
Kufa Journal of Engineering

Vol. 16, No. 3, July 2025, P.P. 639-657
Article history: Received 25 June 2024, last revised 16 January 2025,

 accepted 16 January 2025

 This work is licensed under a Creative Commons Attribution 4.0 International License.

PREDICTION OF SOFTWARE ANOMALIES METHODS

BASED ON ENSEMBLE LEARNING METHODS

Raghda Azad Hasan1 and Ibrahim Ahmed Saleh2

1 MSC student, Software Department, Faculty of Computer Science and Mathematics,

University of Mosul, Nineveh, Iraq. Email: raghda.22csp16@student.uomosul.edu.iq

2 Professor, Department of Software, Faculty of Computer Science and Mathematics,

University of Mosul, Nineveh, Iraq. Email: i.hadedi@uomosul.edu.com

https://doi.org/10.30572/2018/KJE/160336

ABSTRACT

Software plays a vital role in all aspects of our daily lives, specifically in the fields of medicine

and industry. In order to design high-quality and reliable software and avoid risks resulting

from software errors, including physical and human errors, this is considered a major challenge

due to the limited time and budget specified. Therefore, most software development companies

tend to use machine learning for prediction. With the presence of software defects that

contribute to improving the quality and safety of the software produced, this is done by relying

on and using records, previous projects, and available data. this paper proposed machine

learning and ensemble learning suite to predict software anomalies. The evaluated approach is

for models in the PROMISE real-word dataset repository containing 5 projects (Turkish

company SOFTLAB). The model applies the basic algorithms (Random Forest (RF), Decision

Tree (DT), Extra Tree) and the learning model ensemble (Adaboost, xgboost ,Stack, Voting,

bagging) and metrics (accuracy, recall, F1 score, accuracy) to measure the prediction

performance of the models and a comparison was made between the proposed model

algorithms. Both adaboost , stack achieved prediction accuracy about 99.2% when implemented

on the ar5 dataset.

KEYWORDS

Software Engineering, Software Defect Prediction, Ensemble Learning, Random Forest,

Decision Tree, Boosting, Stacking.

https://creativecommons.org/licenses/by/4.0/

640 Hasan and Saleh

1. INTRODUCTION

The importance of identifying anomalies in software systems has increased over the past few

years. With increasing software applications in our daily lives, ensuring its quality has now

become extremely important. Because modern software systems are complex and implicitly

interconnected, the quality assurance process, in turn, is insufficient for large systems that are

constantly updated (Balogun,2020). Software failures have been led to catastrophic disasters so

it's is necessary to link software failures, underscoring of effective anomaly detection.

Furthermore, software bugs and glitches have a significant financial impact. The field of

software engineering always gives priority to producing high-quality software. The process of

detecting software anomalies is an important part of software development. If software defects

are found early in software development process, this enables QA experts to focus on the

problematic modules rather than the entire software. This method can reduce development costs

without sacrificing the quality of the final product. Early detection of problematic modules can

facilitate early changes, ensure timely delivery of a high-quality product that satisfies

customers, and enhance confidence of development team. Anticipating software defects can

reduce testing and maintenance costs while increasing the quality of the final output. A simple

software glitch can lead to serious consequences and system crashes. Software defects are of

different types, including incorrect program data, errors in design, installation, specifications,

and others. Since the testing phase is the most expensive in the software development life cycle,

discovering and fixing software defects before the testing phase. makes identifying the causes

of failure easier and less expensive, as the process of predicting software defects is an essential

part of software testing (Shi and Abbas ,2023) and (Abdou,2018) Over the past two decades,

many algorithm such as statistics, neural network, machine learning techniques….etc used to

predict and detect software anomaly. To achieve high prediction accuracy, ensemble learning

is used, which combines many individual classifiers, which is more accurate in prediction than

using a single classifier. In general, machine learning techniques are divided into three types:

- First supervised techniques, which need pre-trained training data.

