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ABSTRACT  

Autism spectrum disorder (ASD) poses a severe challenge to effective communication and 

social interaction abilities for a large number of individuals worldwide. The P300 signal is 

difficult to detect in individuals with ASD due to noise, low amplitude, and increased latency 

compared to others. We enhance in this work the P300 classification in electroencephalogram 

(EEG) signals for autism disease using Riemannian geometry along with various conventional 

classifiers and ensemble learning approaches like bagging and boosting techniques 

(AdaBoostM1, GentleBoost, and LogitBoost), and developing sophisticated pre-processing 

methods for feature extraction. Using the BCIAUT-P300 dataset, our work achieved 96.37% 

accuracy, 97.51% sensitivity, and 91.11% specificity compared to existing processes, ranging 

from 67.2% to 92.3% accuracy. This work highlights the potential of our technique in assisting 

in diagnosis and supportive ASD technologies. 
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1. INTRODUCTION 

Over the past decades, technological progress has led to remarkable advancements in medicine 

and engineering, which have improved the quality of medical signals like the 

electroencephalography (EEG) and the cardiac signals (ECG). For example, advanced methods 

of signal processing have been utilized to recover twin fetuses ECG signals (Talib et al., 2021) 

and to design chaotic binary sequences to boost communication systems (Falih, 2017). In 

addition, human-computer interactions have been essential to boost smart user interfaces and 

interactive systems in all domains, ranging from medical to fields of engineering (Kheder, 

2023). These applications are useful in bettering user interfaces and assist in the design of brain-

computer interface (BCI) systems to serve individuals with autism spectrum disorder. 

Autism Spectrum Disorder (ASD) is a serious communication and social interaction problem. 

P300 wave is positive and tends to come up following 300 ms of stimulation. It is also one of 

the key elements of cognitive processing and attention. Identification of the wave is difficult 

due to its high variability in the EEG signal and other characteristics inherent in ASD (Oberman 

et al., 2005; Krzemi et al., 2020; Simões et al., 2020). 

The BCIAUT-P300 of the IFMBE 2019 challenge, as reported by (Simões et al., 2020), is a 

benchmark to study P300-based BCIs in ASD, and other research has utilized convolutional 

neural networks (CNN) and other algorithms to more accurately classify EEG signals. 

The BCIAUT-P300 dataset, as utilized by (Krzemi et al., 2020), was treated using Riemannian 

ensemble methodology to classify the P300 component, with significant improvements in terms 

of accuracy. The model employs Riemannian geometry and also ensemble learning. Pre-

processing of EEG data using a filter bank is done to extract covariance matrices and Event-

Related Potential (ERP) prototypes to utilize training of an ensemble of Linear Discriminant 

Analysis (LDA) classifiers on subsets of channels, trials, and frequencies. The output class is 

picked as the max probability of evidence from all ensembles with an average classification 

ability of 81.2%. 

Miladinović et al. (2020)  further developed it for optimization of BCI protocol with the help 

of robust logistic regression with Automatic Relevance Determination based on full Variational 

Bayesian inference (VB-ARD) to improve joint-attention capabilities in subjects with ASD. 

They obtained an accuracy of 81.5. 

On the contrary, the CNN-FEBAC is utilized for measurement and analysis of ASD patients' 

EEG signals using the BCIAUT-P300. Adopt the following format for the dataset, as proposed 

by (Patel et al., 2023). Their model consists of a feature extractor using CNN followed by a 

shallow classifier, with an accuracy of 91%. 
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Another research by (Borra, Fantozzi and Magosso, 2020) proposed a light and interpretable 

shallow CNN, the Sinc-ShallowNet, for EEG decoding on the BCIAUT-P300 dataset. The light 

methodology was found to perform efficiently and to demonstrate the ability of CNN to 

independently look for relevant features to perform the classification and thereby boost the 

performance of EEG decoding without requiring handcrafted features. Their rate of correctness 

was 92.3%, providing a comforting level of performance. 

In the recent research work of (Peketi and Dhok, 2023),  a new application of the variational 

mode decomposition (VMD) technique was proposed to a BCI system to extract autism ASD 

subjects' signals. As was discovered through the work, combining the fifth mode of VMD with 

the support vector machine using a fine Gaussian kernel classifier led to better results with a 

percentage accuracy of 91.12%, a score of 91.18%, and area under the curve of 96.6%. This 

was better than all the existing methods out now and left everyone amazed with the prowess of 

the VMD technique. 

