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ABSTRACT

Image denoising is a key challenge in the field of image processing, focusing on eliminating
undesirable noise while maintaining essential features like edges and textures. This research
comparatively analyzed various methods of the Undecimated Wavelet Transform (UWT) for
achieving image denoising. The initial section examined the performance of Mean Squared
Error (MSE) and Root Mean Squared Error (RMSE) utilizing MATLAB, indicating that
biorthogonal wavelets provide optimal noise reduction with minimal degradation of detail.
The subsequent section investigated various thresholding techniques, specifically SURE,
Hybrid, and Universal by calculating their processing times evaluated over four levels of
decomposition in LabVIEW. Results demonstrated that SURE exhibits the longest
computational duration, particularly at elevated levels of decomposition, whereas the Hybrid
approach offered a favorable balance between performance and processing time. Conversely,
the Universal thresholding method is identified as the most expedient, proving to be the most

efficient at greater levels of wavelet decomposition.
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1. INTRODUCTION

The Undecimated Wavelet Transform (UWT) is an effective tool in the field of signal
processing and plays a main role in providing advanced capabilities for feature extraction and
data analysis. The Undecimated Wavelet Transform (UWT) offers advantages over traditional
Discrete Wavelet Transform (DWT) by preserving all original signal samples since it avoids
decimation. However, the UWT is prone to aliasing due to its down-sampling step. Despite this,
the UWT effectively retains temporal and spatial correlations in data, making it a suitable
choice for audio analysis and image processing (Jebur er al., 2024). While UWT does
experience aliasing, the resulting artifacts are generally less problematic for denoising tasks
compared to those encountered in typical image reconstruction or compression processes. To
counteract the effects of aliasing and improve noise removal, techniques such as wavelet
thresholding and cycle spinning are frequently used in conjunction with UWT. Moreover, the
translation invariance characteristic of UWT aids in reducing noise without producing the
artifacts often seen with DWT-based methods (Bnou, Raghay and Hakim, 2020). Another
important attribute of UWT is its inherent shift-invariance, which enhances robustness during
the image denoising process. This quality is particularly crucial for security applications and
processing multi-language data. Researchers have effectively utilized UWT as a feature
extraction tool to bolster security measures by detecting anomalies and differentiating between
legitimate and harmful content (Engineering, 2019). Incorporating the UWT into sophisticated
frameworks like the Word Embedded Semantic Marginal Auto encoder enhances semantic
understanding during image denoising and improves image quality. The versatility and
effectiveness of the UWT make it a valuable tool for developing security systems and ensuring
high-level data integrity that necessitate various languages and contexts. (Abdulazeez, Zeebaree
and Abdulgader, 2020). To successfully minimize noise within a signal, it is crucial to begin a
decomposition process by utilizing wavelet transform. The UWT allows for the division of a
signal into a set of coefficients that relate to different frequency ranges. Upon successful
completion of this initial phase, relevant information pertaining to the signal's characteristics
can be extracted. A comprehensive understanding of the signal's behavior across different
frequency segments will enable the selection of the most appropriate threshold during the
subsequent phase. The following step involves identifying and applying optimal threshold
techniques to the derived coefficients, thereby enabling the removal of extraneous data (Patil
and Pawar, 2012).

2. IMAGE DENOISING USING UNDECIMATED WAVELET

Nowadays, enhancing image content is important to understand and learn the structured features
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of images, as well as initiate end-to-end large data training in image analysis ( Mohammed et
al, 2022). This enhancing process of image quality can be achieved usefully by using the
Undecimated Wavelet Transform (UWT), which has become one of the most common,
important and effective in many applications, especially medical imaging to obtain a maximum
image resolution (Larbi, Naimi and Bourennane, 2023). Unlike the discrete wavelet transform
(DWT), which down samples the approximation coefficients and detail coefficients at each
decomposition level, the undecimated wavelet transform (UWT) does not incorporate the down
sampling operations (Li er al., 2023). Thus, the approximation coefficients and detail
coefficients at each level are the same length as the original signal. The UWT up samples the
coefficients of the lowpass and high pass filters at each level. The up-sampling operation is
equivalent to dilating wavelets. The resolution of the UWT coefficients decreases with
increasing levels of decomposition (Rodriguez-Hernandez and Emeterio, 2016).