- second, unsupervised techniques, which need to use specific algorithms to identify and

structure the data,

- Finally semi-supervised hybrid techniques Combines the two types.

One critical element that makes it possible to reduce field failure rates and increase the

reliability of complex software systems is the ability to anticipate or identify problems before

they arise. Various methods have been proposed in many recent researches to identify

anomalies in software systems (Monni ,2019) and (Hersh A. Mohammed et al,2020). Because

Kufa Journal of Engineering, Vol. 16, No. 3, July 2025 641

ensemble learning techniques can enhance the model's capacity for generalization, they are

employed to address the issue of class imbalance. Different classifiers can produce different

classification errors because they are trained on different sets of data. That being said, each

classifier's matching errors aren't always the same. The ensemble learning approaches, which

combine these classifiers through various mechanisms, can mitigate the biased learning

resulting from class imbalance classification. Both bagging and boosting are popular ensemble

learning techniques. Boosting-based approaches concentrate on hard-to-classify cases and

continuously train each classifier using data from a weighted sample of the original data.

Through the use of bootstrapped clones of training data, bag-based techniques construct distinct

classifiers (AL-FRAIHAT ,2024)and(Balogun ,2018). Since ensemble learning techniques are

widely used for the detection and prediction process and are working to improve them, they

have recently been widely used (Huda ,2021). The goal of this research is to improve the

prediction of software anomalies, where a framework is presented for predicting anomalies in

a software system and using ensemble learning techniques (Matloob ,2019),(Sharm ,2023) and

(Zhao ,2017). It presents a framework for predicting anomalies in a software system and using

ensemble learning techniques. The paper proposes ensemble learning methods to predict

software anomalies to obtain the best prediction accuracy, where ensemble learning models

(bagging, stacking, XGboost, Adaboost) were used. Using (Random Forest (RF) , Decision

Tree (DT)) algorithms as two basic parameters and trained on a dataset from a Turkish white

goods company SOFTLAB.

The rest of the paper refers to related works that focuses on reviewing the prediction based on

ensemble learning described in Section 2. While Section 3 includes the paper's methodology,

dataset, preprocessing, and machine learning methods, the experimental results are compared

and analyzed in detail at the end.

2. RELATED WORK

Prediction software anomalies are a process of predicting abnormal performance phenomena

anomalies to frustrate future incidents. Many researchers worked about software anomalies

some about detection and other about prediction, and artificial intelligence methods are widely

applied. This section will briefly review the most important methods based anomaly detection

methods and specifically highlight ensemble learning.

In 2018, Abdul Latif O. Balogun et al. It is argued that clustering methods can give better results

in software defect prediction (SDP). They evaluated the performance of individual classifiers

(Sequential Minimal Optimization (SMO), Multi-layer Perceptron (MLP), k-Nearest Neighbor

642 Hasan and Saleh

(kNN), decision tree) and ensemble classifiers (bagging, boosting, stacking, and voting) in SDP

using 11 defective datasets. programs and also 11 performance measures, and the results of

their proposed method showed that boosting is the best prediction method, and among the

individual classifiers, the decision tree ranked first with a score of 0.0410, and they stressed the

need to take into account performance measures to achieve the best predictive performance, so

that they are implemented before selecting the model or Process classifier (Balogun ,2018).

 In 2019, REN and LIU presented a predictive study using the self-data mining method to

predict software defects in classification and ranking. They proved that software metrics and

software defects are causally related. During the model training phase, when predicting the

ranking, the errors of defect-free units are replaced with a negative value, and the errors of

defective units remain unchanged. While the true values of defective units are replaced with a

positive value ≥1.5, the false values of defect-free units are replaced with a negative value

during classification prediction. Using the NASA, Promise, and Softlab datasets, the self-data

mining approach is a very practical and effective method for predicting software defects (REN

and LIU, 2019).