The present work proposes a technique giving novel insight into EEG signal processing with 

the P300 wave. This is achieved by integrating ideas from the methods of BCI and Riemann 

geometry and ensemble learning. This is done to enhance the efficiency and effectiveness of 

the system of BCI in individuals with ASD. Pre-processing methods, Riemannian geometry, 

and ensemble learning strategies are employed to design a better BCI system in the current 

study. This methodology is tested using the BCIAUT-P300 dataset. Comparisons with the 

existing research are provided in detail in the discussion section, which presents the 

advancements and improvements in the current study. Error! Reference source not found.. 

Presents the summary of the methods and outcomes of existing studies and the improvements 

made in the current study. 

The following sections describe the methodology in section 2 and clarify the results in section 

3. We also show the discussion in section 4, and finally, we illustrate in section 5, we show the 

conclusion and suggest future research directions. 

2. METHODOLOGY 

 The study uses a two-trial method that combines Riemannian geometry with ensemble learning 

to improve EEG signal classification, specifically targeting identifying the P300 component. 

The first trial focuses on extracting features within specific time windows, while the second 

trial adopts a comprehensive approach by analyzing the entire signal length. This combined 

strategy is designed to optimize classification accuracy, particularly in distinguishing cognitive 

responses in individuals with autism. 
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Section 3.1, Pre-processing, details our methodology, as does Section 3.2, which discusses the 

methods used to extract features. Finally, Section 3.3 explains ensemble learning and provides 

an overview of the methods used for the BCIAUT-P300 dataset, as illustrated in Fig. 1. 

2.1. Dataset Acquisition 

Our study uses the BCIAUT-P300 dataset from the 15th Mediterranean Conference on Medical, 

Biological Engineering and Computing (Medicon, 2019)(Henriques & Neves, 2019). The 

dataset is critical for our research because it consisted of the electroencephalography recordings 

from a clinical trial that trained individuals diagnosed with autism spectrum disorder to 

recognize and respond to social cues. Electroencephalography (EEG) data were recorded using 

a G.Nautilus system with eight active electrodes placed at specific locations on the scalp (C3, 

Cz, C4, CPz, P3, Pz, P4, and Poz) Fig.2. 

                        

              

                          

                    

                 

                    

Fig. 1: Overview of Methodological Approach for EEG Signal Analysis 

Fig.2 : The eight electrodes are used to record EEG signals (Smolka, et al., 2015) 
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The data, sampled at 250 Hz, was divided into seven sessions, each representing a distinct 

period during which EEG signals were recorded for each participant. These sessions ensured a 

comprehensive analysis of P300 variations over time, with training and test subsets. Fifteen 

individuals participated in a task that simulated real-world social interactions within a virtual 

environment. They  were asked to identify and highlight one of eight objects, a process essential 

to our study goal of enhancing social signal recognition in ASD. 

Our in-depth analysis, conducted in MATLAB, highlights the potential of combining 

Riemannian geometry, principal component analysis (PCA) and ensemble learning techniques. 

The publicly available BCIAUT-P300 dataset on Kaggle is vital for future research into BCI 

technologies to aid autism spectrum disorder, promoting innovation and replication of our 

findings. 

2.2. Pre-Processing 

According to (Jang et al., 2024), studies demonstrate that autistic persons differ in P300 

signaling from non-autistic persons. Again, the neural structuring and functional connectivity 

in the brains differ for each group, and P300 signals in autistic persons differ in processing 

sensory input and attention from those of typically developed persons. The differences identify 

that the P300 signaling is instrumental in diagnosing and furthering the study of autism, since 

fresh intervention approaches and treatment will surface. Thus, pre-processing of 

electroencephalography (EEG) signals is important to processing the P300 wave information 

for cognitive processing in BCI applications. Improved quality and data purity are important to 

enable the P300 wave to be separated. It is instrumental in researching cognitive processing for 

autistic persons. In our pre-processing chain, we used a bandpass filter of frequency range 0.5–

30 Hz. A choice of the frequency range was because it had been demonstrated in previous 

research to perform well in separating significant components of the EEG, specifically the P300 

signal (Chatterjee et al., 2020a; Zhao et al., 2020a). It is important in separating the frequency 

range within which the P300 component is likely to occur and where noise and irrelevant 

frequency components are removed. Fig. 3 demonstrates for that the EEG signals are first 

passed through this broad frequency bandpass (0.5–30 Hz) to separate critical frequency 

components. Following the baseline (-0.3 to 0.0 seconds) is removed to take away any drift and 

to ensure the P300 component gets recorded correctly. Elimination of the baseline protects 

against any drift or slow changes in the signal from interfacing with the analysis of the P300 

component. Pre-processing of the EEG signal is two-fold, as demonstrated in Fig. 3. Each 

isdesigned to highlight the most significant facets of the P300 component of the event-related 
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potentials (ERPs). 