UWT waves facilitate reliable interpretation of visual information across a variety of
application domains, enabling analytical innovations that manage and control the distortions of
noisy data. This has led to a significant transformational step in the accuracy of interpreting
data transmitted in the digital scene, facilitating researchers’ use of these waves in their imaging
techniques (Gupta ef al., no date).

2.1. The Noise in digital images

Noise in image processing occurred due to the random variation where caused a different
intensity value of pixels in the recontacted image instead of true pixel values of the original
image. The noise will lead to loss the essential information that is hidden inside images and
then the image quality will decrease due to variation of image brightness or color. In general,
the noise is added to the digital image during the image acquisition or transmission (Deswal,
Gupta and Bhushan, 2015). The quality of image sensors is altered by various parameters like
atmospheric conditions at the time of image acquisitions as well as the quality of sensor itself.
The image degradation during its acquisition and transmission is occurred due to the
electromagnetic interference in the channel (Gupta, Mishra and Singh, 2021).

2.1.1. Sources of noise

Digital images are frequently impacted by noise, which can diminish their quality. Common
sources of noise include inadequate lighting conditions, environmental effects on image
sensors, and transmission errors over networks. It is crucial to comprehend these sources in
order to choose effective denoising techniques.(Nayak, S and Student, 2021)-(Jebur et al.,
2024).


https://www.ni.com/docs/en-US/bundle/labview-advanced-signal-processing-toolkit-api-ref/page/lvasptconcepts/wa_dwt.html
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2.1.2. Noise Types:

Digital images can be affected by various types of noise, which can degrade their quality. A
brief overview of the most common types of noise that might affect on the reconstructed image:
1. Gaussian Noise: The Gaussian noise has a bell-curve distribution, where pixel values are
altered by a random value drawn from a Gaussian distribution (Jebur ef al., 2024).

2. Salt-and-Pepper Noise: This noise adds random white and black pixels to an image,
resembling salt-and-pepper sprinkled over it (Jebur ef al., 2024).

3. Poisson Noise: This noise, also known as shot noise, results from the discrete nature of light
photons. It is prevalent in low-light conditions (Tun, Sugiura and Shimamura, 2024).

4. Speckle Noise: Common in radar and medical imaging, speckle noise causes granular
interference due to random variations in the reflected signals (Qun ef al., 2023).

5. Quantization Noise: Arises when continuous signal values are mapped to discrete levels,
commonly seen in the analog-to-digital conversion process (Ilesanmi and Ilesanmi, 2021).

6. Color Noise: Description: This affects the color channels of an image, introducing random
variations in color values (Ilesanmi and Ilesanmi, 2021).

2.1.3. The Gaussian White Noise Technique

Gaussian white noise is one of the most important techniques used in signal processing fields,
as it is characterized by its statistical properties due to the distribution of values in a symmetrical
form around the mean, which in turn helps to hide signals in some applications, reducing the
possibility of making an accurate interpretation of these signals. Therefore, the use of the
Undivided Wavelet Transform (UWT) technique was resorted to in order to preserve critical
temporal and spatial correlations within the data, which leads to the possibility of processing
and interpreting signals correctly (Rodriguez-Hernandez and Emeterio, 2016). Additionally,
advanced frameworks integrating UWT can polish semantic understanding while effectively
reducing noise levels, which leads to improve the quality of data and facilitate the security
measures through anomaly detection. Thereby, the incorporation of Gaussian white noise filters
into these methodologies will deskill the researchers’ work in developing more practical and
flexible systems with high-level data integrity across different contexts and applications (Aziz,
2024). Analyzing the effects of Gaussian white noise with studying effective methods to
mitigate it will help to achieve great progress in scientific fields such as telecommunications
and artificial intelligence applications (Rajini, 2016).

2.2.  The Orthogonal and Bi-Orthogonal Undecimated Wavelets

Orthogonal and bi-orthogonal waves are the two main types of UWT wavelets. In orthogonal

waves, the wave functions are orthogonal to each other, meaning that their inner product is zero,
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which helps in accurately and clearly reconstructing the original image based on the wave
coefficients without repetition. Due to the orthogonality of these waves, the image
decomposition and reconstruction process is efficient, accurate, and successful. Some common
types of these wavelets are Haar, Dubuisches waves, and Symlets wavelets (Wang, Liu and
Zhou, 2024). The Bi-orthogonal wavelets have two sets of waves: one for image decomposition
and the other for image reconstruction. The most special feature of bi-orthogonal wavelets is
that the wavelets and scaling functions used in image analysis are completely different from
those that are used in image synthesis. This type of wavelet is also flexible and can be used in
specific applications (C. and Chui, 1993).