In 2020, Umair Ali and others presented a classification framework for prediction using

ensemble learning and feature selection techniques to achieve high performance, where variable

that causes low performance is eliminated. They proposed framework works using four data

sets from MDP repository, the results of proposed framework showed that this framework

outperforms ten basic classifiers that are subject to supervision, including the algorithms “Naïve

Bayes (NB), Multi-Layer Perceptron (MLP), Radial Basis Function (RBF), Support Vector

Machine (SVM), K Nearest Neighbor (KNN), k-Star (K*), One Rule (OneR), PART, Decision

Tree (DT), and Random Forest (RF).” The performance was evaluated using three Performance

metrics including F-measure, Accuracy, and MCC (Ali,2020). In the same year, Muhammad

Amimul Ihsan Aqeel and Wan Hussein Wan Ishaq conducted a study on Ensemble,

classification and clustering techniques to improve the quality and efficiency of software defect

prediction. Their study was conducted using 13 data sets from the NASA MDP repository, and

the prediction performance was evaluated using 3 metrics including (Accuracy, F-measure,

MAE). Where ensemble learning models were used (RF, ET, XgBoost, LGBM, STC), As for

supervised models (PAC, QDA, GNB) and regarding unsupervised learning models (KNN,

GMM, K-mean) The results were decisive for the high-accuracy prediction of ensemble

learning techniques, with STC outperforming all algorithms on all three metrics. QDA achieved

high performance, while for the unsupervised learning algorithms, the KNN and GMM

algorithms excelled for the three performance measures (Mohammad Amimul Ihsan,2020).

Kufa Journal of Engineering, Vol. 16, No. 3, July 2025 643

In 2021, Yaqub Kayode Sahid et al presented a model to eliminate what previous studies had

struggled with in terms of prediction accuracy and performance metrics. Considering that most

previous studies relied on accuracy to measure SDP which was insufficient, they presented their

approach that uses six ensemble learning models (Cat Boost, Light Gradient Boosting Machine

(LGBM), Extreme Gradient Boosting (XgBoost), Cat Boost, Logistic Regression, LGBM

Boosting, XgBoost Boosting) was trained on three NASA data sets and its performance was

evaluated using performance metrics (accuracy, area under the curve (AUC), accuracy, recall,

F-measure and Matthew Correlation Coefficient (MCC). The results showed the superiority of

the Cat Boost system in terms of reducing training time and excessive setup. The model was

compared with the basic logistic regression model for six sets of data, and the result was high

performance of the proposed ensemble t model (Saheed et al,2021).

In 2023, R. Mamatha and others emphasized importance of using machine learning for

predicting software defects, they applied promise warehouse data sets for this task. The model

integrating Naive Bayes and Boosting techniques to form a model whose predictions are strong

and more reliable. The data was improved with accuracy and high performance, as these

combined models allowed for the elimination and removal of excess structure, bias, and also

variance. In general, the integration of algorithms showed the strengths and weaknesses of each

classifier separately (R. Mamatha et al,2023). In the same year, Junyi Xin et al, By creating

initial models, a processing process is carried out on the images, after which models of

proposed approach based on ensemble learning are implemented to detect defects in images.

The convolutional neural network models ((off-the-shelf CNN, bagged CNN, and boosted

CNN) are also compared. The results of the proposed approach showed high performance of

the bagged CNN network, with training and testing accuracy reaching (96.1% and 95.1%),

respectively (Xin, J. et al,2023).

 Also in the same year 2023, Sagheer Abbas and others also presented an intelligent system for

predicting software anomalies (defective modules) present within software. The system is based

on feature selection and clustering machine learning techniques. This approach was evaluated

and trained on five datasets from NASA. This system consists of three stages for better

forecasting. In the first stage, the applied decision tree is combined with support vector

machines and naive Bayes. In the second stage, predictions of the techniques (mobilization,

voting, and stacking) are combined. The final stage is applied to fuzzy logic to improve

predictive accuracy. The results of the proposed system showed a predictive accuracy of up to

(92.08%), and this result demonstrates the superiority of the system’s performance over many

other advanced techniques (Sagheer Abbas,2023).