2.2.1. First Trial: Targeted Time Window and Diverse Feature Sets 

The first trial is derived according to (Krzemi et al., 2020); we implemented a detailed pre-

processing pipeline to enhance the EEG signal for detecting P300. Involved applying two 

specific filters: a broadbandpass filter with a range of 0.5 to 30 Hz and a lowpass filter with a 

0.5 to 8 Hz range. Additionally, we carefully removed the baseline at -0.3 to 0.0 seconds pre-

stimulus. This method effectively captured the P300 wave within the specified time window, 

significantly improving the signal-to-noise ratio. Demonstrates the efficacy of our approach. 

We created eight feature sets in this trial, each capturing different spectral properties. These 

sets included data from the total, central, and posterior electrodes, covering broad, low-

frequency bands over a time window ranging from −100 to 800 ms. In addition, we used the 

entire raw signal to create a comprehensive set of features. The first trial focuses on enhancing 

the EEG signal quality through pre-processing techniques to ensure accurate feature extraction, 

as detailed in Algorithm 1. The algorithm follows multiple steps to filter the data, remove the 

baseline, and select appropriate electrode configurations for feature extraction. 

Algorithm 1: Trial One Pre-processing and Feature Set Formation 

Inputs: EEG Data (D), Bandpass Filter Range (BFR), Lowpass Filter Range (LFR), Baseline 

Time Range (BTR), Time Window (TW) 

Output: Feature Sets (FS) 

1: procedure TrialOnePreprocessing(D, BFR, LFR, BTR, TW) 

              

   

        

          

   

          

          

   

            

   

           

             

           

                           

                   

                          

                   

Fig. 2: Pre-processing pipeline 
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2:     Initialize FS as an empty set 

3:     For each electrode configuration EC in {All, Central, Posterior}, do 

4:         FilteredData = BandpassFilter(D, BFR) 

5:         FilteredData = LowpassFilter(FilteredData, LFR) 

6:         FilteredData = RemoveBaseline(FilteredData, BTR) 

7:         If EC != All then 

8:             FilteredData = SelectElectrodes(FilteredData, EC) 

9:         end if 

10:        WindowedData = ApplyTimeWindow(FilteredData, TW) 

11:        FS = FS ∪ ExtractFeatures(WindowedData) 

12:     end for 

13:     Return FS 

14: end procedure 

D: The raw EEG data. 

BFR: The bandwidth range used for data filtering. 

LFR: The low-frequency range applied for secondary data processing. 

BTR: The time range for baseline removal from the signal. 

TW: The time window applied to data post-filtering. 

EC: The different electrode configurations used on the scalp. 

FS: The final feature set extracted for classification. 

2.2.2. Trial Two: Whole Signal Analysis for a Holistic Approach 

Unlike Trial One, Trial Two embraced a holistic approach, disregarding the time-window 

constraint and considering the full signal length. Our pre-processing, which included a broad 

bandpass filter and baseline removal, was consistent with the first trial. However, we refrained 

from segmenting the signal temporally. This comprehensive perspective allowed us to fully 

understand the brain's response, ensuring every potentially informative component was 

considered. The features extracted from the EEG data in the first trial are then utilized in the 

second trial to improve classification accuracy using a variety of classifiers. Building on the 

pre-processed data from the first trial, the second trial employs a holistic approach to 

classification, as outlined in Algorithm 2. The algorithm undertakes the tasks of filtering data, 

removing baselines, extracting features, training classifiers, and assessing classifier accuracy.  

Algorithm 2: Trial Two Whole Signal Analysis 

Inputs: EEG Data (D), Bandpass Filter Range (BFR), Baseline Time Range (BTR), Classifiers 

(C) 
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Output: Model Accuracy (Acc) 

1: procedure TrialTwoAnalysis(D, BFR, BTR, C) 

2:     FilteredData = BandpassFilter(D, BFR) 

3:     FilteredData = RemoveBaseline(FilteredData, BTR) 

4:     FS = ExtractFeatures(FilteredData) 

5:     For each classifier CL in (C) do 

6:         TrainClassifier(CL, FS) 

7:     end for 

8:     Acc = EvaluateClassifiers(C) 

9:     return Acc 

10: end procedure 

D: The raw EEG data. 

