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ABSTRACT

Autism spectrum disorder (ASD) poses a severe challenge to effective communication and
social interaction abilities for a large number of individuals worldwide. The P300 signal is
difficult to detect in individuals with ASD due to noise, low amplitude, and increased latency
compared to others. We enhance in this work the P300 classification in electroencephalogram
(EEQ) signals for autism disease using Riemannian geometry along with various conventional
classifiers and ensemble learning approaches like bagging and boosting techniques
(AdaBoostM1, GentleBoost, and LogitBoost), and developing sophisticated pre-processing
methods for feature extraction. Using the BCIAUT-P300 dataset, our work achieved 96.37%
accuracy, 97.51% sensitivity, and 91.11% specificity compared to existing processes, ranging
from 67.2% to 92.3% accuracy. This work highlights the potential of our technique in assisting

in diagnosis and supportive ASD technologies.

KEYWORDS
Autism; ASD; BCI; Electroencephalography; EEG; Ensemble Learning; Feature Extraction;

Machine Learning; P300; Riemannian Geometry; Signal Processing.

@ @ This work is licensed under a Creative Commons Attribution 4.0 International License.
E:.'I'.


https://creativecommons.org/licenses/by/4.0/
mailto:Zaid.alyasseri@uokufa.edu.iq
https://orcid.org/0000-0002-3010-8931
mailto:hajara.alzubaydi@uokufa.edu.iq
https://orcid.org/0000-0003-4228-9298

Kufa Journal of Engineering, Vol. 16, No. 3, July 2025 177

1. INTRODUCTION

Over the past decades, technological progress has led to remarkable advancements in medicine
and engineering, which have improved the quality of medical signals like the
electroencephalography (EEG) and the cardiac signals (ECG). For example, advanced methods
of signal processing have been utilized to recover twin fetuses ECG signals (Talib et al., 2021)
and to design chaotic binary sequences to boost communication systems (Falih, 2017). In
addition, human-computer interactions have been essential to boost smart user interfaces and
interactive systems in all domains, ranging from medical to fields of engineering (Kheder,
2023). These applications are useful in bettering user interfaces and assist in the design of brain-
computer interface (BCI) systems to serve individuals with autism spectrum disorder.

Autism Spectrum Disorder (ASD) is a serious communication and social interaction problem.
P300 wave is positive and tends to come up following 300 ms of stimulation. It is also one of
the key elements of cognitive processing and attention. Identification of the wave is difficult
due to its high variability in the EEG signal and other characteristics inherent in ASD (Oberman
et al., 2005; Krzemi et al., 2020; Simdes et al., 2020).

The BCIAUT-P300 of the IFMBE 2019 challenge, as reported by (Simdes et al., 2020), is a
benchmark to study P300-based BCIs in ASD, and other research has utilized convolutional
neural networks (CNN) and other algorithms to more accurately classify EEG signals.

The BCIAUT-P300 dataset, as utilized by (Krzemi et al., 2020), was treated using Riemannian
ensemble methodology to classify the P300 component, with significant improvements in terms
of accuracy. The model employs Riemannian geometry and also ensemble learning. Pre-
processing of EEG data using a filter bank is done to extract covariance matrices and Event-
Related Potential (ERP) prototypes to utilize training of an ensemble of Linear Discriminant
Analysis (LDA) classifiers on subsets of channels, trials, and frequencies. The output class is
picked as the max probability of evidence from all ensembles with an average classification
ability of 81.2%.

Miladinovi¢ et al. (2020) further developed it for optimization of BCI protocol with the help
of robust logistic regression with Automatic Relevance Determination based on full Variational
Bayesian inference (VB-ARD) to improve joint-attention capabilities in subjects with ASD.
They obtained an accuracy of 81.5.

On the contrary, the CNN-FEBAC is utilized for measurement and analysis of ASD patients'
EEG signals using the BCIAUT-P300. Adopt the following format for the dataset, as proposed
by (Patel et al., 2023). Their model consists of a feature extractor using CNN followed by a

shallow classifier, with an accuracy of 91%.
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Another research by (Borra, Fantozzi and Magosso, 2020) proposed a light and interpretable
shallow CNN, the Sinc-ShallowNet, for EEG decoding on the BCIAUT-P300 dataset. The light
methodology was found to perform efficiently and to demonstrate the ability of CNN to
independently look for relevant features to perform the classification and thereby boost the
performance of EEG decoding without requiring handcrafted features. Their rate of correctness
was 92.3%, providing a comforting level of performance.

