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ABSTRACT  

Early diagnosis of breast cancer is critical for effective treatment and reducing mortality rates. 

Computer-aided diagnosis tools have become essential for identifying and diagnosing cancer 

in its initial stages. Convolutional neural networks (CNNs) have shown significant promise in 

medical image analysis, aiding in the detection of cancer cells and the classification of 

histopathological images through advanced data processing techniques. This study introduces 

a novel framework that combines transfer learning (TL) with an Incorporation of Prior 

Knowledge algorithm for multi-class classification of breast cancer using histopathological 

images. A new dataset comprising 3,600 sub-image histopathological images is presented, 

generated from the original Bach dataset. The study evaluates various pre-trained deep neural 

networks, including Inception V3, VGG19, GoogleNet, ResNet 101, and NASNet. Notably, the 

integration of prior knowledge and the focus on sub-image classification rather than whole 

images significantly enhanced cancer classification accuracy. The proposed method, leveraging 

the NASNet architecture, achieved a remarkable classification accuracy of 98.61%. 

Additionally, this study advances beyond conventional classification tasks by investigating 

tumor localization within breast cancer, utilizing sub-image analysis to improve diagnostic 

precision and support effective clinical decision-making. This innovative approach enhances 
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classification performance and contributes to more accurate tumor localization, thereby 

significantly improving diagnostic capabilities in breast cancer detection. 
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1. INTRODUCTION 

Breast cancer (BC) is the most prevalent disease and cause of female mortalities in the universe. 

According to the International Agency for Research in Cancer, nearly 9.2 new female 

malignancies, 2.29 million of them, were cases of breast cancer (Ferlay et al., 2020). Breast 

cancer contributed to 15.5% of 4.4 million female malignancy-related deaths. 

Early detection of cancer is delayed in most cases despite preventive processes such as imaging 

and mammography for screening, and it ends with a high fatality rate. According to the World 

Health Organization (WHO), 2.3 million females developed such a disease in 2020, and 

approximately 30% of them will not survive (Bergerot et al., 2022), (Wilkinson et al., 2021). 

Breast cancer is a complex etiological disease and one that is heterogeneous in consideration of 

acquired and genetic factors. Heterogeneity involves persons and malignancies, therefore 

introducing a range of prognosis and therapy (Ellsworth et al., 2017). In addition to gender 

(female) and age (over 40), other risk factors include being overweight, eating an imbalanced 

diet, abusing alcohol, and smoking (Dong et al., 2020), (Momenimovahed et al., 2019). BC is 

often caused by epithelial abnormalities (carcinoma), consisting of lesions that differ in 

microscopic characteristics and biological function. Breast cancer can be categorized into three 

grades: invasive forms (where tumor cells migrate to the breast stroma), metastatic carcinomas 

(where the tumor spreads to other locations), and noninvasive forms (in situ), in which tumor 

cells are confined to ducts or lobules. Non-invasive cancers may have lobular or ductal 

characteristics. The most prevalent kind of non-invasive cancer is called DCIS, and it is often 

linked to recidivism and the emergence of invasive ductal carcinoma, the invasive form of the 

disease. Infiltrating ductal carcinoma, another name for invasive ductal carcinoma, is the most 

frequent kind of breast cancer (Place et al., 2011). 

Improving the patient's quality of life and overall chances of survival requires early diagnosis 

(Rock et al., 2022). Breast tissue biopsy images must be examined histologically to diagnose 

breast cancer. The four kinds of breast tissues include benign lesions, invasive carcinomas, in 

situ carcinomas, and normal breast tissues. Normal breast parenchyma tissue forms benign 

lesions, which have no connection to the development of malignant carcinogenesis. There are 

two forms of malignant breast cancer: invasive carcinomas and in situ carcinomas. Malignant 

cells are restricted in the mammary ductal-lobular system in the in-situ tissue, but they 

proliferate outside of the structure in invasive tissue. Pathologists use biopsy images stained 

with hematoxylin and eosin (H&E) to categorize and stage the tissue (Elston et al., 1991). Image 

scaling, rotation, and translation processes are needed throughout the study. This procedure 

requires highly skilled physicians and significant time and effort. Only 75% of pathologists' 
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diagnoses are accurate on average because of the complexity and diversity of histopathological 

images (Elmore et al., 2015).  

Machine learning (ML) has made significant progress in recent years (Ruqaya Alaa et al., 

2024). The potential of this topic has also developed for a wide variety of applications, 

including image recognition, medical diagnostics, defect identification, and building health 

assessments. The development of learning techniques that enable computer methods to carry 

out particular tasks based only on learned patterns, as well as an increase in the power of 

computers that supports these models' analytical capabilities, are just two of the many factors 

that have contributed to these new developments in ML (Perez et al., 2020).  

Many machine-learning methods have been developed during the last ten years to classify 

breast cancer based on histopathology images (Juppet et al., 2021). Traditionally, early 

researchers used private datasets with small sample sizes to evaluate their methods and used 

standard machine-learning algorithms (George et al., 2014). Consequently, these techniques 

fall short of what clinical practice requires. CNNs have recently been widely used for BC 

classification (Dif et al., 2021). Techniques based on conventional networks, such as ResNet 

and Dense Net, have been proposed that have shown outstanding outcomes. However, in some 

earlier models, the raw image is often divided into patches to facilitate further analysis using 

convolutional neural networks (CNNs) (Mohammed et al., 2022). These patches retain the same 

labels as the original image extracted (Abdulaal et al., 2024a). This approach may lead to the 

CNN being trained on inaccurately labeled patches, which might have impacted the model's 

performance since benign problems can appear in malignant samples. Furthermore, accurate 

classification results are obtained by using sophisticated CNN models, which affect processing 

speed. 