BFR: The bandwidth range used for data filtering. 

BTR: The time range for baseline removal from the signal. 

C: The list of classifiers used in the analysis. 

CL: The chosen or intended classifier who performs the classification. 

FS: The feature set extracted from the data post-preprocessing. 

Acc: The final classification accuracy achieved by the classifiers. 

The entire process concludes with the generation of the final result and the attainment of 

classification accuracy. Our two-pronged strategy went beyond merely diversifying signal 

processing; it was a deliberate attempt to highlight the most significant features of the P300 

component classification. Comparing the results of both experiments, each with its distinct 

focus on pre-processing, we aimed to develop an approach that maximizes classification 

accuracy. The comprehensive feature set, a key pillar of our research, derived from the selective 

window of Trial One and the overview from the complete signal analysis of Experiment Two, 

was crucial in informing our group's learning models, which achieved noteworthy accuracy in 

detecting the P300.  The dual methodology emphasizes our commitment to accuracy, flexibility, 

and adaptability in EEG signal pre-processing, laying the groundwork for subsequent 

classification processes and playing a crucial role in advancing and propelling forward Brain-

Computer Interface technology. 

2.3. Hybridization of Riemannian Geometry and Ensemble Learning 

Riemannian geometry and ensemble learning techniques are mixed in this study to improve the 

accuracy of classifying P300 signals in EEG data. The process involves two key stages: 
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Feature Extraction using Riemannian Geometry: We calculate covariance matrices based on 

Riemannian geometry to capture the spatial relationships between different EEG channels. This 

process provides a robust feature space that confidently retains important information for 

classification. 

Ensemble Learning: We apply ensemble learning techniques, including bagging and boosting 

(AdaBoostM1, GentleBoost, LogitBoost), to improve classification accuracy. Combining these 

techniques allows for better generalization and reduces overfitting, especially in cases of 

imbalanced data. 

2.4. Feature Extraction Methods 

The most fundamental step in the development of our study is the feature extraction from the 

EEG data. Our study relies much on extracting features of the P300 data. The features extracted 

based on pre-processing that were discussed are two-fold in these two trials, which involved: 

Riemannian Covariance Matrices (Trial 1 and Trial 2): We compute covariance matrices, 

which were inspired by Riemannian geometry (Krzemi et al., 2020), and capture the spatial 

relationships of components of the EEG signal. We use geodesic filtering, focusing on the 

characteristics of the EEG signal that should differentiate this study of cognitive processes. 

Matrices, in this manner, construct the backbone of our feature space since they represent EEG 

dynamics in great detail. 

Fig. 3: Hybridization of Riemannian Geometry and Ensemble Learning Techniques for P300 

Component Classification 
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Dimensionality Reduction (Trial 2): We apply principal component analysis (PCA)  for 

dimensionality reduction, as in practice, toward features coming from Riemannian covariance 

matrices. PCA works as data projection in a space of lower dimension while retaining the most 

variant components. Thus, it ensures that the feature set is lower complexity yet highly 

informative when finally adapted to the classifier. 

Prototype Merging (Trial 1, Trial 2): We use the prototype-based method, which combines 

extracted features with prototype signals. This increases the power of identifying the model 

with the patterns of EEG data. 

Flattening of SPD Matrices (Trial 1, Trial 2): The covariance calculations result in 

Symmetric Positive Definite (SPD) matrices, which are then transformed into vectors. This 

transformation allows the data to be utilized with machine learning algorithms, including 

ensemble learning techniques such as voting, boosting, and bagging. These methods involve 

combining the predictions of multiple classifiers in Euclidean space to enhance accuracy. 

The feature extraction process, as detailed in  Fig. 5, is integral to improving the classification 

of EEG signals. Each step, from creating ERP prototypes to flattening SPD matrices, ensures 

that critical data is preserved and utilized effectively in subsequent classification stages. 