2.3. Different Thresholding Techniques

There are various thresholding techniques that used with Undecimated Wavelet Transform
(UWT) in the image denoising process. These thresholding techniques are played a very
important and effective role in preserving the resolution and details of the transferred image
and complex thresholding, basing on the shift-invariant property of UWT which enables it to
adapt to different noise characteristics and image features (Ismael and Baykara, 2022).

2.3.1. SURE-Based Thresholding (SureShrink) Technique

SURE (Stein's Unbiased Risk Estimate) thresholds are adapted to UWT wavelets by calculating
the number of thresholds that minimize the unbiased estimate of risk, designed according to the

piecewise coefficients. The SURE value for a given threshold A is calculated as in Eq.1:

N
1 . o?
SURE(Q) = i Z(Wi - Wl-)2 + 2% — =z (1)
i=1

Where:

e Wi represents the original wavelet coefficient at index 1i.

e W1 represents the thresholded wavelet coefficient.

e o’ represents the estimated noise variance, and

e N represents the number of wavelet coefficients (Ismael and Baykara, 2022).

Most recently, in most image denoising applications, SURE is combined with other statistical
methods or within certain hybrid models by considering the frequency domain and spatial

information.

2.3.2. Universal Thresholding Technique

Universal thresholding, also known as VisuShrink, is a well-known method for removing noise

from images that preserves fine image details by applying a thresholding technique to the
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waveforms. This threshold technique is calculated basing on the noise level of the image and is
defined as in Eq. 2:

A= oy/Zlog(N) 2)
Where:
o represents the estimated noise standard deviation, and
N represents the number of pixels in the image.
The threshold value A is applied uniformly to all wave coefficients. When the threshold is
determined, all these coefficients are reduced to zero if their absolute value is less than the
threshold value A, otherwise they are reduced by A (Zach et al., 2024).
2.3.3. Hybrid Thresholding Technique

Hybrid thresholding is achieved by combining multiple thresholding strategies, taking
advantage of the features and strengths of each threshold. Hybrid thresholding typically
combines hard and soft thresholding, Bayesian techniques, adaptive thresholding, and machine
learning.

As an example, Hybrid thresholding, the of combining of VisuShrink (universal thresholding)
with adaptive thresholding, which can be represented in the following Eq. 3:

Thybrid(i) = min (max (Tuniversal,Tadaptive(i)),Tmax) (3)
Where:

Thybrid(1) represents the hybrid threshold for coefficient iii.

Tuniversal Tepresents the universal threshold (Ismael and Baykara , 2022).

3. RELATED WORKS

Over the past decades, researchers have done a lot of research on the topic of transmitted images
de-noising, and in this section, many of these research articles are presented in this section.
Zhou, X., & Yang, Z2.2024 (Li et al., 2024), Investigated the UWT for denoising hyperspectral
images and addressing the unique challenges posed by this imaging modality. W. Rahmann,
2024 (Rahmann, 2024) encompassed common types of noise such as Gaussian noise, salt and
pepper noise, and speckle noise, and evaluates the performance of filtering techniques including
mean filtering, median filtering, and Gaussian filtering. M. Elad, B. Kawar 2023 (Elad, Kawar
and Vaksman, 2023) , provided a broad view of the history of the field of image denoising and
closely related topics in image processing to give a better context to recent discoveries, and to
the influence of the Al revolution in the domain.R. Gondal & et al, 2021 (Gondal et al., 2021),
in his research reviewed the types of noise generated in mammography images and reviewed