In the recent research work of (Peketi and Dhok, 2023), a new application of the variational
mode decomposition (VMD) technique was proposed to a BCI system to extract autism ASD
subjects' signals. As was discovered through the work, combining the fifth mode of VMD with
the support vector machine using a fine Gaussian kernel classifier led to better results with a
percentage accuracy of 91.12%, a score of 91.18%, and area under the curve of 96.6%. This
was better than all the existing methods out now and left everyone amazed with the prowess of
the VMD technique.

The present work proposes a technique giving novel insight into EEG signal processing with
the P300 wave. This is achieved by integrating ideas from the methods of BCI and Riemann
geometry and ensemble learning. This is done to enhance the efficiency and effectiveness of
the system of BCI in individuals with ASD. Pre-processing methods, Riemannian geometry,
and ensemble learning strategies are employed to design a better BCI system in the current
study. This methodology is tested using the BCIAUT-P300 dataset. Comparisons with the
existing research are provided in detail in the discussion section, which presents the
advancements and improvements in the current study. Error! Reference source not found..
Presents the summary of the methods and outcomes of existing studies and the improvements

made in the current study.

The following sections describe the methodology in section 2 and clarify the results in section
3. We also show the discussion in section 4, and finally, we illustrate in section 5, we show the

conclusion and suggest future research directions.

2. METHODOLOGY

The study uses a two-trial method that combines Riemannian geometry with ensemble learning
to improve EEG signal classification, specifically targeting identifying the P300 component.
The first trial focuses on extracting features within specific time windows, while the second
trial adopts a comprehensive approach by analyzing the entire signal length. This combined
strategy is designed to optimize classification accuracy, particularly in distinguishing cognitive

responses in individuals with autism.
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Section 3.1, Pre-processing, details our methodology, as does Section 3.2, which discusses the
methods used to extract features. Finally, Section 3.3 explains ensemble learning and provides

an overview of the methods used for the BCIAUT-P300 dataset, as illustrated in Fig. 1.

Import and Read dataset

A

Pre-processing

A 4

Feature Extraction Methods
Riemannian Geometry

Ensemble Learning

A 4

Evaluation & Results

Fig. 1: Overview of Methodological Approach for EEG Signal Analysis

2.1. Dataset Acquisition

Our study uses the BCIAUT-P300 dataset from the 15th Mediterranean Conference on Medical,
Biological Engineering and Computing (Medicon, 2019)(Henriques & Neves, 2019). The
dataset is critical for our research because it consisted of the electroencephalography recordings
from a clinical trial that trained individuals diagnosed with autism spectrum disorder to
recognize and respond to social cues. Electroencephalography (EEG) data were recorded using
a G.Nautilus system with eight active electrodes placed at specific locations on the scalp (C3,

Cz, C4, CPz, P3, Pz, P4, and Poz) Fig.2.

Fig.2 : The eight electrodes are used to record EEG signals (Smolka, et al., 2015)
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The data, sampled at 250 Hz, was divided into seven sessions, each representing a distinct
period during which EEG signals were recorded for each participant. These sessions ensured a
comprehensive analysis of P300 variations over time, with training and test subsets. Fifteen
individuals participated in a task that simulated real-world social interactions within a virtual
environment. They were asked to identify and highlight one of eight objects, a process essential
to our study goal of enhancing social signal recognition in ASD.

Our in-depth analysis, conducted in MATLAB, highlights the potential of combining
Riemannian geometry, principal component analysis (PCA) and ensemble learning techniques.
The publicly available BCIAUT-P300 dataset on Kaggle is vital for future research into BCI
technologies to aid autism spectrum disorder, promoting innovation and replication of our

findings.

2.2. Pre-Processing

According to (Jang et al., 2024), studies demonstrate that autistic persons differ in P300
signaling from non-autistic persons. Again, the neural structuring and functional connectivity
in the brains differ for each group, and P300 signals in autistic persons differ in processing
sensory input and attention from those of typically developed persons. The differences identify
that the P300 signaling is instrumental in diagnosing and furthering the study of autism, since
fresh intervention approaches and treatment will surface. Thus, pre-processing of
electroencephalography (EEG) signals is important to processing the P300 wave information
for cognitive processing in BCI applications. Improved quality and data purity are important to
enable the P300 wave to be separated. It is instrumental in researching cognitive processing for
autistic persons. In our pre-processing chain, we used a bandpass filter of frequency range 0.5—
30 Hz. A choice of the frequency range was because it had been demonstrated in previous
research to perform well in separating significant components of the EEG, specifically the P300
signal (Chatterjee et al., 2020a; Zhao et al., 2020a). It is important in separating the frequency
range within which the P300 component is likely to occur and where noise and irrelevant
frequency components are removed. Fig. 3 demonstrates for that the EEG signals are first
passed through this broad frequency bandpass (0.5-30 Hz) to separate critical frequency
components. Following the baseline (-0.3 to 0.0 seconds) is removed to take away any drift and
to ensure the P300 component gets recorded correctly. Elimination of the baseline protects
against any drift or slow changes in the signal from interfacing with the analysis of the P300
component. Pre-processing of the EEG signal is two-fold, as demonstrated in Fig. 3. Each