2.5. Ensemble Learning 

In this work, we employ sophisticated ensemble learning methods to better examine brain 

signals. Probabilistic voting and various ensemble methods, such as Bagging and Boosting 

techniques like AdaBoostM1, GentleBoost, and LogitBoost, are the dominant ensemble 

approaches utilized. Probabilistic voting pools the votes of many classifiers to maximize overall 

Fig. 4: The pipeline steps, from pre-processing and feature extraction to classifier training. 
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accuracy. All of these methods are elaborated in greater detail in Section 3, where we illustrate 

how all of these methods substantially better the classification accuracy, demonstrating 

significantly better outcomes than the previous methods we employed for the task at hand.. 

3. RESULTS AND DISCUSSION 

In this important contribution, we propose a new methodology to utilize the strength of 

ensemble learning methods in classifying EEG signals. This methodology validates the 

cognitive response to the stimulus with particular emphasis placed on the P300 component. We 

have exhaustively examined our method in all the participants and all the sessions, marking the 

height of innovation above earlier works, which only experimented with one to three sessions 

(Simões et al., 2020). Our work sets a new standard in neuroscience and machine learning by 

working with all the sessions. 

In our research work, we isolated and picked features from EEG signals as per the neural 

relevance associated with autism spectrum disorder (ASD). P300 has been a prominent feature 

amongst the features as the feature has been associated with the sensory information process 

and attention response. From studies, it has been established that ASD patients exhibit different 

P300, i.e., response time delay or decrease in amplitude, and thus the signal is useful to test 

cognitive ability (Daskalov et al., 2020). 

We used some simple classifiers such as MDM, SVM, neural network, Random Forest, and 

LDA to classify EEG signals. We implemented our approaches to feature extraction using 

Riemannian geometry and principal component analysis (PCA). Covariance matrices computed 

with the aid of the ‘Shcov’ method describe the spatial interdependencies between the signal's 

components and were geodesically filtered prior to preprocessing to achieve improved 

precision. The extracted features are responsible to increase signal classification precision. 

Riemannian geometry helps to increase the model's interpretation because it is derived from the 

geometrical relations of the signal and facilitates better insights towards the patterns of the 

neurons associated with ASD. The obtained set of features was also complemented with 

Principal Component Analysis (PCA), a robust technique of dimension reduction that facilitates 

efficient data processing by selecting the most important components.We have utilized various 

techniques for clustering, namely AdaBoostM1, GentleBoost, Bagging, and LogitBoost, to 

further enhance the performance, and the outcomes revealed that each of the methods played 

different roles in the enhancement of the classification accuracy, demonstrating the significance 

of such feature sets to process EEG signals and identify the neural processes related to ASD. 
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Our classification approach and implementation of clustering learning methods surpassed 

earlier works where Riemannian geometry alone was utilized, validating the novelty of the 

approach in this work. 

3.1. First Approach: Probabilistic Voting (Trail 1) 

A probabilistic voting algorithm was proposed in the initial experiment, utilizing Linear 

Discriminant Analysis with 500 learners. Each learner learned from subsets of data, each of 

which consisted of 50% of the samples and 70% of the features. This trial was conducted across 

various pre-processing configurations, including: 

Passband filtering (0.5-30 Hz) and baseline removal (-0.2 to 0.0 ms) with sub-selections for 

central, posterior, and all electrodes.  

Low pass filtering (0.5-8 Hz) baseline removal (-0.2 to 0.0 ms) with sub-selections for central, 

posterior, and all electrodes. 

Given the above settings, the probability voting configurations have undergone an iteration of 

meticulous testing across several of the sets of electrode data. It was done for all possible 

combinations of central and posterior electrodes without/with time window restrictions. Such 

pervasive testing has been designed strategically to ensure that the classifier is tested in the 

most robust form possible so that the derived results are very confidence-empowering and 

would best prove the validity of the approach at hand. 

Trial 1 results were significant and showed a great evolution in detecting P300 components. 