Medical images are an essential component of every patient's digital health dossier. Individual 

radiologists are restricted by time constraints, professional shortcomings, or a lack of expertise 

in producing such images. A radiologist's education takes decades and substantial financial 

resources. Furthermore, teleradiology is frequently employed in medical care to outsource 

radiological interpretations to countries with fewer economic resources. Teleradiology allows 

medical images such as X-rays, CT scans, and MRIs to be transmitted electronically to remote 

locations for analysis and diagnosis by radiologists. A delayed or incorrect analysis might harm 

the patient. As a result, autonomous, effective ML methods would be preferable for medical 

imaging (MI) investigations.  

There are several types of imaging, and their use is becoming more common. Images from 

dermoscopy, ultrasound, X-rays, retinal scans, computed tomography (CT), positron emission 
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tomography (PET), and magnetic resonance imaging (MRI) are all instances of MI. Fig. 1 

depicts several examples of MIs. Various imaging modalities, such as CT and MRI, can scan 

multiple organs within the body. In contrast, other imaging techniques, such as retinal and 

dermoscopy images, are specific to particular organs (Yousef et al., 2022). 

Fig. 1. shows different types of medical imaging, including (a) an MRI of the left side of the 

brain, (b) an axial CT brain scan, (c) an axial CT lung scan, (d) a chest X-ray,  

and (e) a histology slide showing high-grade glioma (Elazab et al., 2020) 

This paper presents a novel approach that combines transfer learning (TL) with an Incorporation 

of Prior Knowledge algorithm for classifying breast cancer into four distinctive categories using 

histological images. This study will strive towards developing an algorithm that leverages 

transfer learning in pre-trained big datasets and then employs them in a new problem. This is a 

big step in that the model can gain an edge through information and trends gained in the pre-

trained model, and accuracy and efficiency in classification can be increased. Besides, the 

"Incorporation of a Prior Knowledge" algorithm integrates preceding information. By 

combining TL with the incorporation of a prior knowledge algorithm, the proposed technology 

aims to classify BC into four types precisely. Hopefully, such a technique could promote 

awareness and diagnoses of BC through its histology images in a personalized therapy schedule 

and, in the long run, a better patient prognosis. Several deep neural networks with pre-training 

were considered for testing for effectiveness in the proposed techniques. Integration of prior 

knowledge and consideration for the classification of one single sub-image and not whole 

images effectively lowered the accuracy of cancer classification. 

2. RELATED WORK  

Several researchers have conducted studies on BC classification using CNNs for many years. 

(Zhu et al., 2019) suggested a hybrid strategy that included building many compact CNNs. A 

squeeze-excitation pruning block and local-global branches are all included in this approach. 
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These modules offered string representation and channel redundancy reduction. Experiments 

were carried out using the BreaKHis and BACH datasets. The multi-model assembly approach 

achieves results comparable to those of cutting-edge models.  (Toğaçar et al., 2020) provide a 

residual architecture (BreastNet) with attention modules for classification. Attention modules 

aid in the identification of significant regions in the processed histopathology images. The 

hypercolumn method is used to get better results. BreastNet has an accuracy of 98.80%. E.M. 

(Nejad et al., 2017) investigated the importance of critical features in categorization and 

developed a unique single-layer CNN. This model extracts vital features from the images of the 

BreaKHis dataset, and their classification resulted in an accuracy of 77.5%. Using statistical 

and structural data included in the pathological images, (Nahid et al., 2018) classified them into 

two categories. The authors suggest a hybrid LSTM and CNN model. Conversely, the ultimate 

choice is made using SVM and SoftMax with 91.00% accuracy. Recurrent neural networks and 

CNN are used in the self-learning histopathological image processing system suggested by 

(Yan et al., 2019). His dataset is utilized in all experiments, and the images are classified into 

four groups with an accuracy of 91.3%. A DCNN with backpropagation, ensemble learning, 

and rectified linear unit (ReLU) activation functions is employed for intra-class classification 

(Adeshina et al., 2018). The study utilizes the BreaKHis dataset, achieving an accuracy of 

91.5% across eight different classes. (Xie et al., 2019) carried out binary and multi-class 

classifications. InceptionResNetV2, in their work, extracted the input data's characteristics. A 

unique autoencoder was employed to translate those features into low-dimensional space, 

producing improved classification results. A model of inception-recurrent residual CNN was 

presented by (Alom et al., 2019) based on the promising outcomes of DCNN in previous 

studies. Transfers are usually helpful when the data size is small. (Khan et al., 2019) created a 

new technique for extracting features from pre-trained models like VGGNet, GoogleNet, and 

ResNet to accomplish binary classification. The suggested framework has an accuracy of 

97.525%. In another study, (Aloyayri et al., 2020) implemented the binary classification 

challenge using the shuffleNet, InceptionV3, and ResNet18 architectures. These pre-trained 

architectures are trained using ImageNet. The last layers of the models are adjusted and trained 

using the BreaKHis dataset. The authors attained the maximum accuracy of 98.73%. (Ahmad 

et al., 2019) applied TL to ResNet, GoogleNet, and AlexNet, where 20 tests and 240 training 

images, divided into four groups, were employed. The ResNet approach attained the most 

remarkable accuracy of 85%. A transfer learning-based method was developed by (Mani et al., 