isdesigned to highlight the most significant facets of the P300 component of the event-related
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potentials (ERPs).
2.2.1. First Trial: Targeted Time Window and Diverse Feature Sets

The first trial is derived according to (Krzemi et al., 2020); we implemented a detailed pre-
processing pipeline to enhance the EEG signal for detecting P300. Involved applying two
specific filters: a broadbandpass filter with a range of 0.5 to 30 Hz and a lowpass filter with a
0.5 to 8 Hz range. Additionally, we carefully removed the baseline at -0.3 to 0.0 seconds pre-
stimulus. This method effectively captured the P300 wave within the specified time window,
significantly improving the signal-to-noise ratio. Demonstrates the efficacy of our approach.

We created eight feature sets in this trial, each capturing different spectral properties. These
sets included data from the total, central, and posterior electrodes, covering broad, low-
frequency bands over a time window ranging from —100 to 800 ms. In addition, we used the
entire raw signal to create a comprehensive set of features. The first trial focuses on enhancing
the EEG signal quality through pre-processing techniques to ensure accurate feature extraction,
as detailed in Algorithm 1. The algorithm follows multiple steps to filter the data, remove the

baseline, and select appropriate electrode configurations for feature extraction.

All electrodes Time window
(8)
Passband filter (0.5-30 Hz)
Central SR T Baseline (-0.3,0.0)
electrodes
(4) Low pass filter (0.5-8 Hz)
_ Whole signals Baseline (-0.3,0.0)
Posterior
electrodes
(4)
Raw Signals

(8)

Fig. 2: Pre-processing pipeline

Algorithm 1: Trial One Pre-processing and Feature Set Formation

Inputs: EEG Data (D), Bandpass Filter Range (BFR), Lowpass Filter Range (LFR), Baseline
Time Range (BTR), Time Window (TW)

Output: Feature Sets (FS)

1: procedure TrialOnePreprocessing(D, BFR, LFR, BTR, TW)
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2: Initialize FS as an empty set

3:  For each electrode configuration EC in {All, Central, Posterior}, do

4 FilteredData = BandpassFilter(D, BFR)

5: FilteredData = LowpassFilter(FilteredData, LFR)

6 FilteredData = RemoveBaseline(FilteredData, BTR)

7 If EC = All then

8 FilteredData = SelectElectrodes(FilteredData, EC)

9 end if

10: WindowedData = ApplyTimeWindow(FilteredData, TW)

11: FS = FS U ExtractFeatures(WindowedData)

12:  end for

13:  Return FS

14: end procedure

D: The raw EEG data.

BFR: The bandwidth range used for data filtering.

LFR: The low-frequency range applied for secondary data processing.

BTR: The time range for baseline removal from the signal.

TW: The time window applied to data post-filtering.

EC: The different electrode configurations used on the scalp.

FS: The final feature set extracted for classification.

2.2.2. Trial Two: Whole Signal Analysis for a Holistic Approach

Unlike Trial One, Trial Two embraced a holistic approach, disregarding the time-window
constraint and considering the full signal length. Our pre-processing, which included a broad
bandpass filter and baseline removal, was consistent with the first trial. However, we refrained
from segmenting the signal temporally. This comprehensive perspective allowed us to fully
understand the brain's response, ensuring every potentially informative component was
considered. The features extracted from the EEG data in the first trial are then utilized in the
second trial to improve classification accuracy using a variety of classifiers. Building on the
pre-processed data from the first trial, the second trial employs a holistic approach to
classification, as outlined in Algorithm 2. The algorithm undertakes the tasks of filtering data,

removing baselines, extracting features, training classifiers, and assessing classifier accuracy.