644 Hasan and Saleh

In 2024, Misbah Ali et al presented a two-stage approach in which four supervised algorithms

are used. In the second stage, individual algorithms and classifiers are combined to improve

predictive capabilities. They relied on using NASA data from the MDP repository. Seven

datasets were used to implement and train the two stages. Iterative parameter optimization was

performed in the first stage to increase and improve the performance accuracy. In the second

stage, the base classifiers are combined to make final high-accuracy predictions from these

individual classifiers (Random Forest). , Support Vector Machine, Naïve Bayes, and Artificial

Neural Network) The authors confirmed the superiority of the proposed approach voting

ensemble-based software Defect prediction (VESDP) model based on twenty modern

technologies (Misbah Ali et al,2024).

3. METHODOLOGY

This part present the methodology, where the method used ensemble learning to predict

software anomalies is described. The motivation behind its use is that it improves the

generalization ability of software defect prediction algorithms, and that the application of

ensemble learning algorithms has achieved achievements. For published literature. The RF and

DT algorithms were applied as individual basic classifiers in the proposed model.

3.1. Data Set

The PROMISE repository provided datasets for this study, including other software modules.

The datasets were pre-processed by cleaning and normalizing the raw data to ensure

compatibility with the models. For instance, Halstead complexity, code size, and McCabe

cyclomatic complexity metrics were computed for each software module. The processed dataset

was divided into 80% training data and 20% test data.

The input process involves mapping these computed metrics into the model's input structure.

Specifically, features such as code complexity metrics were scaled to ensure balanced input

ranges. If the software predicts defects, the program first extracts these features, organizes them

in structured datasets, and then feeds them into the prediction model. This ensures the seamless

integration of data collection and input into the prediction workflow.

 Table 1. SOFTLAB Dataset.

Dataset Instances Attributes Minority Majority

ar1 122 30 9 113

ar3 64 30 8 56

ar4 108 30 20 88

ar5 37 30 8 29

ar6 101 30 15 87

Kufa Journal of Engineering, Vol. 16, No. 3, July 2025 645

 Table 2. SOFTLAB Dataset Attribute

NO. Attribute

1 total_loc numeric

2 blank_loc numeric

3 comment_loc numeric

4 code_and_comment_loc numeric

5 executable_loc numeric

6 unique_operands numeric

7 unique_operators numeric

8 total_operands numeric

9 total_operators numeric

10 halstead_vocabulary numeric

11 halstead_length numeric

12 halstead_volume numeric

13 halstead_level numeric

14 halstead_difficulty numeric

15 halstead_effort numeric

16 halstead_error numeric

17 halstead_time numeric

18 branch_count numeric

19 decision_count numeric

20 call_pairs numeric

21 condition_count numeric

22 multiple_condition_count numeric

23 cyclomatic_complexity numeric

24 cyclomatic_density numeric

25 decision_density numeric

26 design_complexity numeric

27 design_density numeric

28 normalized_cyclomatic_complexity numeric

29 formal_parameters numeric

30 defects {clean,buggy}

3.2. Data pre-processing

After selected training dataset, pre-processing of this data is performed, which includes four

sub-activities that improves the performance of proposed model: 1) dataset partitioning, 2)

cleaning, 3) normalization, and 4) oversampling.

The first sub-activity as mentioned previously of the pre-processing phase is process of

partitioning data set. The training and testing datasets are divided into two groups in this step,

80% and 20%.

 Cleaning, the second sub-activity is essential for the robustness of the model. Cleaning removes

inconsistent, incorrect, or unnecessary data points to ensure and enhance the accuracy of

anomaly detection and prediction models (Sivalingan H, 2024). By reducing noise, addressing

missing values, checking consistency, and correcting errors within the dataset, this stage

improves the quality and integrity of the data and produces better predictions by replacing

646 Hasan and Saleh

missing values in the dataset and using a statistical technique (mean) that allows gaps to be

filled with appropriate values in the data being used.