2023) to classify BC images into four categories. That analysis made use of the BACH 2018 

dataset. Two models, including ResNet50 and InceptionV3, were trained using the patches 



Kufa Journal of Engineering, Vol. 16, No. 3, July 2025               731 

 
 

obtained from those images. Both models were pre-trained using ImageNet. Accuracy of 

97.50% was the highest level reported. (Murtaza et al., 2019) created a precise model for the 

classification of BC using TL. The model's final layer is tailored to perform binary classification 

using the AlexNet architecture. The extracted characteristics are then classified into two groups 

using six different machine learning methods, and an accuracy of 81.25% was reported on test 

data. (Ferreira et al., 2018) used a DNN with TL to categorize breast cancer. The authors used 

the ICIAR 2018 dataset to conduct the tests using a modified Inception ResNet V2 model. Its 

accuracy was 76%. The convolutional block attention module was proposed to detect 

metastases of BC automatically (Liang et al., 2019). A DL-based ensemble solution was 

proposed for the automatic binary categorization of histopathology images, yielding an 

accuracy of 97.6% on the PCam dataset. Feature extraction was performed via ensembles of 

the three architectures: MobileNet, DenseNet, and VGG19. It was evaluated by employing four 

publicly accessible datasets. On the BreaKHis dataset, the highest accuracy (98.13%) was 

reported by (Hameed et al., 2020). The BreaKHis and CMTHis datasets were classified by 

(Kumar et al., 2020) using VGGNet-16, which was trained on the ImageNet dataset. They 

attained an accuracy of 97% and 93% on those datasets. 

(Balasubramanian et al., 2024) developed small CNNs to classify breast cancer based on 

histology samples. The authors used a design based on hybrid CNN, which combines local and 

global branches of the CNN model. The authors combined traits from these two branches to 

obtain vital attributes and employ local voting. Additionally, they improved classification 

results by ignoring undesirable channels or characteristics and using the suggested squeeze-

excitation-pruning technique. By removing global and geographical information from areas of 

interest, (Ukwuoma et al., 2022) classified breast cancer histopathology images using a mixture 

of CNNs. The pre-trained CNNs employed by (Aljuaid et al., 2022) were ResNet18, ShuffleNet, 

and Inception-V3. On their BreaKHis dataset, the authors used transfer learning at different 

magnifications. Using data augmentation methods, including flips, rotations, and translations, 

they increased classification performance.  

(Abdulaal et al., 2024a) proposed a self-learning DNN for the categorization of histological 

images of BC in recent research. They used TL and examined a great deal of pre-trained DNNs. 

To improve the accuracy of cancer classification, their work focuses on using a self-learning 

technique to categorize sub-images rather than the whole image. Nevertheless, a challenge 

arises when the classifier has to be trained using noisy labels since the true label of the sub-

images is unknown. To avoid this, incorrect labels are gradually corrected using a hierarchical 

self-learning process based on prior information about the flaws in the original labels. The 
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suggested self-learning method uses the Inception-V3Net for four label correction rounds, 

resulting in an accuracy of 99.1%. Overall, using self-learning DNN to classify histological 

images of BC enhances precision and tailored therapy and improves efficiency, accuracy, and 

interpretability. 

The current approaches, which required more time and processing power due to the complex 

structure's design, could only translate clinical images into a feature vector using several CNN 

architectures. 

3. METHODOLOGY  

This section highlights the significant contributions and strategies used for the multiclass 

classification of BC using histological images. Correctly classifying BC is crucial for an 

accurate diagnosis and appropriate treatment. 

3.1. Multi-Class classification 

Rapid advancements in deep learning algorithms and machine learning have recently posed 

new challenges for diagnosing breast histopathology images automatically. Multiclass 

classification, in terms of diagnosing histopathological images into various cancer subtypes or 

stages, has gained significant attention for it has important information for personalized therapy 

and prognosis. 

The classification of breast histopathology images is particularly challenging due to its complex 

cellular structure and intrinsic tissue heterogeneity in form and arrangement. Variability in 

staining processes in histopathological images, in terms of degrees of magnification, and tissue 

preparation processes renders extraction of uniform discriminative features challenging. In 

addition, types of breast cancers vary in aggressiveness, and intratumorally heterogeneity 

creates additional difficulty in that regions in a single tumor can have specific histological 

features. 

Therefore, to overcome these issues, many studies have examined several techniques and 

improvements developed in the multi-classification of breast histopathology images. A 

convolutional neural network is a deep neural network with state-of-the-art performance in 

image classification algorithms through its capability to learn hierarchical representations from 

raw picture information (Sivalingan, 2024). 

Transfer Learning, which utilizes pre-trained networks over large datasets of images, has been 

utilized to extract important features and enhance accuracy in classification, predominantly 

when training information is not considerable. 

The improvements in multiclass classification of breast histopathology images have exhibited 

tremendous potential for enhancing accuracy, velocity, and uniformity in BC diagnostics. 
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Pathologists can utilize automated sorters to make fewer mistakes in evaluations and even to 

provide additional care for a patient. In addition, such techniques can allow the processing of 

high volumes of histopathologic information to gain information about several dimensions of 

BC, such as the discovery of new biomarkers for a variety of types of disease 

This study will investigate and contribute to the multiclass classification of histopathology 

breast images. It will strive to enhance accuracy and efficiency in the computerized 

classification of BC through state-of-the-art approaches to create personalized therapies with 

augmented patient care. Proper and efficient classification of BC through histopathology 

images is imperative for correct therapy planning and proper diagnosis. The development of 

DL algorithms in recent years seems to make such a classification computerized a reality. 