the most important methods used to remove them. A. N. Amiri Golilarz, H. Gao.(Amiri Golilarz
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et al., 2020) 2020, Focused on adaptive thresholding techniques within the UWT framework,
aiming to improve denoising performance by dynamically adjusting thresholds based on local
image characteristics. Nayak & A. Verma, 2018 (Nayak and Verma, 2018) presented detailed
research on the topic of images denoise, by presenting the different used techniques, with their
performance, and comparing these methods and their efficiency. S. Sumanth & A. Suresh, 2017
(Sumanth and Suresh, 2017) reviewed many mechanisms for image denoise for some types of
digital images during transmission. They also presented different types of image filtering
methods to choose the appropriate filter in terms of efficiency and speed based on noise
behavior. J. Nader & et al, 2017 (Nader, A. and Zahran, 2017) presented research on the type
of salt and pepper with Gaussian noise effects and using many methods to reduce this type of
noise. S. Tania & R. Rowaida, 2016 (Tania and Rowaida, 2016), presented research including
an experimental study with comparative work on several models to improve corrupted and
blurred images by checking the performance of all the applied models. The researchers G. Kaur
& etal, 2016 (Boyat and Joshi, 2015), They reviewed different methods of removing noise from
images with their masks to accurately transfer images while preserving their edges. The results
showed the efficiency of some filters in removing noise from images, while showing some
inefficient types that increased the deterioration of image quality and removed edges. P. Athira
& et al, 2016 (P., K. and Krishnan, 2016), The researchers reviewed the field of biomedical
research and focused on the types of methods used in image denoise from mammography
images. M.Pious & et al, 2015 (Saha and Mandal, 2015) in their research presented many noise
cases that have different impact on image quality and reviewed many effective image denoise
methods that can attack the image collectively, sometimes the transmitted images are attacked
by more than one type of noise, they showed in their research some methods to reduce this
noise.

S. Kaur, 2015 (Kaur, 2015), reviewed several axes in her research and focused on the form of
noise and how it affects the quality of transmitted images, with a presentation of some
algorithms used to purify these images and a presentation of some types of filters and their
performance. A. Vijayalakshmi & et al, 2014 (Vijayalakshmi and Beaulah, 2014) presented a
detailed and extensive work to describe and compare denoise models to demonstrate their
efficiency in purifying images. The researchers M. Farooque & J. Rohankar, 2013 (Farooque,
2013), divided their article into two stages: the first stage reviewed the types of noise, and the
second stage discussed the use of each type in denoising process by using wavelets to prove its
efficiency in improving transmitted images. Mallat 2013, (‘A Wavelet Tour of Signal

Processing’, 1999) presented an introduction to UWT-Based Denoising with a seminal



Kufa Journal of Engineering, Vol. 16, No. 3, July 2025 319

reference providing comprehensive coverage of wavelet transforms, including UWT, and their

applications in signal and image processing.

4. METHODOLOGY

1. First Comparative Analysis

The first Comparative Analysis was achieved using MATLAB environments program to
calculate the values of Mean Squared Error (MSE) and Root Mean Squared Error (RMSE)

quantitative metrics which are essential to evaluate the effectiveness of denoising algorithms.

2. Second Comparative Analysis.

For Evaluating Execution Time, a proposed LabVIEW 2023 simulation system is designed as

shown in Fig. | and Fig. 2.
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The LabVIEW2023 proposed system outlines a methodical approach. It uses the camera man
as the test image which is contaminated by Gaussian white noise. The comparison is based on
calculating the evaluated time values by using different Undecimated Wavelet Transforms
(UWT), the orthogonal wavelets (e.g., Haar, Daubechies (db5, bd10 and db14), symlets (sym2
and symS8), coiflets (coif2 and coif5) and biorthogonal wavelets (e.g., Bior2 4, Bior4 4 and
Bior6_8) with different thresholding techniques (Universal, SURE, and Hybrid techniques.
These choices will provide a range of wavelet transforms to be evaluated within four
decomposition levels (1, 5, 10 and 15) in LabVIEW2023.

Once the selection is made, the next step involves setting up the LabVIEW environment to
facilitate UWT implementation. This includes utilizing LabVIEW’s Wavelet Toolkit or
creating custom Virtual Instrument (VI) blocks to perform the wavelet transforms on prepared
test images or signals that are standardized for consistent analysis. The computation of UWT is
carried out for each selected wavelet family and decomposition level.

The thresholding techniques, Universal, SURE, and Hybrid techniques are integrated into the
LabVIEW program. These techniques are applied to the transformed coefficients at each UWT
level within the same VI.

To gauge performance, execution times for each combination of UWT and thresholding
techniques across different decomposition levels are measured using a built-in timing function.
A comparison of average execution times is then made to identify the most efficient

combinations and understand the differences in performance.
5. RESULTS AND DISCUSSION

5.1.  First Comparative Analysis Results

The MATLAB Environment program was used to calculate the Mean Squared Error (MSE)
and Root Mean Squared Error (RMSE) quantitative metrics values. The programs were initiated
based on Gaussian White Noise filters and SURE-Based Thresholding (SureShrink) functions.
The MSE results are shown in Fig.3.