Algorithm 2: Trial Two Whole Signal Analysis

Inputs: EEG Data (D), Bandpass Filter Range (BFR), Baseline Time Range (BTR), Classifiers
©)
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Output: Model Accuracy (Acc)

1: procedure TrialTwoAnalysis(D, BFR, BTR, C)

FilteredData = BandpassFilter(D, BFR)

FilteredData = RemoveBaseline(FilteredData, BTR)

FS = ExtractFeatures(FilteredData)

For each classifier CL in (C) do
TrainClassifier(CL, FS)

end for

Acc = EvaluateClassifiers(C)

A U

return Acc

10: end procedure

D: The raw EEG data.

BFR: The bandwidth range used for data filtering.

BTR: The time range for baseline removal from the signal.

C: The list of classifiers used in the analysis.

CL: The chosen or intended classifier who performs the classification.

FS: The feature set extracted from the data post-preprocessing.

Acc: The final classification accuracy achieved by the classifiers.

The entire process concludes with the generation of the final result and the attainment of
classification accuracy. Our two-pronged strategy went beyond merely diversifying signal
processing; it was a deliberate attempt to highlight the most significant features of the P300
component classification. Comparing the results of both experiments, each with its distinct
focus on pre-processing, we aimed to develop an approach that maximizes classification
accuracy. The comprehensive feature set, a key pillar of our research, derived from the selective
window of Trial One and the overview from the complete signal analysis of Experiment Two,
was crucial in informing our group's learning models, which achieved noteworthy accuracy in
detecting the P300. The dual methodology emphasizes our commitment to accuracy, flexibility,
and adaptability in EEG signal pre-processing, laying the groundwork for subsequent
classification processes and playing a crucial role in advancing and propelling forward Brain-

Computer Interface technology.

2.3. Hybridization of Riemannian Geometry and Ensemble Learning
Riemannian geometry and ensemble learning techniques are mixed in this study to improve the

accuracy of classifying P300 signals in EEG data. The process involves two key stages:
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Feature Extraction using Riemannian Geometry: We calculate covariance matrices based on
Riemannian geometry to capture the spatial relationships between different EEG channels. This
process provides a robust feature space that confidently retains important information for
classification.

Ensemble Learning: We apply ensemble learning techniques, including bagging and boosting
(AdaBoostM1, GentleBoost, LogitBoost), to improve classification accuracy. Combining these
techniques allows for better generalization and reduces overfitting, especially in cases of

imbalanced data.

EEG Data

|

Feature Extraction using
Riemannian Geometry
(Covariance Matrices)

I

Ensemble Learning
(Bagging, AdaBoostM1,
GentleBoost, LogitBoost)

|

Classification of
P300 Components

Fig. 3: Hybridization of Riemannian Geometry and Ensemble Learning Techniques for P300
Component Classification

2.4. Feature Extraction Methods

The most fundamental step in the development of our study is the feature extraction from the
EEG data. Our study relies much on extracting features of the P300 data. The features extracted
based on pre-processing that were discussed are two-fold in these two trials, which involved:
Riemannian Covariance Matrices (Trial 1 and Trial 2): We compute covariance matrices,
which were inspired by Riemannian geometry (Krzemi et al., 2020), and capture the spatial
relationships of components of the EEG signal. We use geodesic filtering, focusing on the
characteristics of the EEG signal that should differentiate this study of cognitive processes.
Matrices, in this manner, construct the backbone of our feature space since they represent EEG

dynamics in great detail.
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Dimensionality Reduction (Trial 2): We apply principal component analysis (PCA) for
dimensionality reduction, as in practice, toward features coming from Riemannian covariance
matrices. PCA works as data projection in a space of lower dimension while retaining the most
variant components. Thus, it ensures that the feature set is lower complexity yet highly
informative when finally adapted to the classifier.
Prototype Merging (Trial 1, Trial 2): We use the prototype-based method, which combines
extracted features with prototype signals. This increases the power of identifying the model
with the patterns of EEG data.
Flattening of SPD Matrices (Trial 1, Trial 2): The covariance calculations result in
Symmetric Positive Definite (SPD) matrices, which are then transformed into vectors. This
transformation allows the data to be utilized with machine learning algorithms, including
ensemble learning techniques such as voting, boosting, and bagging. These methods involve
combining the predictions of multiple classifiers in Euclidean space to enhance accuracy.
The feature extraction process, as detailed in Fig. 5, is integral to improving the classification
of EEG signals. Each step, from creating ERP prototypes to flattening SPD matrices, ensures
that critical data is preserved and utilized effectively in subsequent classification stages.