Many studies have been performed to develop an efficient architecture for a CNN for 

classification in cases of BC. Several studies have analyzed and determined whether and to 

what extent DL can classify BC through histopathology images in several domains and regions. 

Due to this, several types of different architectures have been proposed and compared in detail 

for application in cases of classification of BC. Fig. 2 shows operations in such a mechanism. 

BACH Dataset

Start

Pre-Processing

Training 

Model

Benign InSitu Invasive Normal

 

Fig. 2. Framework of the proposed multi-class classification 

By comparing a range of several architectures of CNN, one can utilize the best model for 

classifying breast histopathology images into numerous subtypes and phases (Abdulaal et al., 

2024d). Comparison and evaluation include comparing accuracy in classification, sensitivity, 

and specificity and testing for robustness with proper use of the BACH database (Araújo et al., 

2017). 

3.2. Dataset Description 

The BC Histology Challenge 2018 (BACH) constructed the BACH dataset for histopathologic 

examination to classify carcinoma of the breast. It is utilized for testing and developing 

computer algorithms for classifying BC (Araújo et al., 2017). 
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The histopathologic slides in the dataset in BACH cover carcinoma, benign lesions, and 

carcinoma and normal epithelia in samples of breast tissue and with accompanying ground truth 

labels in the form of pixel-wise segmentation masks, such that fine-grained analysis and 

evaluation can be conducted. Trained pathologists accurately chose and labeled the dataset to 

allow for correct and reliable marking. 

The photos in it have been captured under heterogeneous protocols regarding factors such as 

magnifications, representing diversity in observations in real-life practice. 

The distribution of images in the BACH data concerning carcinoma types is shown in Fig. 3. 

Fig. 3.  BACH data set with four classes (Dong et al., 2020) 

3.3. Data pre-processing 

The Images of the BACH dataset required size normalization to ensure compatibility with the 

various networks used in this study. Data cropping and rescaling techniques align the image 

sizes with pre-trained deep neural networks. Specifically, several networks with distinct input 

image size requirements are utilized. For instance, ResNet 101 operates on 224 x 224 images, 

Inception-V3Net requires 299 x 299 images, VGG19 operates on 224 x 224 images, Google 

Net uses 224 x 224 images, and NASNet requires 331 x 331 images. Compatibility with the 

specific network architectures used in this study is ensured by resizing the input images 

accordingly. Data augmentation involves enriching the existing dataset by incorporating 

supplementary relevant information. The specific transformations applied in this study on 

Histopathological images included rotation, scaling, and flipping. 

3.4. Proposed model  

This study investigates the effectiveness of incorporating prior knowledge by training pre-

trained CNN models on the BACH dataset for tumor localization and classification. 

Specifically, NASNet yielded the most outstanding results among several pre-trained CNNs. 

Furthermore, we propose a novel approach for identifying tumor locations within sub-images 

using the trained CNN. 

The BACH dataset consists of histology images related to BC, encompassing four classes: 

normal tissue, benign tumor, carcinoma in situ, and invasive carcinoma. To leverage prior 

knowledge, NASNet is a state-of-the-art pre-trained CNN architecture known for superior 

performance on image classification tasks. The benefit from the feature extraction efficiency of 
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NASNet images could be contained through pre-trained weights, which may lead to faster 

convergence and potentially result in better performance. 

Transfer learning was used to modify NASNet for the BACH dataset. Fine-tuning the pre-

trained weights on this dataset enabled CNN architecture to learn tumor-specific features and 

adapt to histopathological characteristics, making it more accurate in identifying tumor regions. 

Apart from the tumor classification, a new technique for locating tumors within sub-images has 

developed. The trained NASNet model was applied to sub-images extracted from a histology 

image so that we could examine activation maps (or feature maps) produced by CNN. These 

maps showed areas with high activations corresponding to potential regions of cancerous 

growth. Therefore, this method can be valuable for detecting tumor cells and suspicious parts 

in images. 

A NASNet has been created for BC multi-classification by investigating these histopathological 

images, as illustrated in Fig. 4. 

Fig. 4. NASNet CNN. 

In the first place, every image from the BACH dataset was divided into nine parts to capture 

more localized information, as indicated in Fig. 5. 

Fig. 5. Pre-processing operation. 

Then, benign sub-images are tested and classified into normal and benign. This classification 

process is a crucial part of the testing procedure. 

After collecting the benign sub-images, they are subjected to rigorous tests using the NASNet 

model. This model uses image recognition technology and capitalizes on its ability to accurately 

detect and label these images based on their features. 

During this testing stage, benign sub-images will be put in the classifying model, which will be 
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used to observe them for visual attributes and patterns. As shown in Fig. 6 below, based on this 

analysis, the model assigns each sub-image to either the normal or benign classes. 

Fig. 6. Benign sub-images Testing with NASNet. 

Various applications and studies depend on classifying the sub-images as benign or normal. 

Valuable information is provided that distinguishes normal cases from those with benign 

abnormalities. 

After classifying the sub-images, some regions were labeled as benign. These areas were 

potential sites for tumors within the original image. Tumors can be seen in histopathological 

images by recognizing and determining their location. Then, these in-situ sub-images will 

undergo thorough testing using the NASNet model. 

While still in the testing stage, in-situ sub-images would be inserted into the NASNet model, 

which should be analyzed based on their features and patterns. Based on this analysis, each sub-

image is assigned to one of three classes according to Fig. 7: Normal, Benign, or In Situ. 