Normalization is a sub-activity of the third pre-processing step. Normalization is a commonly

used technique to balance feature scales between (0 and 1) to measure and standardize the

attributes of the input dataset. Normalization helps the machine learning model become more

stable and efficient while also facilitating convergence (Sivalingan H, 2024). By preventing

large-scale attributes from unduly affecting the model, it helps in achieving a neutral and

balanced learning process as a result. In addition, normalization helps ensure that the model

works consistently by managing differences in the data distribution (Mesbah Ali et al., 2024).

Logarithmic transformation, a technique that uses logarithmic transformation to transform data

by applying a logarithm to each value, was used to reduce the effect of outliers and disparities

between large and small numbers and improve the distribution by making the distribution close

to the normal distribution of values, as (log) helps address the problem of dealing with zero

values by adding one to each value before taking the logarithm (Dina Saeed et al., 2011)

log(1+X)

 𝑋′ = log(1 + 𝑋) (1)

represents: X the original value in the dataset and X' represents the transformed value This type

of transformation was used because the data used contains zero values.

Oversampling is a sub-activity of the four pre-processing steps to solve the problem of class

imbalance when training models on imbalanced data. The oversampling technique solves the

imbalance problem by increasing the defective or abnormal minority class. Thus, a balance is

achieved between the two classes, the normal majority class and the abnormal or defective

minority class (Thanh, 2020;Shu Feng et al., 2021; and Jiao Chen et al., 2021).

3.3. MODELS

The motivation behind using ensemble learning is achieve most accurate in machine learning

where multiple models (often called "base learners" or "weak learners") are combined to create

a more robust and accurate predictive model. The main idea is that by aggregating the

predictions from multiple models, the ensemble can achieve better performance than any single

model could on its own. There are several common methods for creating ensembles, including

bagging, boosting, and stacking. Typically, there are two processes involved in creating an

ensemble of classifiers: 1. combining the classifier predictions; 2. Training several base

classifiers (Jun-hai Zhai et al,2012). From this angle, ensemble learning can be combined a

wide range of machine learning models to perform a wide range of tasks, including model

Kufa Journal of Engineering, Vol. 16, No. 3, July 2025 647

clustering and classification tasks (Xibin DONG et al,2020). In this paper table 3 shows the

selection of hyper-parameters for ensemble learning models

Table 3. hyper-parameters for the proposed models

Models Parameters of SOFTLAB data

Bagging classifier

estimator=RF

n_estimator=500

random_state=42

max_feature=5

tarin_size=80

test_size=20

Voting classifier

Estimators= Extrees,Catboost,GB

tarin_size=80

test_size=20

Stacking classifier
estimators=RF,SVM

final_estimator=GB

Xgboost

n_estimator=700

learn_rate=0.3

tarin_size=80

test_size=20

Adaboost

n_estimator=300

random_state=42

learn_rate=0.3

tarin_size=80

test_size=20

Parameters directly affect the prediction accuracy, as they determine how well the model learns

from the data and how complex it is. For example, increasing the number of classifiers

(n_estimators) usually improves performance, but only up to a point, after which it may lead to

longer training times without significant improvement. Learning rate (learning_rate) balances

learning speed and accuracy; smaller values give more accurate results .

3.3.1. Diction Tree

A popular data mining technique for creating multi-covariate classification systems or creating

prediction algorithms for a target variable is decision tree approach. By using this strategy, a

population is divided into segments that resemble branches, creating an inverted tree with leaf,

internal, and root nodes. Being non-parametric, the technique may effectively handle sizable,

complex datasets without requiring a convoluted parametric structure. (Yan-yan SONG,2015)

The research data can be separated into training and validation datasets once the sample size is

sufficiently big. constructing a decision tree model using the training dataset and determining

the right tree size required to produce the best possible final model using the validation dataset.

Fig 1. shows the DT structure.

