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ABSTRACT

Early diagnosis of breast cancer is critical for effective treatment and reducing mortality rates.
Computer-aided diagnosis tools have become essential for identifying and diagnosing cancer
in its initial stages. Convolutional neural networks (CNNs) have shown significant promise in
medical image analysis, aiding in the detection of cancer cells and the classification of
histopathological images through advanced data processing techniques. This study introduces
a novel framework that combines transfer learning (TL) with an Incorporation of Prior
Knowledge algorithm for multi-class classification of breast cancer using histopathological
images. A new dataset comprising 3,600 sub-image histopathological images is presented,
generated from the original Bach dataset. The study evaluates various pre-trained deep neural
networks, including Inception V3, VGG19, GoogleNet, ResNet 101, and NASNet. Notably, the
integration of prior knowledge and the focus on sub-image classification rather than whole
images significantly enhanced cancer classification accuracy. The proposed method, leveraging
the NASNet architecture, achieved a remarkable -classification accuracy of 98.61%.
Additionally, this study advances beyond conventional classification tasks by investigating
tumor localization within breast cancer, utilizing sub-image analysis to improve diagnostic

precision and support effective clinical decision-making. This innovative approach enhances
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classification performance and contributes to more accurate tumor localization, thereby

significantly improving diagnostic capabilities in breast cancer detection.
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1. INTRODUCTION

Breast cancer (BC) is the most prevalent disease and cause of female mortalities in the universe.
According to the International Agency for Research in Cancer, nearly 9.2 new female
malignancies, 2.29 million of them, were cases of breast cancer (Ferlay et al., 2020). Breast
cancer contributed to 15.5% of 4.4 million female malignancy-related deaths.

Early detection of cancer is delayed in most cases despite preventive processes such as imaging
and mammography for screening, and it ends with a high fatality rate. According to the World
Health Organization (WHO), 2.3 million females developed such a disease in 2020, and
approximately 30% of them will not survive (Bergerot et al., 2022), (Wilkinson et al., 2021).
Breast cancer is a complex etiological disease and one that is heterogeneous in consideration of
acquired and genetic factors. Heterogeneity involves persons and malignancies, therefore
introducing a range of prognosis and therapy (Ellsworth et al., 2017). In addition to gender
(female) and age (over 40), other risk factors include being overweight, eating an imbalanced
diet, abusing alcohol, and smoking (Dong et al., 2020), (Momenimovahed et al., 2019). BC is
often caused by epithelial abnormalities (carcinoma), consisting of lesions that differ in
microscopic characteristics and biological function. Breast cancer can be categorized into three
grades: invasive forms (where tumor cells migrate to the breast stroma), metastatic carcinomas
(where the tumor spreads to other locations), and noninvasive forms (in situ), in which tumor
cells are confined to ducts or lobules. Non-invasive cancers may have lobular or ductal
characteristics. The most prevalent kind of non-invasive cancer is called DCIS, and it is often
linked to recidivism and the emergence of invasive ductal carcinoma, the invasive form of the
disease. Infiltrating ductal carcinoma, another name for invasive ductal carcinoma, is the most
frequent kind of breast cancer (Place et al., 2011).

Improving the patient's quality of life and overall chances of survival requires early diagnosis
(Rock et al., 2022). Breast tissue biopsy images must be examined histologically to diagnose
breast cancer. The four kinds of breast tissues include benign lesions, invasive carcinomas, in
situ carcinomas, and normal breast tissues. Normal breast parenchyma tissue forms benign
lesions, which have no connection to the development of malignant carcinogenesis. There are
two forms of malignant breast cancer: invasive carcinomas and in situ carcinomas. Malignant
cells are restricted in the mammary ductal-lobular system in the in-situ tissue, but they
proliferate outside of the structure in invasive tissue. Pathologists use biopsy images stained
with hematoxylin and eosin (H&E) to categorize and stage the tissue (Elston et al., 1991). Image
scaling, rotation, and translation processes are needed throughout the study. This procedure

requires highly skilled physicians and significant time and effort. Only 75% of pathologists'
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diagnoses are accurate on average because of the complexity and diversity of histopathological
images (Elmore et al., 2015).

Machine learning (ML) has made significant progress in recent years (Ruqgaya Alaa et al.,
2024). The potential of this topic has also developed for a wide variety of applications,
including image recognition, medical diagnostics, defect identification, and building health
assessments. The development of learning techniques that enable computer methods to carry
out particular tasks based only on learned patterns, as well as an increase in the power of
computers that supports these models' analytical capabilities, are just two of the many factors
that have contributed to these new developments in ML (Perez et al., 2020).

Many machine-learning methods have been developed during the last ten years to classify
breast cancer based on histopathology images (Juppet et al., 2021). Traditionally, early
researchers used private datasets with small sample sizes to evaluate their methods and used
standard machine-learning algorithms (George et al., 2014). Consequently, these techniques
fall short of what clinical practice requires. CNNs have recently been widely used for BC
classification (Dif et al., 2021). Techniques based on conventional networks, such as ResNet
and Dense Net, have been proposed that have shown outstanding outcomes. However, in some
earlier models, the raw image is often divided into patches to facilitate further analysis using
convolutional neural networks (CNNs) (Mohammed et al., 2022). These patches retain the same
labels as the original image extracted (Abdulaal et al., 2024a). This approach may lead to the
CNN being trained on inaccurately labeled patches, which might have impacted the model's
performance since benign problems can appear in malignant samples. Furthermore, accurate
classification results are obtained by using sophisticated CNN models, which affect processing
speed.

