavelet family and decomposition level. 

The thresholding techniques, Universal, SURE, and Hybrid techniques are integrated into the 

LabVIEW program. These techniques are applied to the transformed coefficients at each UWT 

level within the same VI.  

To gauge performance, execution times for each combination of UWT and thresholding 

techniques across different decomposition levels are measured using a built-in timing function. 

A comparison of average execution times is then made to identify the most efficient 

combinations and understand the differences in performance. 

5. RESULTS AND DISCUSSION 

5.1. First Comparative Analysis Results 

The MATLAB Environment program was used to calculate the Mean Squared Error (MSE) 

and Root Mean Squared Error (RMSE) quantitative metrics values. The programs were initiated 

based on Gaussian White Noise filters and SURE-Based Thresholding (SureShrink) functions. 

The MSE results are shown in Fig.3. 

From the above chart, it appears that the Biorthogonal (bior2_4, bior4_4) wavelets are more 

effective for image denoising using the undecimated wavelet transform based on their lower 

MSE values. Conversely, the Haar and and Symlet (sym2) wavelets show poorer performance 

in this specific denoising task. The RMSE results are shown in Fig.4. 

Similar to the MSE chart, the Biorthogonal (bior2_4, bior4_4) wavelets are the most effective 

for denoising as they have the lowest RMSE values. The Haar wavelet performs the worst, 

followed by the and Symlet (sym2). Lower RMSE values reflect better denoising performance, 
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and this comparison confirms the preference for certain wavelets like the biorthogonal family 

for this particular task. 

Fig, 3. The Mean Squared Error (MSE) values for different The UWT Wavelets 

Fig, 4. The Root Mean Squared Error (MSE) values for different The UWT Wavelets 

5.2. Second Comparative Analysis Results 

By using The LabVIEW2023 proposed system, the four decomposition levels (1, 5, 10 and 15) 

are examined to produce a systematic comparison of the evaluated execution times for different 

UWT and thresholding techniques, providing actionable insights for optimizing image 

processing tasks in LabVIEW.  

The results for these four image denoise decomposition levels are shown below: 

5.2.1.   Image Denoise Decomposition Level 1 Results and Discussion 

The results of image denoise decomposition level 1 are shown in Fig. 5. Sure Thresholding 

(blue line) shows variable evaluation times across wavelet families, with lower times for Haar 

and db5, while db10 and db14 exhibit significant increases, peaking at db14. Universal 

Thresholding (red line) generally has lower evaluation times, particularly for Haar and db5, but 

shows a similar trend to Sure Thresholding with a peak at db14. Hybrid Thresholding (green 
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line) consistently takes more time than the other methods, especially at db14, and is most 

computationally intensive with complex wavelets like Biorthogonal and coif2. 

 

Fig. 5: The Evaluated time of different UWT and thresholding techniques for image denoise 

decomposition Level 1 

5.2.2. Image Denoise Decomposition Level 5 Results and Discussion 

The results of image denoise decomposition level 5 is shown in Fig. 6. 

Fig. 6: The Evaluated time of different UWT and thresholding techniques for image denoise 

decomposition Level 5 

Sure Thresholding (blue line) shows an increasing trend in evaluated time with complex 

wavelets, peaking at db14 before slightly decreasing. Haar has the lowest time, while Coif5 

also indicates high complexity. Universal Thresholding (red line) consistently features the 

lowest evaluated times, with notable peaks for db14, while the times for other wavelets vary 

after db14. Hybrid Thresholding (green line) mirrors Sure Thresholding's pattern but generally 

has higher times, with significant peaks at db14 and Coif5, similar to Sure. Biorthogonal 

Wavelets maintain stable but elevated times. 

5.2.3.  Image Denoise Decomposition Level 10 Results and Discussion 

The results of Image Denoise decomposition level 10 are shown in Fig. 7. SURE Thresholding 

(blue line) is the most computationally intensive with the longest evaluation times, especially 
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for complex wavelets like coif5 and sym8. Hybrid Thresholding (green line) offers a balance, 

taking more time than Universal (red line) but less than SURE. Universal Thresholding is the 

least demanding and consistently shows the lowest evaluation times due to its simpler approach. 

As wavelet complexity increases, notably in Daubechies and Symlets, evaluation times rise for 

all techniques, with SURE showing the most significant increases. Biorthogonal wavelets 

generally have lower evaluation times, except bior4.4, which peaks in SURE times. Overall, 

Universal thresholding remains the quickest, while SURE's efficiency declines as wavelet 

complexity grows, suggesting scalability issues. 