648 Hasan and Saleh

 Fig. 1. Decision Tree algorithm

3.3.2. Random Forest algorithm

It is a popular supervised ensemble learning method that may be applied to regression or

classification tasks. The technique computes the average results from all the decision trees in

the group, which is made up of several independent groups of decision trees, and displays the

average results as the final output. Because it is a grouping strategy and has unpredictability,

which lowers the variance of the model, it performs better than individual models. The random

forest approach is displayed in Fig 2 because of its simplicity and accuracy of results (Xin-She

Yang,2019)and(Sebastian Raschka,2017).

 Fig. 2. Random Forest Algorithm

3.3.3. Bagging classifier

An ensemble technique is commonly referred to as Bootstrap Aggregation. Bootstrap

Aggregating Ensemble Learning Bagging belongs to the category of group learning. It chooses

a random subset of the whole set of data. By randomly selecting a portion of original training

data and training a collection of decision trees, this method creates distinct models for each tree

that are finished before training. The way it operates is to gather predictions from the trees and

then determine a final forecast by voting for the majority of those who have similar expectations

or by calculating the average of these choices (Burkov, Andriy,2019).

3.3.4. Voting classifier

Many classifiers continuously generate predictions and test result data in maximum voting

method. By examining who received the most votes—more than half—the final prediction is

Kufa Journal of Engineering, Vol. 16, No. 3, July 2025 649

ascertained. This approach can be made more accurate by combining different classifiers

(Q. Song et al,2010). The following is how the maximum voting classifier operates with

Maximum:

1- Apply RF and ET classifiers to the training set.

2- Keep track of both classes' performances and create a comparison.

3.3.5. Stacking classifier

As one of the clustering techniques in machine learning, stacking has shown benefits in the

competitive world (Mohammad Amimul Ihsan,2020). The basic idea behind this technique is

to train a Meta classifier to help integrate the predictions of multiple learners using confidence

scores as features in different model ensembles. Three classifiers were used in the study:

Adaboot, decision tree, and Random Forest Classifiers. These classifiers use to test and train

different types of slots.

3.3.6. Xgboost

One tool that is part of the distributed machine learning community (DMLC) is called xgboost,

and it is well-known for its faster and more efficient gradient boosted decision tree performance.

In order to deploy it in computer environments, eXtreme, also known as XGBoost, is utilized

to help exploit all available hardware and memory resources, tweaking the model and

improving the algorithm (YI PENG et al ,2011). XGBoost offers three different methods for

gradient boosting: random, regular, and gradient boosting. It is also highly efficient in adding

and changing regulation parameters, maximizing memory usage, and cutting down on the

amount of time spent on computational tasks. Additionally, XGBoost can handle missing values

and enable parallel structures when data is fed to the trained model.

3.3.7. Adaboosting

It is one of the ensemble learning techniques for supervised machine learning that is used to

address classification and regression issues. Weight adjustments are used to train weak models

into strong models. Specifically, models with bad performance are assigned larger weights than

models with good performance. Basic models are trained on the data after the weights of the

training samples are changed, which enhances the models' ability to produce accurate results.

Models are trained in a sequential fashion, with the first model being trained first, and its

expectations being utilized to teach the subsequent model. The procedure is repeated until the

final model is reached and a final forecast is obtained (Xibin DONG et al,2020) The operation

of Adaboosting is shown in Fig 3.

650 Hasan and Saleh

Fig. 3. Adaboosting the framework

3.4. Evaluation Criteria

They are measures used to measure performance of predictive models used in the following

will mention the measures used to measure performance of proposed method:

The performance of ensemble machine learning models is evaluated using benchmarks. These

metrics are the traditional quality standards used to evaluate the effectiveness of predictive

models and used to measure the performance of our proposed method. Their definitions are

given below:

1- 1- Accuracy is the percentage of total cases that the classifier correctly predicts, shown in

equation (1) (Ernest Kwame Ampomah et al ,2020).