Medical images are an essential component of every patient's digital health dossier. Individual
radiologists are restricted by time constraints, professional shortcomings, or a lack of expertise
in producing such images. A radiologist's education takes decades and substantial financial
resources. Furthermore, teleradiology is frequently employed in medical care to outsource
radiological interpretations to countries with fewer economic resources. Teleradiology allows
medical images such as X-rays, CT scans, and MRIs to be transmitted electronically to remote
locations for analysis and diagnosis by radiologists. A delayed or incorrect analysis might harm
the patient. As a result, autonomous, effective ML methods would be preferable for medical
imaging (MI) investigations.

There are several types of imaging, and their use is becoming more common. Images from

dermoscopy, ultrasound, X-rays, retinal scans, computed tomography (CT), positron emission
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tomography (PET), and magnetic resonance imaging (MRI) are all instances of MI. Fig. 1
depicts several examples of Mls. Various imaging modalities, such as CT and MRI, can scan
multiple organs within the body. In contrast, other imaging techniques, such as retinal and

dermoscopy images, are specific to particular organs (Yousef et al., 2022).

Fig. 1. shows different types of medical imaging, including (a) an MRI of the left side of the
brain, (b) an axial CT brain scan, (¢) an axial CT lung scan, (d) a chest X-ray,
and (e) a histology slide showing high-grade glioma (Elazab et al., 2020)

This paper presents a novel approach that combines transfer learning (TL) with an Incorporation
of Prior Knowledge algorithm for classifying breast cancer into four distinctive categories using
histological images. This study will strive towards developing an algorithm that leverages
transfer learning in pre-trained big datasets and then employs them in a new problem. This is a
big step in that the model can gain an edge through information and trends gained in the pre-
trained model, and accuracy and efficiency in classification can be increased. Besides, the
"Incorporation of a Prior Knowledge" algorithm integrates preceding information. By
combining TL with the incorporation of a prior knowledge algorithm, the proposed technology
aims to classify BC into four types precisely. Hopefully, such a technique could promote
awareness and diagnoses of BC through its histology images in a personalized therapy schedule
and, in the long run, a better patient prognosis. Several deep neural networks with pre-training
were considered for testing for effectiveness in the proposed techniques. Integration of prior
knowledge and consideration for the classification of one single sub-image and not whole

images effectively lowered the accuracy of cancer classification.

2. RELATED WORK
Several researchers have conducted studies on BC classification using CNNs for many years.
(Zhu et al., 2019) suggested a hybrid strategy that included building many compact CNNs. A

squeeze-excitation pruning block and local-global branches are all included in this approach.
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These modules offered string representation and channel redundancy reduction. Experiments
were carried out using the BreaKHis and BACH datasets. The multi-model assembly approach
achieves results comparable to those of cutting-edge models. (Togacar et al., 2020) provide a
residual architecture (BreastNet) with attention modules for classification. Attention modules
aid in the identification of significant regions in the processed histopathology images. The
hypercolumn method is used to get better results. BreastNet has an accuracy of 98.80%. E.M.
(Nejad et al., 2017) investigated the importance of critical features in categorization and
developed a unique single-layer CNN. This model extracts vital features from the images of the
BreaKHis dataset, and their classification resulted in an accuracy of 77.5%. Using statistical
and structural data included in the pathological images, (Nahid et al., 2018) classified them into
two categories. The authors suggest a hybrid LSTM and CNN model. Conversely, the ultimate
choice is made using SVM and SoftMax with 91.00% accuracy. Recurrent neural networks and
CNN are used in the self-learning histopathological image processing system suggested by
(Yan et al., 2019). His dataset is utilized in all experiments, and the images are classified into
four groups with an accuracy of 91.3%. A DCNN with backpropagation, ensemble learning,
and rectified linear unit (ReLU) activation functions is employed for intra-class classification
(Adeshina et al., 2018). The study utilizes the BreaKHis dataset, achieving an accuracy of
91.5% across eight different classes. (Xie et al., 2019) carried out binary and multi-class
classifications. InceptionResNetV2, in their work, extracted the input data's characteristics. A
unique autoencoder was employed to translate those features into low-dimensional space,
producing improved classification results. A model of inception-recurrent residual CNN was
presented by (Alom et al., 2019) based on the promising outcomes of DCNN in previous
studies. Transfers are usually helpful when the data size is small. (Khan et al., 2019) created a
new technique for extracting features from pre-trained models like VGGNet, GoogleNet, and
ResNet to accomplish binary classification. The suggested framework has an accuracy of
97.525%. In another study, (Aloyayri et al., 2020) implemented the binary classification
challenge using the shuffleNet, InceptionV3, and ResNetl8 architectures. These pre-trained
architectures are trained using ImageNet. The last layers of the models are adjusted and trained
using the BreaKHis dataset. The authors attained the maximum accuracy of 98.73%. (Ahmad
et al., 2019) applied TL to ResNet, GoogleNet, and AlexNet, where 20 tests and 240 training
images, divided into four groups, were employed. The ResNet approach attained the most
remarkable accuracy of 85%. A transfer learning-based method was developed by (Mani et al.,
2023) to classify BC images into four categories. That analysis made use of the BACH 2018