 
Fig. 7. Testing of In-situ sub-images with NASNet. 

In this context, it is essential to differentiate these in-situ sub-images into separate classes for 

further examination and decision-making purposes. This will recognize normal, benign, and in 

situ cases. 

The testing process, therefore, aims to provide accurate and reliable results that will facilitate 

professionals' and researchers' better understanding of the nature and classification of in-situ 
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sub-images using NASNet. These revelations can then assist in several ways, including 

diagnosis, treatment schedules, or future research developments within the field. 

Invasive sub-images are tested to separate them into four unique classes: normal, benign, in 

situ, and invasive.  

Once collected, advanced classification techniques will be applied to the invasive sub-images. 

Such algorithms utilize deep learning, and through it, proper analysis and classification will be 

guaranteed with certain attributions and qualifications in such an image. The testing involves 

considering such a visual feature and a sequence of an invasive sub-image with a classification 

model. The sub-images analyzed will fall under one of four groups: normal, benign, in situ, and 

invasive Fig. 8. 

 
Fig. 8. Invasive sub-images Testing with NASNet 

Classifying the invasive sub-images into these four classes is highly significant in various 

spheres. It enables separation between normal cases, benign abnormalities, in-situ conditions, 

and invasive malignancies, providing crucial details for diagnostics, treatment planning, and 

further research analysis. The new dataset is presented in Table 1. 

Table 1. New Dataset 

Class BACH Sub-Ima New-N New-B New-InS New-Inv 

N 100 900 900 X X X 

B 100 900 302 598 X X 

InS 100 900 183 116 601 X 

Inv 100 900 111 83 209 497 

Total 400 3600 3600 

Upon evaluating a pre-trained deep neural network (DNN), a NASNet DNN 2 model was 

developed to classify a new dataset, as outlined in Table 1. The dataset comprised 3600 images, 

and a 5-fold cross-validation methodology was employed to ensure rigorous assessment.  

After classifying the patches, the next step involves collecting sub-images to reconstruct the 

original image. These sub-images are extracted based on the patches from the previous 

classification step. The patches classified as potentially malignant (either in Situ or Invasive) 
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are of particular interest and are carefully examined. 

The sub-images are reconstructed by gathering the classified patches per their places in the 

original image. The complete image is reconstructed by combining these patches to allow for a 

thorough analysis of the whole image. 

Finally, its overall classification is determined once the original image has been reconstructed. 

This classification can include malignant (in situ or Invasive), benign, or normal. This decision 

is based on whether malignant parts in the in situ and Invasive regions exist in the reconstructed 

image. The image is considered malignant if even one patch is classified as cancerous (in situ 

or Invasive), as shown in Fig. 9. Fig. 10 shows a flowchart for incorporating a prior knowledge 

technique. 

Fig. 9. Reconstruction and Decision Based on Patch Classification for Malignant Regions 

3.5. Cross-Validation 

The crucial cross-validation method evaluates ML models' performance and generalization 

capabilities. In this work, 5-fold cross-validation is utilized to test the performance of multiclass 

classification models. The four principal classes in the histopathological images in the BACH-

2018 dataset include in situ, Invasive, benign, and normal. 

The training and testing sets divide the dataset, with 80 percent of samples and 20 percent of 

samples, respectively. The models' performance is evaluated via 5-fold cross-validation. In 5-

fold cross-validation, training sets are partitioned into five folds, with an even number of 

samples for each fold. The model is trained five times, and during evaluation, one of the folds 

is taken as a testing set, and others become training subjects. 

Through 5-fold cross-validation and evaluation with such performance measures, such a 

mechanism provides important information regarding model performance. Such a mechanism 

reduces overfit and yields performance measures for model generalizability. 

The multi-class classification model with a CNN model can be represented in Fig. 11. 

 



Kufa Journal of Engineering, Vol. 16, No. 3, July 2025               739 

 
 

BACH 

Dataset

Dividing each image 

into 9 parts

Resize images

Pre-processing

NASNet CNN1

Traning

Invasive InSituBenignNormal

Benign 

Sub-images

InSitu

Sub-images

Invasive 

Sub-images 

NASNet 

CNN

Testing

NASNet 

CNN

Testing

NASNet 

CNN

Testing

Benign 

Images

Normal 

Images

InSitu

Images

Invasive 

Images 

Normal 

Images

Benign 

Images

InSitu

Images

Benign 

Images

Normal 

Images

NASNet CNN 2

Training

New Normal 

Images

New Benign 

Images

New InSitu

Images

New Invasive 

Images 

Dividing 

each image 

into 9 parts

 
Fig. 10. Framework for incorporating prior knowledge of DNNs. 

 
Fig. 11. CNN for multi-class classification 
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3.6. Pre-trained Deep Neural Networks  

Histopathological image analysis is an integral part of medical diagnostics, for which rapid and 

accurate classification of tissue samples is critical for proper therapy planning, prognosis, and 

diagnosis. Histopathology image classification has been enormously facilitated through DL 

with pre-trained DNNs, which have attained high performance in terms of high accuracy values. 

Neural networks have been trained over large datasets, such as ImageNet, to identify visual 

patterns. These networks obtain hierarchical information from an image, through which 

complex representations and patterns can be extracted. The application of pre-trained DNNs for 

histopathology image classification has a range of useful factors, including less training 

duration and effective generalization performance over unknown information. There have been 

a range of pre-trained DNN architectures for histopathology image classification, which have 

widespread use. 