ERP prototypes ERP Prototypes: Average brain

responses to stimuli computed

trimmed mean
( ) from trial data.

|

Covariance matrices with
shrinkage
Tangent space mapping
FGD enhances linear data for optimal
J inter-signal discrimination

Represent statistical relationships
between differentsignal channels.
(shown as a large value)

Transformed from Riemannian
manifold to linear space.

FGDA projects data into a more
explicit, class-separating lower-
dimensional space.

lower-dimensional
discriminative subspace

Upper diagonal of
matrices into vectors

Converts covariance matrix's upper
part into feature vectors,
preserving critical data.

Fig. 4: The pipeline steps, from pre-processing and feature extraction to classifier training.

2.5. Ensemble Learning

In this work, we employ sophisticated ensemble learning methods to better examine brain
signals. Probabilistic voting and various ensemble methods, such as Bagging and Boosting
techniques like AdaBoostM1, GentleBoost, and LogitBoost, are the dominant ensemble

approaches utilized. Probabilistic voting pools the votes of many classifiers to maximize overall
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accuracy. All of these methods are elaborated in greater detail in Section 3, where we illustrate
how all of these methods substantially better the classification accuracy, demonstrating

significantly better outcomes than the previous methods we employed for the task at hand..

3. RESULTS AND DISCUSSION

In this important contribution, we propose a new methodology to utilize the strength of
ensemble learning methods in classifying EEG signals. This methodology validates the
cognitive response to the stimulus with particular emphasis placed on the P300 component. We
have exhaustively examined our method in all the participants and all the sessions, marking the
height of innovation above earlier works, which only experimented with one to three sessions
(Simoes et al., 2020). Our work sets a new standard in neuroscience and machine learning by

working with all the sessions.

In our research work, we isolated and picked features from EEG signals as per the neural
relevance associated with autism spectrum disorder (ASD). P300 has been a prominent feature
amongst the features as the feature has been associated with the sensory information process
and attention response. From studies, it has been established that ASD patients exhibit different
P300, i.e., response time delay or decrease in amplitude, and thus the signal is useful to test

cognitive ability (Daskalov et al., 2020).

We used some simple classifiers such as MDM, SVM, neural network, Random Forest, and
LDA to classify EEG signals. We implemented our approaches to feature extraction using
Riemannian geometry and principal component analysis (PCA). Covariance matrices computed
with the aid of the ‘Shcov’ method describe the spatial interdependencies between the signal's
components and were geodesically filtered prior to preprocessing to achieve improved

precision. The extracted features are responsible to increase signal classification precision.

Riemannian geometry helps to increase the model's interpretation because it is derived from the
geometrical relations of the signal and facilitates better insights towards the patterns of the
neurons associated with ASD. The obtained set of features was also complemented with
Principal Component Analysis (PCA), a robust technique of dimension reduction that facilitates
efficient data processing by selecting the most important components. We have utilized various
techniques for clustering, namely AdaBoostM1, GentleBoost, Bagging, and LogitBoost, to
further enhance the performance, and the outcomes revealed that each of the methods played
different roles in the enhancement of the classification accuracy, demonstrating the significance

of such feature sets to process EEG signals and identify the neural processes related to ASD.
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Our classification approach and implementation of clustering learning methods surpassed
earlier works where Riemannian geometry alone was utilized, validating the novelty of the

approach in this work.

3.1.  First Approach: Probabilistic Voting (Trail 1)

A probabilistic voting algorithm was proposed in the initial experiment, utilizing Linear
Discriminant Analysis with 500 learners. Each learner learned from subsets of data, each of
which consisted of 50% of the samples and 70% of the features. This trial was conducted across
various pre-processing configurations, including:

Passband filtering (0.5-30 Hz) and baseline removal (-0.2 to 0.0 ms) with sub-selections for
central, posterior, and all electrodes.

Low pass filtering (0.5-8 Hz) baseline removal (-0.2 to 0.0 ms) with sub-selections for central,
posterior, and all electrodes.

Given the above settings, the probability voting configurations have undergone an iteration of
meticulous testing across several of the sets of electrode data. It was done for all possible
combinations of central and posterior electrodes without/with time window restrictions. Such
pervasive testing has been designed strategically to ensure that the classifier is tested in the
most robust form possible so that the derived results are very confidence-empowering and
would best prove the validity of the approach at hand.