dataset. Two models, including ResNet50 and InceptionV3, were trained using the patches
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obtained from those images. Both models were pre-trained using ImageNet. Accuracy of
97.50% was the highest level reported. (Murtaza et al., 2019) created a precise model for the
classification of BC using TL. The model's final layer is tailored to perform binary classification
using the AlexNet architecture. The extracted characteristics are then classified into two groups
using six different machine learning methods, and an accuracy of 81.25% was reported on test
data. (Ferreira et al., 2018) used a DNN with TL to categorize breast cancer. The authors used
the ICIAR 2018 dataset to conduct the tests using a modified Inception ResNet V2 model. Its
accuracy was 76%. The convolutional block attention module was proposed to detect
metastases of BC automatically (Liang et al., 2019). A DL-based ensemble solution was
proposed for the automatic binary categorization of histopathology images, yielding an
accuracy of 97.6% on the PCam dataset. Feature extraction was performed via ensembles of
the three architectures: MobileNet, DenseNet, and VGG19. It was evaluated by employing four
publicly accessible datasets. On the BreaKHis dataset, the highest accuracy (98.13%) was
reported by (Hameed et al., 2020). The BreaKHis and CMTHis datasets were classified by
(Kumar et al., 2020) using VGGNet-16, which was trained on the ImageNet dataset. They
attained an accuracy of 97% and 93% on those datasets.

(Balasubramanian et al., 2024) developed small CNNs to classify breast cancer based on
histology samples. The authors used a design based on hybrid CNN, which combines local and
global branches of the CNN model. The authors combined traits from these two branches to
obtain vital attributes and employ local voting. Additionally, they improved classification
results by ignoring undesirable channels or characteristics and using the suggested squeeze-
excitation-pruning technique. By removing global and geographical information from areas of
interest, (Ukwuoma et al., 2022) classified breast cancer histopathology images using a mixture
of CNN . The pre-trained CNNs employed by (Aljuaid et al., 2022) were ResNet18, ShuffleNet,
and Inception-V3. On their BreaKHis dataset, the authors used transfer learning at different
magnifications. Using data augmentation methods, including flips, rotations, and translations,
they increased classification performance.

(Abdulaal et al., 2024a) proposed a self-learning DNN for the categorization of histological
images of BC in recent research. They used TL and examined a great deal of pre-trained DNNSs.
To improve the accuracy of cancer classification, their work focuses on using a self-learning
technique to categorize sub-images rather than the whole image. Nevertheless, a challenge
arises when the classifier has to be trained using noisy labels since the true label of the sub-
images is unknown. To avoid this, incorrect labels are gradually corrected using a hierarchical

self-learning process based on prior information about the flaws in the original labels. The
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suggested self-learning method uses the Inception-V3Net for four label correction rounds,
resulting in an accuracy of 99.1%. Overall, using self-learning DNN to classify histological
images of BC enhances precision and tailored therapy and improves efficiency, accuracy, and
interpretability.

The current approaches, which required more time and processing power due to the complex
structure's design, could only translate clinical images into a feature vector using several CNN
architectures.

3. METHODOLOGY

This section highlights the significant contributions and strategies used for the multiclass
classification of BC using histological images. Correctly classifying BC is crucial for an
accurate diagnosis and appropriate treatment.

3.1.  Multi-Class classification

Rapid advancements in deep learning algorithms and machine learning have recently posed
new challenges for diagnosing breast histopathology images automatically. Multiclass
classification, in terms of diagnosing histopathological images into various cancer subtypes or
stages, has gained significant attention for it has important information for personalized therapy
and prognosis.

The classification of breast histopathology images is particularly challenging due to its complex
cellular structure and intrinsic tissue heterogeneity in form and arrangement. Variability in
staining processes in histopathological images, in terms of degrees of magnification, and tissue
preparation processes renders extraction of uniform discriminative features challenging. In
addition, types of breast cancers vary in aggressiveness, and intratumorally heterogeneity
creates additional difficulty in that regions in a single tumor can have specific histological
features.

Therefore, to overcome these issues, many studies have examined several techniques and
improvements developed in the multi-classification of breast histopathology images. A
convolutional neural network is a deep neural network with state-of-the-art performance in
image classification algorithms through its capability to learn hierarchical representations from
raw picture information (Sivalingan, 2024).

Transfer Learning, which utilizes pre-trained networks over large datasets of images, has been
utilized to extract important features and enhance accuracy in classification, predominantly
when training information is not considerable.