Five architecture-based pre-trained deep neural network classifiers (DNNs) (Abdulaal et al., 

2024b) have been used in the current work. Inception V3, GoogleNet, VGG19, ResNet-101, 

and NASNet have been considered in work with these classifiers. These DNNs have a high 

potential for autonomously extracting meaningful information from imaging information. 

3.6.1. VGG  

The Visual Geometry Group Net (VGG) is a model developed at Oxford Robotics Institute for 

a model for a CNN. VGGNet performed admirably at ImageNet, with approximately one 

million examples of 1000 categories, having trained and produced an astonishing 138 million 

parameters to tune. VGG19 won first in 2014's Classification and Localization Challenge 

(Zakaria et al., 2024). 

The VGG family networks include VGG11, VGG13, VGG16, and VGG19, TL (transfer 

learning) networks. VGG19 specifically consists of five individual blocks. Two blocks from 

the first two consist of a convolution and one of a pooling block. The third and fourth blocks 

comprise four convolutional layers and one pooling layer each. The final building element 

consists of four convolutional layers. Additionally, three additional smaller filters are utilized. 

3.6.2. ResNet101  

ResNet, an acronym for residual network, was constructed from several layers that were joined 

in a certain way and instructed to do different tasks (Shafiq et al., 2022). The output from the 

preceding layer is used directly by the residual connection (9 of the 33 levels). The remaining 

connections serve as the operands for summation operations. The four subsequent layers—a 

convolutional layer with a filter size of 1 x 1 and a stride of 1 followed by a series of 

normalization layers—use the output of the previous block as their input. 
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3.6.3. Inception-V3Net 

The Inception-V1 has been upgraded to the Inception-V3. The Inception-V3 model took several 

actions to boost the model flexibility and enhance the network efficiency (Bhatt et al., 2021). 

Compared to the models Inception-V1 and V2, it has a deeper network. A deep CNN that was 

directly trained on a low-end computer is the Inception-V3 model. Training of deep models 

may take many days. By keeping the last layer of the model for new categories, TL avoids this 

difficulty. The pre-trained version of the Inception-V3 model is obtained by retaining the 

weights of all layers except the weights of classification layers, whose weights are adjusted 

using the task-specific data set. 

3.6.4. GoogleNet  

GoogleNet model contains twenty-two levels of network structure. The model includes the 

Google team's recommended inception structure and the convolution, pooling, and fully 

connected layers. Various visual features may be produced using convolutional kernels in the 

inception structure with different scales (Abdulaal et al., 2024c).  

The GoogleNet model's multi-layer CNN structure and inception structure may be responsible 

for its exceptional performance in image recognition. Nine inception modules make up the 

initial architecture of the GoogleNet model. The inception v1 has a 3x3 pooling layer and three 

convolutional layers with 1x1, 3x3, and 5x5 kernels. This structure processes images in parallel 

and then stacks them together to widen the network and its capacity. More convolutional kernel 

parameters will follow suit with more channels in an input image. It is, therefore, critical to 

downsize to manage increased computational demand. One such mechanism includes 1x1 

convolutional layers, which neither preserve height nor width in an image but can downsize 

channels in the count. Hierarchically employing 1x1 convolutional kernels preceding 3x3 and 

5x5 kernels and following 3x3 max-pooling layers can downsize feature map depth (Alkhodari 

et al., 2021). 

3.6.5. NASNet 

NASNet-Mobile is trained with the ImageNet dataset. With an active feature, NASNet labeled 

images successfully. NASNet Mobile and NASNet Large are classes with most of the NASNet 

structure. In contrast, the NASNet Mobile network is optimized best for smaller data sets than 

NASNet Large. It seeks the best convolutions in relatively small sets of data. Higher 

performance in classification and less computational expense were achieved when utilized with 

convolutional cells. In NASNet, free parameters in terms of model complexity, computational 

expense, and desired performance are utilized in terms of both cells, blocks, and initial 

convolution filter numbers that such a search algorithm must discover. It searches alternative 
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structures and configurations in its search algorithm to receive the best values for such free 

parameters in terms of model complexity, computational expense, and desired performance 

(Vallabhajosyula et al., 2021). 

3.7. Dataset Experimental Protocol 

In this work, the model has been trained with a DNN model with an image-based model for 

learning. 5-fold cross-validation is performed using a BACH dataset to test performance in such 

a model. Optimization uses an Adam optimizer with an adaptive estimation of a moment with 

predefined parameter sets. The decay factor was 0.99, the batch size was 128, and the learning 

rate was 0.0001, and these have been utilized for enhancing training and convergence 

performance. 

Evaluation metrics assess the performance of classifiers, including precision, sensitivity, 

classification accuracy, specificity, and F1 score. All these indications report on the 

performance of such a model and, therefore, for testing for suitability and efficiency in such an 

application. 

3.8. Evaluation metrics 

This paper utilizes a variety of evaluation factors in measuring classifier performance and 

efficiency. These factors shed light on classifier predictive performance and allow one to 

objectively make comparative efficiencies regarding a variety of classification concerns. The 

following section discusses evaluation factors and measures utilized (Abdulaal et al., 2024e). 

A confusion matrix is a useful evaluation tool that imparts immediate information regarding a 

classifier's performance, particularly for many classes. A confusion matrix represents actual 

instances for a class in a column and predicted instances for a class in a row. It is a square 

matrix. As Table 2 shows, a 4x4 structure of a confusion matrix for four-class classification is 

utilized. 