Our ensemble learning method achieved an excellent accuracy rate of 95.20%. The detailed 

breakdown of the ensemble's performance metrics is as follows: 

Area Under the Curve (AUC): 0.92 ± 0.049 

Average Ensemble Accuracy: 95.20% ± 3.89% 

Average Precision: 97.26% ± 2.22% 

Average Sensitivity (Recall): 97.26% ± 2.22% 

Average F1 Score: 97.26% ± 2.22% 

Average Specificity: 80.79% ± 4.82% 

These metrics were calculated using the following equations: 

Accuracy (Acc):  

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
∗ 100 

 

(1) 

F1 Score: 

𝐹 − 𝑆𝑐𝑜𝑟𝑒 = 2 × (
𝑃𝑟𝑒 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒 + 𝑅𝑒𝑐𝑎𝑙𝑙
) (2) 



188                 Alzubaydi and Alyasseri 

Precision (P): 

𝑃𝑟𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

 

Recall (R), also known as Sensitivity (Sen): 

𝑆𝑒𝑛(𝑇𝐴𝑅, 𝑟𝑒𝑐𝑎𝑙𝑙) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4) 

 

Specificity (Spec):  

𝑆𝑝𝑒(𝑇𝐹𝑅) =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 (5) 

Where TP is True Positive, FP is False positive, TN is True Negative, and FN is False Negative.  

Fig. 6: Performance Metrics with SEM (Trail1) 

Fig. 5: ROC Curve illustrates the trade-off between sensitivity and specificity (Trail 1) 
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The ROC Curve and distribution of predicted probabilities chart visually represent the metrics, 

demonstrating the classification model's performance. Fig. Fig. 6 and Fig. 7 Show that our 

ensemble approach can effectively differentiate between classes and is particularly efficient in 

handling imbalanced data. 

The results of our study were much better than previous works that used the same dataset and 

even Riemannian geometry. Our approach has enabled us to go beyond those studies, as shown 

in Table 2. It confirms our approach's superiority, capability and accuracy, inspiring optimism 

about the future of EEG signal classification. Furthermore, it is in autistic patients from non-

autistic individuals. 

3.2. Second Approach: Various Ensemble Techniques 

In the second experiment, we embarked on an advanced ensemble learning approach, skillfully 

combining multiple machine learning classifiers. The result was a significant improvement in 

the classification performance of EEG signals. This approach necessitated the coordination of 

various classifiers and clustering techniques, which significantly amplified the accuracy and 

robustness of the model. Fig. 7 presents the final results, that is, the accuracies of the various 

base classifiers employed in the experiment. Fig.8 presents the last ensemble model 

performance tested with the 15 subjects for complete accuracy across all the sessions. We 

accomplished that by examining various innovative ensemble learning techniques: boosting and 

bagging. 

• Boosting Techniques 

• Boosting is a strong ensemble method that strengthens weak classifiers' performances 

based on past errors (Tanha et al., 2020). We implemented three different methods of 

Fig.8: Performance Metrics with SEM (Trail 2) 
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reinforcement within our research: 

▪ AdaBoostM1: The weak classifiers are trained sequentially, with each classifier trying 

to improve on the errors of the previous classifier. The final ensemble mode derives a 

strong and comprehensive model from the weak classifiers (Tanha et al., 2020). 

▪ GentleBoost: A variation of AdaBoost, GentleBoost employs a less aggressive 

method of weight adjustment, which is very stable and lowers the risk of overfitting  

(Friedman et al., 2000). 

▪ LogitBoost: Logistic regression is applied in every iteration, optimizing the logistic 

loss to see how the classification performance is improved. (Li, 2010). 

• Bootstrap Aggregating  

Bootstrap Aggregating (Bagging) is another type of ensemble method, bagging with Bootstrap 

Aggregating. This technique improves model stability and accuracy by training on many 

versions of predictors pulled from different bootstrap data input samples and then averaging 

their predictions. The method reduces variability and helps to create a more reliable model 

(Breiman, 1996). 

• Stacking 

Besides the previously discussed ensemble methods, we also utilized the ensemble method 

called stacking. It is defined more generally as learning a set of base classifiers and then using 

another model, called a "meta-classifier," that learns how to combine the predictions of these 

base classifiers. However, the stacking approach achieved an accuracy of 94.10%, which was 

lower than the accuracy achieved using Trail 1 and Trail 2. Therefore, our second experiment 

used boosting and bagging to enhance the classification performance. 

3.2.1. Base Classifiers 

In Trial 2, we carefully selected a range of base classifiers to capitalize on their unique strengths 

in EEG signal classification, particularly for detecting the P300 component. Our approach 

employed varying numbers of base classifiers using Riemannian geometry and PCA, and 

different numbers of components were tested (10, 20, 30, 50, and 70). The number of best 

components for every base classifier was determined with care to promote signal analysis and 

accommodate the special characteristics of EEG signals. The base classifiers were: 

Minimum Distance to Mean 

It was chosen based on its high performance when covariance matrices derived from EEG are 

used for the target application(Daskalov et al., 2020). Minimum Distance to Mean (MDM) 
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performs well when class means are separate and is strongly consistent with predictions, 

evidenced through a 94.04% average accuracy. 