The improvements in multiclass classification of breast histopathology images have exhibited

tremendous potential for enhancing accuracy, velocity, and uniformity in BC diagnostics.
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Pathologists can utilize automated sorters to make fewer mistakes in evaluations and even to
provide additional care for a patient. In addition, such techniques can allow the processing of
high volumes of histopathologic information to gain information about several dimensions of
BC, such as the discovery of new biomarkers for a variety of types of disease

This study will investigate and contribute to the multiclass classification of histopathology
breast images. It will strive to enhance accuracy and efficiency in the computerized
classification of BC through state-of-the-art approaches to create personalized therapies with
augmented patient care. Proper and efficient classification of BC through histopathology
images is imperative for correct therapy planning and proper diagnosis. The development of
DL algorithms in recent years seems to make such a classification computerized a reality.
Many studies have been performed to develop an efficient architecture for a CNN for
classification in cases of BC. Several studies have analyzed and determined whether and to
what extent DL can classify BC through histopathology images in several domains and regions.
Due to this, several types of different architectures have been proposed and compared in detail

for application in cases of classification of BC. Fig. 2 shows operations in such a mechanism.

Fig. 2. Framework of the proposed multi-class classification

By comparing a range of several architectures of CNN, one can utilize the best model for
classifying breast histopathology images into numerous subtypes and phases (Abdulaal et al.,
2024d). Comparison and evaluation include comparing accuracy in classification, sensitivity,
and specificity and testing for robustness with proper use of the BACH database (Aratjo et al.,
2017).

3.2.  Dataset Description

The BC Histology Challenge 2018 (BACH) constructed the BACH dataset for histopathologic
examination to classify carcinoma of the breast. It is utilized for testing and developing

computer algorithms for classifying BC (Araujo et al., 2017).
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The histopathologic slides in the dataset in BACH cover carcinoma, benign lesions, and
carcinoma and normal epithelia in samples of breast tissue and with accompanying ground truth
labels in the form of pixel-wise segmentation masks, such that fine-grained analysis and
evaluation can be conducted. Trained pathologists accurately chose and labeled the dataset to
allow for correct and reliable marking.

The photos in it have been captured under heterogeneous protocols regarding factors such as
magnifications, representing diversity in observations in real-life practice.

The distribution of images in the BACH data concerning carcinoma types is shown in Fig. 3.

- i U SRt T TS
Normal Benign In situ Invasive

Fig. 3. BACH data set with four classes (Dong et al., 2020)

3.3. Data pre-processing

The Images of the BACH dataset required size normalization to ensure compatibility with the
various networks used in this study. Data cropping and rescaling techniques align the image
sizes with pre-trained deep neural networks. Specifically, several networks with distinct input
image size requirements are utilized. For instance, ResNet 101 operates on 224 x 224 images,
Inception-V3Net requires 299 x 299 images, VGG19 operates on 224 x 224 images, Google
Net uses 224 x 224 images, and NASNet requires 331 x 331 images. Compatibility with the
specific network architectures used in this study is ensured by resizing the input images
accordingly. Data augmentation involves enriching the existing dataset by incorporating
supplementary relevant information. The specific transformations applied in this study on

Histopathological images included rotation, scaling, and flipping.

3.4. Proposed model

This study investigates the effectiveness of incorporating prior knowledge by training pre-
trained CNN models on the BACH dataset for tumor localization and -classification.
Specifically, NASNet yielded the most outstanding results among several pre-trained CNNs.
Furthermore, we propose a novel approach for identifying tumor locations within sub-images
using the trained CNN.

The BACH dataset consists of histology images related to BC, encompassing four classes:
normal tissue, benign tumor, carcinoma in situ, and invasive carcinoma. To leverage prior
knowledge, NASNet is a state-of-the-art pre-trained CNN architecture known for superior

performance on image classification tasks. The benefit from the feature extraction efficiency of
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NASNet images could be contained through pre-trained weights, which may lead to faster
convergence and potentially result in better performance.

Transfer learning was used to modify NASNet for the BACH dataset. Fine-tuning the pre-
trained weights on this dataset enabled CNN architecture to learn tumor-specific features and
adapt to histopathological characteristics, making it more accurate in identifying tumor regions.
Apart from the tumor classification, a new technique for locating tumors within sub-images has
developed. The trained NASNet model was applied to sub-images extracted from a histology
image so that we could examine activation maps (or feature maps) produced by CNN. These
maps showed areas with high activations corresponding to potential regions of cancerous
growth. Therefore, this method can be valuable for detecting tumor cells and suspicious parts
in images.

A NASNet has been created for BC multi-classification by investigating these histopathological

images, as illustrated in Fig. 4.

el
]
g
Pre-Processing
Training-CNN
Fig. 4. NASNet CNN.

In the first place, every image from the BACH dataset was divided into nine parts to capture

more localized information, as indicated in Fig. 5.

Fig. 5. Pre-processing operation.
Then, benign sub-images are tested and classified into normal and benign. This classification

process is a crucial part of the testing procedure.

After collecting the benign sub-images, they are subjected to rigorous tests using the NASNet
model. This model uses image recognition technology and capitalizes on its ability to accurately
detect and label these images based on their features.

During this testing stage, benign sub-images will be put in the classifying model, which will be
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used to observe them for visual attributes and patterns. As shown in Fig. 6 below, based on this

analysis, the model assigns each sub-image to either the normal or benign classes.

Benign images Pre-Processing Testing-CNN

% Ee &
.!. x Y

Benign wal

Fig. 6. Benign sub-images Testing with NASNet.