From the above chart, it appears that the Biorthogonal (bior2 4, bior4 4) wavelets are more
effective for image denoising using the undecimated wavelet transform based on their lower
MSE values. Conversely, the Haar and and Symlet (sym2) wavelets show poorer performance
in this specific denoising task. The RMSE results are shown in Fig.4.

Similar to the MSE chart, the Biorthogonal (bior2 4, bior4 4) wavelets are the most effective
for denoising as they have the lowest RMSE values. The Haar wavelet performs the worst,

followed by the and Symlet (sym2). Lower RMSE values reflect better denoising performance,
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and this comparison confirms the preference for certain wavelets like the biorthogonal family

for this particular task.
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Fig, 3. The Mean Squared Error (MSE) values for different The UWT Wavelets
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Fig, 4. The Root Mean Squared Error (MSE) values for different The UWT Wavelets

5.2. Second Comparative Analysis Results

By using The LabVIEW?2023 proposed system, the four decomposition levels (1, 5, 10 and 15)
are examined to produce a systematic comparison of the evaluated execution times for different
UWT and thresholding techniques, providing actionable insights for optimizing image
processing tasks in LabVIEW.

The results for these four image denoise decomposition levels are shown below:

5.2.1. Image Denoise Decomposition Level 1 Results and Discussion

The results of image denoise decomposition level 1 are shown in Fig. 5. Sure Thresholding
(blue line) shows variable evaluation times across wavelet families, with lower times for Haar
and db5, while db10 and dbl4 exhibit significant increases, peaking at dbl4. Universal
Thresholding (red line) generally has lower evaluation times, particularly for Haar and db5, but

shows a similar trend to Sure Thresholding with a peak at db14. Hybrid Thresholding (green
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line) consistently takes more time than the other methods, especially at dbl4, and is most

computationally intensive with complex wavelets like Biorthogonal and coif2.
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= Evaluated time of Hybrid Thresholding (ms) B Evaluated time of Universal Thresholding (ms)

M Evaluated time of Sure Thresholding(ms)

Fig. 5: The Evaluated time of different UWT and thresholding techniques for image denoise
decomposition Level 1

5.2.2. Image Denoise Decomposition Level 5 Results and Discussion

The results of image denoise decomposition level 5 is shown in Fig. 6.
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Fig. 6: The Evaluated time of different UWT and thresholding techniques for image denoise
decomposition Level 5

Sure Thresholding (blue line) shows an increasing trend in evaluated time with complex
wavelets, peaking at db14 before slightly decreasing. Haar has the lowest time, while Coif5
also indicates high complexity. Universal Thresholding (red line) consistently features the
lowest evaluated times, with notable peaks for db14, while the times for other wavelets vary
after db14. Hybrid Thresholding (green line) mirrors Sure Thresholding's pattern but generally
has higher times, with significant peaks at db14 and Coif5, similar to Sure. Biorthogonal
Wavelets maintain stable but elevated times.

5.2.3. Image Denoise Decomposition Level 10 Results and Discussion

The results of Image Denoise decomposition level 10 are shown in Fig. 7. SURE Thresholding

(blue line) is the most computationally intensive with the longest evaluation times, especially
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for complex wavelets like coif5 and sym8. Hybrid Thresholding (green line) offers a balance,
taking more time than Universal (red line) but less than SURE. Universal Thresholding is the
least demanding and consistently shows the lowest evaluation times due to its simpler approach.
As wavelet complexity increases, notably in Daubechies and Symlets, evaluation times rise for
all techniques, with SURE showing the most significant increases. Biorthogonal wavelets
generally have lower evaluation times, except bior4.4, which peaks in SURE times. Overall,
Universal thresholding remains the quickest, while SURE's efficiency declines as wavelet

complexity grows, suggesting scalability issues.
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1 Evaluated time of Hybrid Thresholding (ms) M Evaluated time of Universal Thresholding(ms)

M Evaluated time of Sure Thresholding(ms)

Fig. 7: The Evaluated time of different UWT and thresholding techniques for image denoise
decomposition Level 10