Support Vector Machine 

SVM was selected due to its effectiveness when working with high-dimensional data 

(Christopher et al., 1998). Using Principal Component Analysis (PCA) for reducing 

dimensions, SVM successfully retained the most significant components and achieved a cross-

validated average accuracy rate of 94.34%. 

Neural Network 

The neural network (NN) was used to model the complex, non-linear relationships between 

data (Avendaño-Valencia & Fassois, 2015). With PCA initially reducing features to the most 

significant components and then using a fully connected neural network, this classifier yielded 

a 90.27% mean accuracy. While less accurate than other classifiers, it is still a valuable 

ensemble contributor.  

Random Forest 

The PCA was applied to the principal components of the covariance matrices for the 

Riemannian geometry being explored (Jin et al., 2020). The number of best cross-validated 

components using KFold=10 was obtained. These characteristics were trained using a Random 

Forest classifier, and predictions were delivered through an ensemble approach. The overall 

model had an average accuracy rate of 91.94%.  

Linear Discriminant Analysis 

Linear Discriminant Analysis was employed based on its performance for linear classification 

for well-separated datasets (Daskalov et al., 2020). The LDA model was also fine-tuned by 

experimenting with different PCA components and obtaining a mean accuracy of 93.37%. 

Fig.9: Average Base of the Classifiers Accuracy 
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These classifiers have been selected to be complementary, each bringing different advantages 

which, when ensembled, enhance the overall performance of the model. Collectively, the union 

of methodologies makes it so that the ensemble can robustly classify EEG signals, addressing 

the complexity within the data successfully. 

3.2.2. Ensemble Techniques and Meta-Classifier Training 

After their predictions, the base classifiers were combined into a matrix that was fed into the 

sophisticated classifier (meta-classifier). These classifiers were trained with various ensemble 

methods (AdaBoostM1, GentleBoost, LogitBoost, and Bagging) with NumLearningCycles = 

200 to find out the optimum method for enhancing each participant and session's classification 

accuracy. 

 

Table 1 summarizes the performance of the methods based on their ensemble accuracy, 

sensitivity, specificity, precision, recall, and F1 score. Performance results show that Bagging 

and AdaBoostM1 yielded the best performance of all the methods. The table illustrates that 

Bagging presented the best performance overall for 25 sessions with an accuracy of 96.73, while 

the best performance for 30 sessions was recorded by AdaBoostM1 with an accuracy of 96.50. 

Meanwhile, GentleBoost and LogitBoost presented good performance for 37 and 13 sessions, 

respectively.  

Table 1: Performance Comparison of Ensemble Techniques 

The PCA components for the base classifiers and clustering methods are shown in Fig.10. The 

clustering ROC curve in Fig.11 has a high AUC of 0.97, which makes the proposed approach 

work better. In addition, the statistical results show that our approach achieved an average 

ensemble accuracy of 96.37 ± 2, a recall sensitivity of 97.51 ± 2.3, a specificity of 91.11 ± 2.83, 

an F1 score of 97.45 ± 2.26, and a precision of 98.55 ± 2.32.  

Ensemble 

Method 
No. of 

Session 

Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 Score 

(%) 

Bag 25 96.73 96.62 91.14 98.64 96.62 97.54 

AdaBoostM1 30 96.50 96.37 90.72 98.36 96.37 97.53 

GentleBoost 37 96.01 96.70 91.20 98.63 96.70 97.26 

LogitBoost 13 95.76 97.23 91.71 98.63 97.23 97.39 

Bag 25 96.73 96.62 91.14 98.64 96.62 97.54 

Ensemble 

Method 

No. of 

Session 

Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 Score 

(%) 

Bag 25 96.73 96.62 91.14 98.64 96.62 97.54 

AdaBoostM1 30 96.50 96.37 90.72 98.36 96.37 97.53 

GentleBoost 37 96.01 96.70 91.20 98.63 96.70 97.26 

LogitBoost 13 95.76 97.23 91.71 98.63 97.23 97.39 

Bag 25 96.73 96.62 91.14 98.64 96.62 97.54 
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These results indicate that using different ensemble techniques, especially Bagging, 

significantly improves the performance of EEG signal classification, ensuring high accuracy 

and flexibility across different participants and sessions. These results indicate that using 

different ensemble techniques, especially Bagging, significantly improves the performance of 

EEG signal classification, ensuring high accuracy and f lexibility across different participants 

and sessions. 