Various applications and studies depend on classifying the sub-images as benign or normal.
Valuable information is provided that distinguishes normal cases from those with benign
abnormalities.

After classifying the sub-images, some regions were labeled as benign. These areas were
potential sites for tumors within the original image. Tumors can be seen in histopathological
images by recognizing and determining their location. Then, these in-situ sub-images will
undergo thorough testing using the NASNet model.

While still in the testing stage, in-situ sub-images would be inserted into the NASNet model,
which should be analyzed based on their features and patterns. Based on this analysis, each sub-

image is assigned to one of three classes according to Fig. 7: Normal, Benign, or In Situ.

InSitu images

Pre-Processing

Fig. 7. Testing of In-situ sub-images with NASNet.
In this context, it is essential to differentiate these in-situ sub-images into separate classes for

further examination and decision-making purposes. This will recognize normal, benign, and in
situ cases.
The testing process, therefore, aims to provide accurate and reliable results that will facilitate

professionals' and researchers' better understanding of the nature and classification of in-situ
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sub-images using NASNet. These revelations can then assist in several ways, including
diagnosis, treatment schedules, or future research developments within the field.

Invasive sub-images are tested to separate them into four unique classes: normal, benign, in
situ, and invasive.

Once collected, advanced classification techniques will be applied to the invasive sub-images.
Such algorithms utilize deep learning, and through it, proper analysis and classification will be
guaranteed with certain attributions and qualifications in such an image. The testing involves
considering such a visual feature and a sequence of an invasive sub-image with a classification
model. The sub-images analyzed will fall under one of four groups: normal, benign, in situ, and

invasive Fig. 8.

BE3
BRE

Invasive images

Pre-Processing Testing-CNN

InSitu

Fig. 8. Invasive sub-images Testing with NASNet

Classifying the invasive sub-images into these four classes is highly significant in various
spheres. It enables separation between normal cases, benign abnormalities, in-situ conditions,
and invasive malignancies, providing crucial details for diagnostics, treatment planning, and
further research analysis. The new dataset is presented in Table 1.

Table 1. New Dataset
Class BACH Sub-Ima New-N New-B New-InS New-Inv

N 100 900 900 X X X
B 100 900 302 598 X X
InS 100 900 183 116 601 X
Inv 100 900 111 83 209 497
Total 400 3600 3600

Upon evaluating a pre-trained deep neural network (DNN), a NASNet DNN 2 model was
developed to classify a new dataset, as outlined in Table 1. The dataset comprised 3600 images,
and a 5-fold cross-validation methodology was employed to ensure rigorous assessment.

After classifying the patches, the next step involves collecting sub-images to reconstruct the
original image. These sub-images are extracted based on the patches from the previous

classification step. The patches classified as potentially malignant (either in Situ or Invasive)
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are of particular interest and are carefully examined.

The sub-images are reconstructed by gathering the classified patches per their places in the
original image. The complete image is reconstructed by combining these patches to allow for a
thorough analysis of the whole image.

Finally, its overall classification is determined once the original image has been reconstructed.
This classification can include malignant (in situ or Invasive), benign, or normal. This decision
is based on whether malignant parts in the in situ and Invasive regions exist in the reconstructed
image. The image is considered malignant if even one patch is classified as cancerous (in situ

or Invasive), as shown in Fig. 9. Fig. 10 shows a flowchart for incorporating a prior knowledge

technique.
B N Inv
NONON O
N N B
NASNet DNN
B N InS
N NN
N N B

Fig. 9. Reconstruction and Decision Based on Patch Classification for Malignant Regions

3.5. Cross-Validation

The crucial cross-validation method evaluates ML models' performance and generalization
capabilities. In this work, 5-fold cross-validation is utilized to test the performance of multiclass
classification models. The four principal classes in the histopathological images in the BACH-
2018 dataset include in situ, Invasive, benign, and normal.

The training and testing sets divide the dataset, with 80 percent of samples and 20 percent of
samples, respectively. The models' performance is evaluated via 5-fold cross-validation. In 5-
fold cross-validation, training sets are partitioned into five folds, with an even number of
samples for each fold. The model is trained five times, and during evaluation, one of the folds
is taken as a testing set, and others become training subjects.

Through 5-fold cross-validation and evaluation with such performance measures, such a
mechanism provides important information regarding model performance. Such a mechanism
reduces overfit and yields performance measures for model generalizability.

The multi-class classification model with a CNN model can be represented in Fig. 11.
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Fig. 10. Framework for incorporating prior knowledge of DNNs.
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 Insit

Invasive

Invasive In Situ Benign

Fig. 11. CNN for multi-class classification
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3.6. Pre-trained Deep Neural Networks

Histopathological image analysis is an integral part of medical diagnostics, for which rapid and
accurate classification of tissue samples is critical for proper therapy planning, prognosis, and
diagnosis. Histopathology image classification has been enormously facilitated through DL
with pre-trained DNNs, which have attained high performance in terms of high accuracy values.
Neural networks have been trained over large datasets, such as ImageNet, to identify visual
patterns. These networks obtain hierarchical information from an image, through which
complex representations and patterns can be extracted. The application of pre-trained DNNs for
histopathology image classification has a range of useful factors, including less training
duration and effective generalization performance over unknown information. There have been
a range of pre-trained DNN architectures for histopathology image classification, which have
widespread use.