Fig. 7: The Evaluated time of different UWT and thresholding techniques for image denoise 

decomposition Level 10 

5.2.4. Image Denoise Decomposition Level 15 Results and Discussion 

The results of image denoise decomposition level 15 are shown in Fig. 8. 

Fig. 8. The Evaluated time of different UWT and thresholding techniques for image denoise 

decomposition Level 15 

At Level 15 of wavelet decomposition, evaluation times are generally higher due to increased 

complexity compared to Level 10. SURE thresholding ( blue line) consistently incurs the 

longest processing times, particularly noticeable at deeper levels, while Hybrid thresholding 
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(green line) shows moderate times and is more intensive than Universal thresholding (red line), 

which remains the most efficient method with the lowest evaluation times. The Haar wavelet 

has the least complexity, while Daubechies wavelets, especially db14, show significantly higher 

evaluation times. Symlets, particularly sym8, and Coiflets, particularly coif5, also exhibit 

increased computational demands. Biorthogonal wavelets tend to have lower times overall but 

still reflect substantial increases with SURE. Higher decomposition levels amplify the 

differences in processing times among techniques, with Universal thresholding proving more 

scalable and efficient, making it advantageous for computation-intensive applications. 

The above results are summarized in Fig. 9. 

Fig. 9. The total performance of thresholding Techniques over the four decomposition Levels 

Fig. 10. shows the output results of the LabVIEW proposed system design of image denoising 

using Undecimated Haar wavelet transform (least evaluated time) for the selected 

decomposition levels (Level 1, Level 5, Level 10, and Level 15) using three different 

thresholding techniques: SURE, Universal, and Hybrid.   

Fig. 11 shows the output results of the LabVIEW proposed system design of image denoising 

using Undecimated Coif5 wavelet transform (higher evaluated time) for the selected 

decomposition levels (Level 1, Level 5, Level 10, and Level 15) using three different 

thresholding techniques: SURE, Universal, and Hybrid.   

From Figs 10 and 11, we notice that as the decomposition level increases, the thresholding 

techniques perform better, but certainly at the expense of some detail of the original image, 

especially at decomposition level 15. The SURE thresholding is the most effective of the other 

techniques, especially at the highest decomposition level of 15, despite some noise. Universal 

thresholding has a balanced performance across the four decomposition levels, as the resulting 

image after denoising is a detail-preserving image despite the effective removal of noise. 

Finally, hybrid thresholding showed strong performance, especially at level 10, where this 

technique can become a compromise in the process of denoising the image, as it supports the 

balance between reducing noise for the image while preserving its detail. 
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Fig. 11. The output results of the LabVIEW proposed system design for Coif5 wavelet 
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6. CONCLUSION 

This study emphasizes the benefits of employing the Undecimated Wavelet Transform (UWT) 

for the purpose of image denoising. Key advantages include substantial noise reduction, 

preservation of edge details, and improved texture representation, all of which collectively 

enhance the overall quality of the image. The utilization of MATLAB for the computation of 

Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) facilitates precise 

performance assessment, streamlines the evaluation process, and supports the optimization and 

visualization of denoising outcomes. The analysis indicates that specific wavelets, namely 

bior2_4, bior4_4, and coif5, yield optimal MSE results for this task, while wavelets such as 

Haar and sym2 should be avoided when high accuracy and minimized error are paramount. 

This investigation underscores the criticality of selecting the appropriate wavelet contingent 

upon the application demands, as well as the inherent trade-off between computational 

complexity and reconstruction accuracy. 

Moreover, the integration of UWT with LabVIEW enhances the implementation process, 

enabling real-time processing and facilitating flexible adjustments of parameters. It is 

noteworthy that different UWT variants and thresholding methods exhibit considerable 

disparities in computational efficiency for image denoising. Of these, SURE thresholding is 

identified as the most computationally intensive, particularly at elevated decomposition levels, 

rendering it less suitable for applications requiring rapid processing. Conversely, hybrid 

thresholds provide a compromise between efficiency and effectiveness, while Universal 

thresholds are characterized by their speed and resource efficiency. The selection of an 

appropriate wavelet and thresholding technique is contingent upon the specific objectives of 

the task, necessitating a careful balance between processing duration and the quality of noise 

elimination. 

In Summary, the tools reviewed in this study significantly enhance the quality of real-time 

image denoising, rendering them both effective and user-friendly. The resultant denoised 

images exemplify the efficacy of the UWT-based denoising approach, particularly when 

utilizing SURE thresholding, demonstrating a pronounced improvement in noise reduction 

while preserving critical details and edges. This substantiates the practical applicability of this 

methodology in high-quality image processing endeavors. 
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