5.2.4. Image Denoise Decomposition Level 15 Results and Discussion

The results of image denoise decomposition level 15 are shown in Fig. 8.
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Fig. 8. The Evaluated time of different UWT and thresholding techniques for image denoise
decomposition Level 15

At Level 15 of wavelet decomposition, evaluation times are generally higher due to increased
complexity compared to Level 10. SURE thresholding ( blue line) consistently incurs the

longest processing times, particularly noticeable at deeper levels, while Hybrid thresholding
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(green line) shows moderate times and is more intensive than Universal thresholding (red line),
which remains the most efficient method with the lowest evaluation times. The Haar wavelet
has the least complexity, while Daubechies wavelets, especially db14, show significantly higher
evaluation times. Symlets, particularly sym8, and Coiflets, particularly coif5, also exhibit
increased computational demands. Biorthogonal wavelets tend to have lower times overall but
still reflect substantial increases with SURE. Higher decomposition levels amplify the
differences in processing times among techniques, with Universal thresholding proving more
scalable and efficient, making it advantageous for computation-intensive applications.

The above results are summarized in Fig. 9.

... .
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@ Perfromance of Sure Thresholding

Fig. 9. The total performance of thresholding Techniques over the four decomposition Levels
Fig. 10. shows the output results of the LabVIEW proposed system design of image denoising
using Undecimated Haar wavelet transform (least evaluated time) for the selected
decomposition levels (Level 1, Level 5, Level 10, and Level 15) using three different
thresholding techniques: SURE, Universal, and Hybrid.

Fig. 11 shows the output results of the LabVIEW proposed system design of image denoising
using Undecimated Coif5 wavelet transform (higher evaluated time) for the selected
decomposition levels (Level 1, Level 5, Level 10, and Level 15) using three different
thresholding techniques: SURE, Universal, and Hybrid.

From Figs 10 and 11, we notice that as the decomposition level increases, the thresholding
techniques perform better, but certainly at the expense of some detail of the original image,
especially at decomposition level 15. The SURE thresholding is the most effective of the other
techniques, especially at the highest decomposition level of 15, despite some noise. Universal
thresholding has a balanced performance across the four decomposition levels, as the resulting
image after denoising is a detail-preserving image despite the effective removal of noise.
Finally, hybrid thresholding showed strong performance, especially at level 10, where this
technique can become a compromise in the process of denoising the image, as it supports the

balance between reducing noise for the image while preserving its detail.
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6. CONCLUSION

This study emphasizes the benefits of employing the Undecimated Wavelet Transform (UWT)
for the purpose of image denoising. Key advantages include substantial noise reduction,
preservation of edge details, and improved texture representation, all of which collectively
enhance the overall quality of the image. The utilization of MATLAB for the computation of
Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) facilitates precise
performance assessment, streamlines the evaluation process, and supports the optimization and
visualization of denoising outcomes. The analysis indicates that specific wavelets, namely
bior2 4, bior4 4, and coif5, yield optimal MSE results for this task, while wavelets such as
Haar and sym2 should be avoided when high accuracy and minimized error are paramount.
This investigation underscores the criticality of selecting the appropriate wavelet contingent
upon the application demands, as well as the inherent trade-off between computational
complexity and reconstruction accuracy.

Moreover, the integration of UWT with LabVIEW enhances the implementation process,
enabling real-time processing and facilitating flexible adjustments of parameters. It is
noteworthy that different UWT variants and thresholding methods exhibit considerable
disparities in computational efficiency for image denoising. Of these, SURE thresholding is
identified as the most computationally intensive, particularly at elevated decomposition levels,
rendering it less suitable for applications requiring rapid processing. Conversely, hybrid
thresholds provide a compromise between efficiency and effectiveness, while Universal
thresholds are characterized by their speed and resource efficiency. The selection of an
appropriate wavelet and thresholding technique is contingent upon the specific objectives of
the task, necessitating a careful balance between processing duration and the quality of noise
elimination.

In Summary, the tools reviewed in this study significantly enhance the quality of real-time
image denoising, rendering them both effective and user-friendly. The resultant denoised
images exemplify the efficacy of the UWT-based denoising approach, particularly when
utilizing SURE thresholding, demonstrating a pronounced improvement in noise reduction
while preserving critical details and edges. This substantiates the practical applicability of this

methodology in high-quality image processing endeavors.
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