Five architecture-based pre-trained deep neural network classifiers (DNNs) (Abdulaal et al.,
2024b) have been used in the current work. Inception V3, GoogleNet, VGG19, ResNet-101,
and NASNet have been considered in work with these classifiers. These DNNs have a high
potential for autonomously extracting meaningful information from imaging information.
3.6.1. VGG

The Visual Geometry Group Net (VGG) is a model developed at Oxford Robotics Institute for
a model for a CNN. VGGNet performed admirably at ImageNet, with approximately one
million examples of 1000 categories, having trained and produced an astonishing 138 million
parameters to tune. VGG19 won first in 2014's Classification and Localization Challenge
(Zakaria et al., 2024).

The VGG family networks include VGG11, VGG13, VGGI16, and VGG19, TL (transfer
learning) networks. VGG19 specifically consists of five individual blocks. Two blocks from
the first two consist of a convolution and one of a pooling block. The third and fourth blocks
comprise four convolutional layers and one pooling layer each. The final building element
consists of four convolutional layers. Additionally, three additional smaller filters are utilized.
3.6.2. ResNet101

ResNet, an acronym for residual network, was constructed from several layers that were joined
in a certain way and instructed to do different tasks (Shafiq et al., 2022). The output from the
preceding layer is used directly by the residual connection (9 of the 33 levels). The remaining
connections serve as the operands for summation operations. The four subsequent layers—a
convolutional layer with a filter size of 1 x 1 and a stride of 1 followed by a series of

normalization layers—use the output of the previous block as their input.
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3.6.3. Inception-V3Net

The Inception-V1 has been upgraded to the Inception-V3. The Inception-V3 model took several
actions to boost the model flexibility and enhance the network efficiency (Bhatt et al., 2021).
Compared to the models Inception-V1 and V2, it has a deeper network. A deep CNN that was
directly trained on a low-end computer is the Inception-V3 model. Training of deep models
may take many days. By keeping the last layer of the model for new categories, TL avoids this
difficulty. The pre-trained version of the Inception-V3 model is obtained by retaining the
weights of all layers except the weights of classification layers, whose weights are adjusted
using the task-specific data set.

3.6.4. GoogleNet

GoogleNet model contains twenty-two levels of network structure. The model includes the
Google team's recommended inception structure and the convolution, pooling, and fully
connected layers. Various visual features may be produced using convolutional kernels in the
inception structure with different scales (Abdulaal et al., 2024c).

The GoogleNet model's multi-layer CNN structure and inception structure may be responsible
for its exceptional performance in image recognition. Nine inception modules make up the
initial architecture of the GoogleNet model. The inception v1 has a 3x3 pooling layer and three
convolutional layers with 1x1, 3x3, and 5x5 kernels. This structure processes images in parallel
and then stacks them together to widen the network and its capacity. More convolutional kernel
parameters will follow suit with more channels in an input image. It is, therefore, critical to
downsize to manage increased computational demand. One such mechanism includes 1x1
convolutional layers, which neither preserve height nor width in an image but can downsize
channels in the count. Hierarchically employing 1x1 convolutional kernels preceding 3x3 and
5x5 kernels and following 3x3 max-pooling layers can downsize feature map depth (Alkhodari
et al., 2021).

3.6.5. NASNet

NASNet-Mobile is trained with the ImageNet dataset. With an active feature, NASNet labeled
images successfully. NASNet Mobile and NASNet Large are classes with most of the NASNet
structure. In contrast, the NASNet Mobile network is optimized best for smaller data sets than
NASNet Large. It seeks the best convolutions in relatively small sets of data. Higher
performance in classification and less computational expense were achieved when utilized with
convolutional cells. In NASNet, free parameters in terms of model complexity, computational
expense, and desired performance are utilized in terms of both cells, blocks, and initial

convolution filter numbers that such a search algorithm must discover. It searches alternative



742 Yassin et al.

structures and configurations in its search algorithm to receive the best values for such free
parameters in terms of model complexity, computational expense, and desired performance

(Vallabhajosyula et al., 2021).

3.7. Dataset Experimental Protocol

In this work, the model has been trained with a DNN model with an image-based model for
learning. 5-fold cross-validation is performed using a BACH dataset to test performance in such
a model. Optimization uses an Adam optimizer with an adaptive estimation of a moment with
predefined parameter sets. The decay factor was 0.99, the batch size was 128, and the learning
rate was 0.0001, and these have been utilized for enhancing training and convergence
performance.

Evaluation metrics assess the performance of classifiers, including precision, sensitivity,
classification accuracy, specificity, and F1 score. All these indications report on the
performance of such a model and, therefore, for testing for suitability and efficiency in such an

application.