Table 2. Confusion Matrix 

Predicted Class 

 Normal Benign In Situ Invasive 

 

Actual 

Normal TP FN FN FN 

Benign FN TP FN FN 

In Situ FN FN TP FN 

Invasive FN FN FN TP 

Instances correctly classified as belonging to a particular class are known as True Positives 

(TP). 

Samples that are mistakenly classified as not belonging to a particular class are known as false 

negatives (FN). 
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The classification accuracy (1) measures the total accuracy of the classifier's predictions. It is 

determined by dividing the correctly classified instances by the total number of samples in the 

dataset. A higher level of accuracy indicates better performance, with 100% accuracy indicating 

that all predictions are correct (Abdulwahhab et al., 2024). 

( )A B C DTP TP TP TP
Accuracy

N

+ + +
=

 
(1) 

Where: 

TPA, TPB, TPC, and TPD are the true positives (correctly classified samples) for Normal, 

Benign, In Situ, and Invasive. 

N is the total number of samples in the dataset. 

Sensitivity (2), often called recall or true positive rate, quantifies the percentage of real positive 

events that the classifier accurately detects. It is determined as the proportion of true positive 

predictions to all positive examples. A greater sensitivity suggests better performance in 

capturing all positive examples, which gives insight into the classifier's capacity to recognize 

positive instances accurately. 

( )
( )

X

X X

TP
Sensitivity Class X

TP FN
=

+
 

(2) 

Where: 

TPX: True Positives for class X 

FNx: False Negatives for class X 

Precision (3) is the percentage of all positive cases that the classifier correctly predicted out of 

all positive instances. It is measured as the proportion of true positive predictions to all expected 

positive samples. Precision, which measures how accurately the classifier labels occurrences of 

positivity, is beneficial when the cost of false positives is significant. Lower false-positive 

predictions are indicative of higher accuracy. 

( )
( )

X

X X

TP
Precision Class X

TP FP
=

+
 

(3) 

Where: 

FPX: False Positives for class X 

The F1 score (4) is a composite statistic compromising sensitivity and accuracy. It provides a 

single metric to assess the classifier's effectiveness and is the harmonic mean of accuracy and 

sensitivity. The highest F1 score is 1, indicating perfect sensitivity and accuracy, while its 

lowest is 0. A higher F1 score indicates better coordination of sensitivity and accuracy. 
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( )
( )

( )

2
1

X X

X X

Precision Sensitivity
F score Class X

Precision Sensitivity

 
=

+
 

(4) 

Where: 

Precision X is the precision for class X. 

Sensitivity X is the sensitivity (recall) for class X. 

Another term for specificity (5) is the percentage of true negative cases detected by the 

classifier. It can be obtained by dividing the total number of actual negatives by the number of 

all samples classified as such. When what matters most is an accurate classification of negative 

samples, specificity is one way to find out. The greater specificity suggests better accuracy in 

the correct classification of negative cases. 

( )
( )

X

X X

TN
Specificity Class X

TN FP
=

+
 

(5) 

Where: 

TNX: True Negatives for class X 

4. RESULTS 

This section presents the outcomes of tests carried out on multiple classification tasks of breast 

cancer using histopathology images. Six DNNs trained with TL methods were used in these 

tests. This evaluation was based on the publicly available BACH dataset grouped into four 

classes. 

The data set was divided into two parts for training and testing: a training set that accounted for 

80% and a testing set composed of the remaining 20%. A five-fold cross-validation technique 

was used to ensure the models’ performance was robustly assessed during these tests. 

NASNet DNN 2 was also included in addition to the previous one to classify a new dataset 

comprising 3600 specially curated images aimed at multiclass classification. Consequently, this 

allowed an overall assessment of how well these models performed under multiclassification. 

4.1. Performance of Pre-trained Deep Neural Networks 

This section presents the classification outcome of six types of Deep Neural Network (DNN) 

classifiers: VGG19, ResNet101, GoogLe Net, Inception V3 Net, NASNet 1, and NASNet 2. 

These classifiers were tested on the BACH dataset, which consists of images related to BC. 

Table 3 provides results to evaluate and compare these DNNs' performance and visual 

presentations in Figs. 12, 13, and 14. Remarkably, however, NASNet shows the best 

performance among all evaluated metrics. 
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Table 3. Performance Metrics  

No. CNN Class Benign InSitu Invasive Normal Average 

 

 

1 

 

 

GoogleNet 

Accuracy 96.25 

Precision 97 97 96 95 96.25 

Recall 94.17 97.98 97.96 95 96.28 

F1-Score 95.57 97.49 96.97 95 96.26 

Sensitivity 94.17 97.98 97.96 95 96.28 

Specificity 98.99 99 98.68 98.33 98.75 

 

 

2 

 

 

 

 

 

Inception 

V3 

 

 

Accuracy 94.5 

Precision 95 95 93 95 94 

Recall 95 95.96 94.9 92.23 94.52 

F1-Score 96.86 97.53 95.59 95 96.25 

Sensitivity 95 95.48 93.94 93.6 94.5 

Specificity 98.33 98.34 97.68 98.32 98.17 

 

 

3 

 

 

ResNet101 

 

 

 

Accuracy 97.25 

Precision 97 99 95 98 97.25 

Recall 97.98 95.19 97.94 98 97.28 

F1-Score 97.49 97.06 96.45 98 97.25 

Sensitivity 97.98 95.19 97.94 98 97.28 

Specificity 99 99.66 98.35 99.33 99.09 

 