Trial 1 results were significant and showed a great evolution in detecting P300 components.
Our ensemble learning method achieved an excellent accuracy rate of 95.20%. The detailed
breakdown of the ensemble's performance metrics is as follows:

Area Under the Curve (AUC): 0.92 + 0.049

Average Ensemble Accuracy: 95.20% + 3.89%

Average Precision: 97.26% + 2.22%

Average Sensitivity (Recall): 97.26% =+ 2.22%

Average F1 Score: 97.26% + 2.22%

Average Specificity: 80.79% + 4.82%

These metrics were calculated using the following equations:

Accuracy (Acc):
A TP+ TN 100
= ES3
T TP+TN+FP+FN (1)
F1 Score:
Fo_g ) (Pre X Recall) @)
— = X | —
core Pre + Recall
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Precision (P):
TP
Pre = —— 3
"= TP+ FP )

Recall (R), also known as Sensitivity (Sen):
TP

Sen(TAR,recall) = ———— 4)
( ) TP +FN
Specificity (Spec):
Spe(TFR) = ————— (5)
pe(TFR) = 787N
Where TP is True Positive, FP is False positive, TN is True Negative, and FN is False Negative.
Ensemble ROC Curve (AUC = 0.94)
1 : . . : . . . e
0.9 S i
¥ rd
~08 i |
2 -
207 g7 -
5 "
® 0.6 7 E
o) o
© 05 Bt ROC Curve | |
% I — — — -Chance Line
> 7
£ 04 = 1
g "
o 0.3 e 1
2 P
F 02 AL 1
7
s 7
04 F——# -
. 7
0 1 1 1 1 1 1 1 1 1
0 01 02 03 04 05 06 07 08 09 1
False Positive Rate (1 - Specificity)

Fig. 5: ROC Curve illustrates the trade-off between sensitivity and specificity (Trail 1)
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The ROC Curve and distribution of predicted probabilities chart visually represent the metrics,
demonstrating the classification model's performance. Fig. Fig. 6 and Fig. 7 Show that our
ensemble approach can effectively differentiate between classes and is particularly efficient in
handling imbalanced data.

The results of our study were much better than previous works that used the same dataset and
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Fig.8: Performance Metrics with SEM (Trail 2)
even Riemannian geometry. Our approach has enabled us to go beyond those studies, as shown

in Table 2. It confirms our approach's superiority, capability and accuracy, inspiring optimism
about the future of EEG signal classification. Furthermore, it is in autistic patients from non-
autistic individuals.
3.2. Second Approach: Various Ensemble Techniques
In the second experiment, we embarked on an advanced ensemble learning approach, skillfully
combining multiple machine learning classifiers. The result was a significant improvement in
the classification performance of EEG signals. This approach necessitated the coordination of
various classifiers and clustering techniques, which significantly amplified the accuracy and
robustness of the model. Fig. 7 presents the final results, that is, the accuracies of the various
base classifiers employed in the experiment. Fig.8 presents the last ensemble model
performance tested with the 15 subjects for complete accuracy across all the sessions. We
accomplished that by examining various innovative ensemble learning techniques: boosting and
bagging.
e Boosting Techniques

e Boosting is a strong ensemble method that strengthens weak classifiers' performances

based on past errors (Tanha e al., 2020). We implemented three different methods of
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reinforcement within our research:

* AdaBoostM1: The weak classifiers are trained sequentially, with each classifier trying
to improve on the errors of the previous classifier. The final ensemble mode derives a
strong and comprehensive model from the weak classifiers (Tanha ez al., 2020).

* GentleBoost: A variation of AdaBoost, GentleBoost employs a less aggressive
method of weight adjustment, which is very stable and lowers the risk of overfitting
(Friedman et al., 2000).

= LogitBoost: Logistic regression is applied in every iteration, optimizing the logistic
loss to see how the classification performance is improved. (Li, 2010).

e Bootstrap Aggregating

Bootstrap Aggregating (Bagging) is another type of ensemble method, bagging with Bootstrap
Aggregating. This technique improves model stability and accuracy by training on many
versions of predictors pulled from different bootstrap data input samples and then averaging
their predictions. The method reduces variability and helps to create a more reliable model
(Breiman, 1996).

e Stacking

Besides the previously discussed ensemble methods, we also utilized the ensemble method
called stacking. It is defined more generally as learning a set of base classifiers and then using
another model, called a "meta-classifier," that learns how to combine the predictions of these
base classifiers. However, the stacking approach achieved an accuracy of 94.10%, which was
lower than the accuracy achieved using Trail 1 and Trail 2. Therefore, our second experiment
used boosting and bagging to enhance the classification performance.