3.8. Evaluation metrics

This paper utilizes a variety of evaluation factors in measuring classifier performance and
efficiency. These factors shed light on classifier predictive performance and allow one to
objectively make comparative efficiencies regarding a variety of classification concerns. The
following section discusses evaluation factors and measures utilized (Abdulaal et al., 2024e).
A confusion matrix is a useful evaluation tool that imparts immediate information regarding a
classifier's performance, particularly for many classes. A confusion matrix represents actual
instances for a class in a column and predicted instances for a class in a row. It is a square
matrix. As Table 2 shows, a 4x4 structure of a confusion matrix for four-class classification is
utilized.

Table 2. Confusion Matrix

Predicted Class
Normal Benign InSitu Invasive
Normal TP FN FN FN
Actual  Benign FN TP FN FN
In Situ FN FN TP FN
Invasive FN FN FN TP

Instances correctly classified as belonging to a particular class are known as True Positives
(TP).
Samples that are mistakenly classified as not belonging to a particular class are known as false

negatives (FN).
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The classification accuracy (1) measures the total accuracy of the classifier's predictions. It is
determined by dividing the correctly classified instances by the total number of samples in the
dataset. A higher level of accuracy indicates better performance, with 100% accuracy indicating

that all predictions are correct (Abdulwahhab et al., 2024).

(TP, +TP, +TP. +TP,)
- (1)

Accuracy =

Where:

TPa, TP, TPc, and TPp are the true positives (correctly classified samples) for Normal,
Benign, In Situ, and Invasive.

N is the total number of samples in the dataset.

Sensitivity (2), often called recall or true positive rate, quantifies the percentage of real positive
events that the classifier accurately detects. It is determined as the proportion of true positive
predictions to all positive examples. A greater sensitivity suggests better performance in
capturing all positive examples, which gives insight into the classifier's capacity to recognize

positive instances accurately.

Sensitivity (Class X )= (TPXTf#FNX) )

Where:

TPx: True Positives for class X

FNx: False Negatives for class X

Precision (3) is the percentage of all positive cases that the classifier correctly predicted out of
all positive instances. It is measured as the proportion of true positive predictions to all expected
positive samples. Precision, which measures how accurately the classifier labels occurrences of

positivity, is beneficial when the cost of false positives is significant. Lower false-positive

predictions are indicative of higher accuracy.

TP,

X

Precision (Class X ) = m (3)

Where:

FPx: False Positives for class X

The F1 score (4) is a composite statistic compromising sensitivity and accuracy. It provides a
single metric to assess the classifier's effectiveness and is the harmonic mean of accuracy and

sensitivity. The highest F1 score is 1, indicating perfect sensitivity and accuracy, while its

lowest is 0. A higher F1 score indicates better coordination of sensitivity and accuracy.
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2 = (Precision,, * Sensitivity ,

Flscore (Class X ) = (Precision, +Sensitivity , ) “)
Where:

Precision x is the precision for class X.

Sensitivity x is the sensitivity (recall) for class X.
Another term for specificity (5) is the percentage of true negative cases detected by the
classifier. It can be obtained by dividing the total number of actual negatives by the number of
all samples classified as such. When what matters most is an accurate classification of negative
samples, specificity is one way to find out. The greater specificity suggests better accuracy in

the correct classification of negative cases.

TN,

Specificity (Class X ) = m (5)
Where:

TNx: True Negatives for class X

4. RESULTS

This section presents the outcomes of tests carried out on multiple classification tasks of breast
cancer using histopathology images. Six DNNs trained with TL methods were used in these
tests. This evaluation was based on the publicly available BACH dataset grouped into four
classes.

The data set was divided into two parts for training and testing: a training set that accounted for
80% and a testing set composed of the remaining 20%. A five-fold cross-validation technique
was used to ensure the models’ performance was robustly assessed during these tests.
NASNet DNN 2 was also included in addition to the previous one to classify a new dataset
comprising 3600 specially curated images aimed at multiclass classification. Consequently, this

allowed an overall assessment of how well these models performed under multiclassification.

4.1. Performance of Pre-trained Deep Neural Networks

This section presents the classification outcome of six types of Deep Neural Network (DNN)
classifiers: VGG19, ResNet101, GooglLe Net, Inception V3 Net, NASNet 1, and NASNet 2.
These classifiers were tested on the BACH dataset, which consists of images related to BC.
Table 3 provides results to evaluate and compare these DNNs' performance and visual
presentations in Figs. 12, 13, and 14. Remarkably, however, NASNet shows the best

performance among all evaluated metrics.
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Table 3. Performance Metrics

CNN Class Benign InSitu Invasive Normal Average
Accuracy 96.25
Precision 97 97 96 95 96.25
GoogleNet Recall 94.17 97.98 97.96 95 96.28
F1-Score 95.57 97.49 96.97 95 96.26
Sensitivity  94.17 97.98 97.96 95 96.28
Specificity  98.99 99 98.68 98.33 98.75
Accuracy 94.5
Precision 95 95 93 95 94
Inception Recall 95 95.96 94.9 92.23 94.52
V3 F1-Score 96.86 97.53 95.59 95 96.25
Sensitivity 95 95.48 93.94 93.6 94.5
Specificity  98.33 98.34 97.68 98.32 98.17
Accuracy 97.25
Precision 97 99 95 98 97.25
ResNet101 Recall 97.98 95.19 97.94 98 97.28
F1-Score 97.49 97.06 96.45 98 97.25
Sensitivity ~ 97.98 95.19 97.94 98 97.28
Specificity 99 99.66 98.35 99.33 99.09
Accuracy 98.25
Precision 99 100 98 96 98.25
Recall 97.06 99.01 98 98.97 98.26
NasNet F1-Score 98.02 99.5 98 97.46 98.25
Sensitivity  97.06 99.01 98 98.97 98.26
Specificity  99.66 100 99.33 98.68 99.42
Accuracy 95.5
Precision 95 94 96 97 95.5
Recall 94.06 95.92 96.97 95.1 95.51
VGG19 F1-Score 94.53 94.95 96.48 96.04 95.49
Sensitivity  94.06 95.92 96.97 95.1 95.51
Specificity  98.33 98.01 98.67 98.99 98.5
Accuracy 98.61