 

 

4 

 

 

 

NasNet 

Accuracy 98.25 

Precision 99 100 98 96 98.25 

Recall 97.06 99.01 98 98.97 98.26 

F1-Score 98.02 99.5 98 97.46 98.25 

Sensitivity 97.06 99.01 98 98.97 98.26 

Specificity 99.66 100 99.33 98.68 99.42 

 

 

 

5 

 

 

 

VGG19 

Accuracy 95.5 

Precision 95 94 96 97 95.5 

Recall 94.06 95.92 96.97 95.1 95.51 

F1-Score 94.53 94.95 96.48 96.04 95.49 

Sensitivity 94.06 95.92 96.97 95.1 95.51 

Specificity 98.33 98.01 98.67 98.99 98.5 

 

 

6 

 

 

NasNet2 

Accuracy 98.61 

Precision 97.49 98.15 98.59 99.46 98.42 

Recall 98.61 98.64 96.84 99.20 98.32 

F1-Score 98.05 98.39 97.71 99.33 98.37 

Sensitivity 98.61 98.64 96.84 99.20 98.32 

Specificity 99.29 99.46 99.77 99.62 99.54 

Fig. 12. Accuracy of different DNNs. 
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Fig. 13. Specificity of Five DNNs. 

 

Fig. 14. Precision of Five DNNs. 

4.2. Confusion Matrices 

A confusion matrix is a tool that compares the actual and predicted classifications made by any 

classification model. It provides a detailed summary assessment of model performance. 

Table 4 presents confusion matrices applied to several DNNs: VGG19, Inception-V3, 

ResNet101, Google Net, and NASNet. These matrices indicate their performance in terms of 

distribution among different categories of correct and wrong predictions. 

In summary, the results indicate that NASNet has achieved an impressive accuracy rate of 

98.61%. This underscores NASNet's success in delivering superior performance compared to 

other models. Fig. 15 showcases the accuracy metrics and the convergence loss for the best 

model, which in this case is NASNet. 
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Table 4. Confusion Matrices 

No. CNN Class Benign InSitu Invasive Normal 

 

 

1 

 

 

GoogleNet 

Benign 97 1 1 4 

InSitu 1 97 0 1 

Invasive 1 1 96 0 

Normal 1 1 3 95 

 400 

 

 

2 

 

 

 

Inception 

V3 

Benign 95 1 3 1 

InSitu 2 95 1 1 

Invasive 0 2 93 3 

Normal 3 2 3 95 

 400 

 

 

3 

 

 

ResNet101 

Benign 97 0 2 0 

InSitu 2 99 2 1 

Invasive 0 1 95 1 

Normal 1 0 1 98 

 400 

 

 

4 

 

 

NasNet 

Benign 99 0 1 2 

InSitu 0 100 0 1 

Invasive 1 0 98 1 

Normal 0 0 1 96 

 400 

 

 

5 

 

 

VGG19 

Benign 95 3 2 1 

InSitu 3 94 0 1 

Invasive 1 1 96 1 

Normal 1 2 2 97 

 400 

 

 

6 

 

 

NasNet2 

Benign 778 6 3 2 

InSitu 6 795 2 3 

Invasive 8 5 490 3 

Normal 6 4 2 1487 

 3600 

 

  

(a) Accuracy (b) Convergence loss 
 

 

Fig. 15. Accuracy and Convergence loss curves 

Table 5 summarizes the most relevant research efforts reviewed that have been carried out with 

the same database. 
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Table 5. Comparison with other related works 

Years Model Class Accuracy  Specificity  Sensitivity  Precision F1 score 

(Meng et al., 

2019) 

ResNet  4 91% 91% - 93% - 

(Yao et al., 

2019) 

Parallel 

CNN 

4 92% 92% - 90% - 

(Zhou et al., 

2022) 

RaNet 4 97.75% 98.21% - 97.93% - 

(Balasubramani

an et al., 2024) 

Ensemble 

Models 

4 98.43% - - - - 

(Sreelekshmi et 

al., 2024) 

SwinCNN 4 93% - 91.40% 93% 93% 

2025 This Work 4 98.61% 99.54% 98.32% 98.42% 98.37% 

5. CONCLUSION  

This study significantly advances breast cancer (BC) classification by incorporating prior 

knowledge to enhance diagnostic accuracy. Through a comprehensive evaluation of various 

pre-trained deep learning models, this research has illuminated a novel approach to BC 

diagnosis using histopathological images. Introducing a new dataset, consisting of 3,600 sub-

image histopathological images generated from the original BACH dataset, has provided a 

robust foundation for analysis. 

By employing six pre-trained convolutional neural networks (CNNs) and utilizing an image-

based methodology, the study effectively demonstrated the potential of Transfer Learning (TL) 

in adapting models for improved performance. Innovative techniques, such as data 

augmentation, were implemented to enhance the training dataset, ultimately leading to 

remarkable results. NASNet emerged as a standout performer, achieving an impressive mean 

classification accuracy of 98.61%. 

Furthermore, this research ventured beyond traditional classification tasks to explore tumor 

localization within breast cancer, showcasing the efficacy of sub-image analysis. Leveraging 

the power of prior knowledge, the proposed methodology for accurately identifying tumor 

locations within sub-images and analyzing activation maps offers a promising avenue for 

improving diagnostic capabilities. This innovative approach enhances classification 

performance and contributes to better patient care and outcomes in breast cancer management, 

underscoring the importance of early diagnosis and accurate localization in the fight against 

this disease. 
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