Table 2. The provided compares our proposed approach with previous studies that used the 

same dataset BCIAUT-P300, highlighting the superiority of our methodology. 

Fig.10: a) Distribution of PCA components selected for different classifiers. 

b) Distribution of ensemble techniques used 

Fig.11: ROC Curve illustrates the trade-off between sensitivity and specificity (Trail 2) 
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The comprehensive testing across all participants and sessions (seven sessions) marks a 

significant advancement over prior studies that typically limited evaluations to fewer sessions, 

setting a new benchmark in EEG signal analysis. This methodology enhances classification 

performance by using Riemannian geometry, PCA, and state-of-the-art ensemble approaches. 

It emphasizes the potential for high-level signal processing and machine learning approaches 

to propel next-generation advances in cognitive neurosciences. 

While our study was spurred by (Krzemi et al., 2020),  ours built considerably on it by bringing 

on board a series of different methods of ensemble learning, e.g., AdaBoostM1, GentleBoost, 

and Bagging, and an implementation of PCA to further enhance component analysis. These 

enhanced the model's accuracy, which is our contribution to the study. 

Table 2: Comparison with Previous Studies using the BCIAUT-P300 dataset 

Author Methodology Sessions 

Mean 

accuracy 

(%) 

Other metrics 

(Borra, Fantozzi 

and Magosso, 

2020) 

CNN based on EEGNet, epoch 

extraction, downsampling 
7_4 92.3 Not Mentioned 

(Santamaría-

Vázquez et al., 

2020) 

CNN-BLSTM, baseline 

normalization, epoch 

extraction 

7_4 84.3 Not Mentioned 

(de Arancibia et 

al., 2020) 

Combination of temporal 

features and CWT, PCA for 

feature reduction 

7_4 82 F1 score 

(Bittencourt-

Villalpando and 

Maurits, 2020) 

SVM, pseudorandom 

averaging of ERP segments, 

feature vector construction 

7_4 81.50 Not Mentioned 

(Krzemi et al., 

2020) 

Riemannian framework, an 

ensemble of 400 LDA 

classifiers 

7_4 81.20 Not Mentioned 

(Miladinović et 

al., 2020) 

Bayesian logistic regression 

with automatic relevance 

determination (VB-ARD) 

7_4 80.30 Computation time 

(Chatterjee, 

Palaniappan and 

Gupta, 2020b) 

BLDA, RUSBoost, and CNN 

classifiers, majority voting 

within each run 

7_4 76.30 

Not Mentioned 

(Adama, 

Schindler and 

Schmid, 2020) 

MLP, Pearson’s correlation, 

feature extraction in specified 

time windows 

7_4 70 Not Mentioned 

(Zhao et al., 

2020b) 

LDA, custom filter design, 

linear support vector 

regression as feature pre-

selector 

7_4 67.20 Not Mentioned 

(Peketi and 

Dhok, 2023) 
VMD-SVM method 

all seven 

sessions 
91.12 

Accuracy, F1-score, 

and the area under the 

curve 

Proposed 
all seven 

sessions 
95.03 

Accuracy, Sensitivity 

(Recall), Specificity, 
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Riemannian Geometry and 

Ensemble Learning: Trail 1, 

Trail 2 

all seven 

sessions 96.37 

F1-score, Precision 

and the area under the 

curve 

4. CONCLUSION 

In summary, our work has shown a new and practical method for differentiating autistic 

patients' EEG signals from normal subjects. When used together with diverse ensemble 

methods, such an application based on Riemann geometry and PCA attained record-breaking 

accuracy and reliability. Our work shows an improvement in the classification process for the 

EEG signal, leading to higher reliability and robustness. The method was fruitful, and an 

average ensemble accuracy of 96.37 was achieved, having high sensitivity, specificity, and 

accuracy. These results are better than what is reported in the literature and create a new 

benchmark for the analysis of EEG signals. Success using such an approach shows massive 

promise for what machine learning methods and signal processing can help achieve for 

transforming cognitive neuroscientific research . 

Future refinements of this cluster model might include extra classifiers and more sophisticated 

feature extraction methods, which could lead to further important improvements in EEG signal 

classification among autistic patients. The process continues to advance cognitive neuroscience. 
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