Precision ~ 97.49 98.15 98.59 99.46 98.42
NasNet2 Recall 98.61 98.64 96.84 99.20 98.32
F1-Score 98.05 98.39 97.71 99.33 98.37
Sensitivity ~ 98.61 98.64 96.84 99.20 98.32
Specificity  99.29 99.46 99.77 99.62 99.54
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Fig. 12. Accuracy of different DNNs.
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Fig. 13. Specificity of Five DNNs.
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Fig. 14. Precision of Five DNNs.

4.2.  Confusion Matrices

A confusion matrix is a tool that compares the actual and predicted classifications made by any
classification model. It provides a detailed summary assessment of model performance.

Table 4 presents confusion matrices applied to several DNNs: VGGI19, Inception-V3,
ResNet101, Google Net, and NASNet. These matrices indicate their performance in terms of
distribution among different categories of correct and wrong predictions.

In summary, the results indicate that NASNet has achieved an impressive accuracy rate of
98.61%. This underscores NASNet's success in delivering superior performance compared to
other models. Fig. 15 showcases the accuracy metrics and the convergence loss for the best

model, which in this case is NASNet.
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Table 4. Confusion Matrices

No. CNN Class Benign InSitu Invasive Normal
Benign 97 1 1 4
InSitu 1 97 0 1
1 GoogleNet  Invasive 1 1 96 0
Normal 1 1 3 95
400
Benign 95 1 3 1
InSitu 2 95 1 1
2 Inception  Invasive 0 2 93 3
V3 Normal 3 2 3 95
400
Benign 97 0 2 0
InSitu 2 99 2 1
3 ResNet101  Invasive 0 1 95 1
Normal 1 0 1 98
400
Benign 99 0 1 2
InSitu 0 100 0 1
4 NasNet Invasive 1 0 98 1
Normal 0 0 1 96
400
Benign 95 3 2 1
InSitu 3 94 0 1
5 VGG19 Invasive 1 1 96 1
Normal 1 2 97
400
Benign 778 6 3 2
InSitu 6 795 2 3
6 NasNet2 Invasive 8 5 490 3
Normal 6 4 2 1487
3600

(a) Accuracy

Convergence Loss

—— Training Loss
~——— Vaidaion Loss

200 400 €00 800 1000
tteration

(b) Convergence loss

Fig. 15. Accuracy and Convergence loss curves
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Table 5 summarizes the most relevant research efforts reviewed that have been carried out with

the same database.
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Table 5. Comparison with other related works

Years Model Class Accuracy Specificity Sensitivity Precision F1 score
(Meng et al., ResNet 4 91% 91% - 93% -
2019)

(Yao et al., Parallel 4 92% 92% - 90% -
2019) CNN

(Zhou et al., RaNet 4 97.75% 98.21% - 97.93% -
2022)

(Balasubramani Ensemble 4 98.43% - - - -

an et al., 2024) Models

(Sreelekshmi et SwinCNN 4 93% - 91.40% 93% 93%
al., 2024)

2025 This Work 4 98.61% 99.54% 98.32% 98.42% 98.37%

5. CONCLUSION

This study significantly advances breast cancer (BC) classification by incorporating prior
knowledge to enhance diagnostic accuracy. Through a comprehensive evaluation of various
pre-trained deep learning models, this research has illuminated a novel approach to BC
diagnosis using histopathological images. Introducing a new dataset, consisting of 3,600 sub-
image histopathological images generated from the original BACH dataset, has provided a
robust foundation for analysis.

By employing six pre-trained convolutional neural networks (CNNs) and utilizing an image-
based methodology, the study effectively demonstrated the potential of Transfer Learning (TL)
in adapting models for improved performance. Innovative techniques, such as data
augmentation, were implemented to enhance the training dataset, ultimately leading to
remarkable results. NASNet emerged as a standout performer, achieving an impressive mean
classification accuracy of 98.61%.

Furthermore, this research ventured beyond traditional classification tasks to explore tumor
localization within breast cancer, showcasing the efficacy of sub-image analysis. Leveraging
the power of prior knowledge, the proposed methodology for accurately identifying tumor
locations within sub-images and analyzing activation maps offers a promising avenue for
improving diagnostic capabilities. This innovative approach enhances classification
performance and contributes to better patient care and outcomes in breast cancer management,
underscoring the importance of early diagnosis and accurate localization in the fight against

this disease.
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