3.2.1. Base Classifiers

In Trial 2, we carefully selected a range of base classifiers to capitalize on their unique strengths
in EEG signal classification, particularly for detecting the P300 component. Our approach
employed varying numbers of base classifiers using Riemannian geometry and PCA, and
different numbers of components were tested (10, 20, 30, 50, and 70). The number of best
components for every base classifier was determined with care to promote signal analysis and
accommodate the special characteristics of EEG signals. The base classifiers were:

Minimum Distance to Mean

It was chosen based on its high performance when covariance matrices derived from EEG are

used for the target application(Daskalov et al., 2020). Minimum Distance to Mean (MDM)
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performs well when class means are separate and is strongly consistent with predictions,
evidenced through a 94.04% average accuracy.

Support Vector Machine

SVM was selected due to its effectiveness when working with high-dimensional data
(Christopher et al., 1998). Using Principal Component Analysis (PCA) for reducing
dimensions, SVM successfully retained the most significant components and achieved a cross-
validated average accuracy rate of 94.34%.

Neural Network

The neural network (NN) was used to model the complex, non-linear relationships between
data (Avendano-Valencia & Fassois, 2015). With PCA initially reducing features to the most
significant components and then using a fully connected neural network, this classifier yielded
a 90.27% mean accuracy. While less accurate than other classifiers, it is still a valuable
ensemble contributor.

Random Forest

The PCA was applied to the principal components of the covariance matrices for the
Riemannian geometry being explored (Jin et al., 2020). The number of best cross-validated
components using KFold=10 was obtained. These characteristics were trained using a Random
Forest classifier, and predictions were delivered through an ensemble approach. The overall
model had an average accuracy rate of 91.94%.

Linear Discriminant Analysis

Linear Discriminant Analysis was employed based on its performance for linear classification
for well-separated datasets (Daskalov et al., 2020). The LDA model was also fine-tuned by

experimenting with different PCA components and obtaining a mean accuracy of 93.37%.
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Fig.9: Average Base of the Classifiers Accuracy
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These classifiers have been selected to be complementary, each bringing different advantages
which, when ensembled, enhance the overall performance of the model. Collectively, the union
of methodologies makes it so that the ensemble can robustly classify EEG signals, addressing
the complexity within the data successfully.

3.2.2. Ensemble Techniques and Meta-Classifier Training

After their predictions, the base classifiers were combined into a matrix that was fed into the
sophisticated classifier (meta-classifier). These classifiers were trained with various ensemble
methods (AdaBoostM 1, GentleBoost, LogitBoost, and Bagging) with NumLearningCycles =
200 to find out the optimum method for enhancing each participant and session's classification

accuracy.

Table 1 summarizes the performance of the methods based on their ensemble accuracy,

Ensemble
No. of Accuracy Sensitivity Specificity Precision Recall F1 Score

Method Session (%) (%) (%) (%) (%) (%)
Bag 25 96.73 96.62 91.14 98.64 96.62 97.54
AdaBoostM1 30 96.50 96.37 90.72 98.36 96.37 97.53
GentleBoost 37 96.01 96.70 91.20 98.63 96.70 97.26
LogitBoost 13 95.76 97.23 91.71 98.63 97.23 97.39
Bag 25 96.73 96.62 91.14 98.64 96.62 97.54

sensitivity, specificity, precision, recall, and F1 score. Performance results show that Bagging
and AdaBoostM1 yielded the best performance of all the methods. The table illustrates that
Bagging presented the best performance overall for 25 sessions with an accuracy of 96.73, while
the best performance for 30 sessions was recorded by AdaBoostM1 with an accuracy of 96.50.

Meanwhile, GentleBoost and LogitBoost presented good performance for 37 and 13 sessions,

respectively.
Table 1: Performance Comparison of Ensemble Techniques
Ensemble No.of Accuracy Sensitivity Specificity Precision Recall F1 Score
Method Session (%) (%) (%) (%) (%) (%)
Bag 25 96.73 96.62 91.14 98.64 96.62 97.54
AdaBoostM1 30 96.50 96.37 90.72 98.36 96.37 97.53
GentleBoost 37 96.01 96.70 91.20 98.63 96.70 97.26
LogitBoost 13 95.76 97.23 91.71 98.63 97.23 97.39
Bag 25 96.73 96.62 91.14 98.64 96.62 97.54

The PCA components for the base classifiers and clustering methods are shown in Fig.10. The
clustering ROC curve in Fig.11 has a high AUC of 0.97, which makes the proposed approach
work better. In addition, the statistical results show that our approach achieved an average
ensemble accuracy of 96.37 £ 2, a recall sensitivity of 97.51 + 2.3, a specificity of 91.11 + 2.83,
an F1 score of 97.45 £ 2.26, and a precision of 98.55 + 2.32.
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These results indicate that using different ensemble techniques, especially Bagging,
significantly improves the performance of EEG signal classification, ensuring high accuracy
and flexibility across different participants and sessions. These results indicate that using
different ensemble techniques, especially Bagging, significantly improves the performance of
EEG signal classification, ensuring high accuracy and f lexibility across different participants

and sessions.
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Fig.10: a) Distribution of PCA components selected for different classifiers.
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Fig.11: ROC Curve illustrates the trade-off between sensitivity and specificity (Trail 2)

Table 2. The provided compares our proposed approach with previous studies that used the

same dataset BCIAUT-P300, highlighting the superiority of our methodology.
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The comprehensive testing across all participants and sessions (seven sessions) marks a
significant advancement over prior studies that typically limited evaluations to fewer sessions,
setting a new benchmark in EEG signal analysis. This methodology enhances classification
performance by using Riemannian geometry, PCA, and state-of-the-art ensemble approaches.
It emphasizes the potential for high-level signal processing and machine learning approaches
to propel next-generation advances in cognitive neurosciences.

While our study was spurred by (Krzemi et al., 2020), ours built considerably on it by bringing
on board a series of different methods of ensemble learning, e.g., AdaBoostM 1, GentleBoost,
and Bagging, and an implementation of PCA to further enhance component analysis. These
enhanced the model's accuracy, which is our contribution to the study.

Table 2: Comparison with Previous Studies using the BCIAUT-P300 dataset

Mean
Author Methodology Sessions accuracy Other metrics
(%)
Borra, Fantozzi
Emd Magosso, CNN b.a sed on EEGNef[, epoch 7 4 923 Not Mentioned
2020) extraction, downsampling
(Santamaria- CNN-BLSTM, baseline
Vazquez et al, normalization, epoch 7 4 84.3 Not Mentioned
2020) extraction
_ Combination of temporal
(de Arancibia et features and CWT, PCAp for 7 4 82 F1 score
al., 2020) £ . -
eature reduction
(Bittencourt- SVM, pseudorandom
Villalpando and averaging of ERP segments, 7 4 81.50 Not Mentioned
Maurits, 2020) feature vector construction
(Krzemi et dl. Riemannian framework, an '
2020) ’ ensemble of 400 LDA 7 4 81.20 Not Mentioned
classifiers
e, Bayesian logistic regression
Ell>/1112a(§121r8;)V10 el with  automatic  relevance 7 4 80.30 Computation time
" determination (VB-ARD)
(Chatterjee, BLDA, RUSBoost, and CNN 7 4 76.30
Palaniappan and classifiers, majority voting Not Mentioned
Gupta, 2020b) within each run
(Adama, MLP, Pearson’s correlation,
Schindler ~ and feature extraction in specified 7 4 70 Not Mentioned
Schmid, 2020) time windows
LDA, custom filter design,
(Zhao et al, linear support vector .
2020b) regression agp feature pre- 74 67.20 Not Mentioned
selector
) Accuracy, Fl-score,
(Peketi " \MD-SVM method all seven 9112 and the area under the
Dhok, 2023) sessions
curve
all seven Accuracy, Sensitivit
Proposed sessions 95.03 (Recall),y Speciﬁcity}j
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Riemannian Geometry and all seven Fl-score, Precision
Ensemble Learning: Trail 1, sessions 96.37 and the area under the
Trail 2 curve

4. CONCLUSION

In summary, our work has shown a new and practical method for differentiating autistic
patients' EEG signals from normal subjects. When used together with diverse ensemble
methods, such an application based on Riemann geometry and PCA attained record-breaking
accuracy and reliability. Our work shows an improvement in the classification process for the
EEG signal, leading to higher reliability and robustness. The method was fruitful, and an
average ensemble accuracy of 96.37 was achieved, having high sensitivity, specificity, and
accuracy. These results are better than what is reported in the literature and create a new
benchmark for the analysis of EEG signals. Success using such an approach shows massive
promise for what machine learning methods and signal processing can help achieve for

transforming cognitive neuroscientific research.

Future refinements of this cluster model might include extra classifiers and more sophisticated
feature extraction methods, which could lead to further important improvements in EEG signal

classification among autistic patients. The process continues to advance cognitive neuroscience.
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