2- 𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚 = 𝒕𝒑+𝒕𝒏

𝒕𝒑+𝒕𝒏+𝒇𝒑+𝒇𝒏
 (1)

3- Precision is the percentage of positively predicted cases out of all positively predicted

instances that the classifier correctly anticipated it is shown in equation (2)

 𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝒕𝒑

𝒕𝒑+𝒇𝒑
 (2)

4- Recall: the percentage of positively correlated cases out of all positively correlated instances

that the classifier correctly predicted it is shown in equation (3)

 𝒓𝒆𝒄𝒂𝒍𝒍 =
𝒕𝒑

𝒕𝒑+𝒇𝒏
 (3)

5- The F1- score shows the harmonic mean of recall and precision it is shown in equation (4).

𝑭𝟏 − 𝒔𝒄𝒐𝒓𝒆 =
𝟐∗ 𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏∗𝒓𝒆𝒄𝒂𝒍𝒍

𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏+𝒓𝒆𝒄𝒂𝒍𝒍
 (4)

where fp stands for false positive, tn for true negative, tp for true positive, and fn for false

negative.

4. RESULTS AND DISCUSSION

This section discusses the results that emerged when applying the proposed ensemble learning

classifiers or models to predict bugs and software defects using 5 SOFTLAB datasets (ar1, ar3,

ar4, ar5, ar6) after the processing operations mentioned in the previous section were completed

by removing the columns that It contains the values, applies normalization to the data, and then

Kufa Journal of Engineering, Vol. 16, No. 3, July 2025 651

performs processing to balance the data through the oversampling process for the purpose of

increasing performance accuracy. After that, the balanced data is divided into 20% for testing

and 80% for training. . Then the ensemble model classifiers and base classifiers were applied,

after which the predictive performance was evaluated through four performance metrics

(accuracy, precision, recall, F1 score). The results showed high accuracy 99.2% in some data

sets using the classifiers mentioned using different performance measures, including in Table4,

when the five data set was used, and accuracy performance measure was applied to it using the

Ensemble algorithms and the basic classifiers DT and RF, When implementing the (ar1) data

set The results showed high accuracy ranging between 91.18 and 98.53, with Adaboost

achieving 98.53, while(bagging and stacking) achieved an accuracy of 91, while (voting and

xgboost) achieved an accuracy of 92. When implementing the ar3 data set, the accuracy ranged

between)90 and 99(, with voting achieving 99.3%, while)bagging and stacking(had lower

accuracy, reaching 90.91%, while the accuracy of both (adaboost and xgboost) reached 95%,

as shown in Table 5. When implementing the)ar4(data set, the results were not high compared

to the rest of the other groups, as the accuracy ranged between) 84 and 92(. When implementing

the various algorithms, the accuracy of Adaboost was the lowest, as it achieved 84%, while

xgboost achieved 92%. As for)bagging, stacking, and voting(, the accuracy was 90 % . The

results showed the highest accuracy when implemented on the data set (ar5), as the accuracy

reached 99.2% for the classifiers (adaboosting, stacking), while the results for the classifiers

(Vote and xgboosting) were 95.56%, while the filling classifier was the lowest, achieving

91.11% as shown in Table 7.

 Table 4 outputs of ar1 dataset

Evaluation

Criteria

Algorithms

stacking Voting adaboost Xgboost Bagging

Accuracy 91.18% 92.65% 98.53% 92.65% 91.18%

Precision 91.84% 92.70% 98.58% 92.67% 91.84%

Recall 91.18% 92.65% 98.53% 92.68% 91.18%

F1-score 91.19% 92.66% 98.53% 92.64% 91.19%

Table 5 outputs of ar3 dataset

Evaluation

Criteria

Algorithms

Stacking Voting Adaboost Xgboost Bagging

Accuracy 90.91% 99.3% 95.45% 95.45% 90.91%

Precision 92.42% 99.3% 95.87% 95.87% 92.42%

Recall 90.91% 99.3% 95.45% 95.45% 90.91%

F1-score 90.91% 99.3% 95.46% 95.46% 90.91%

652 Hasan and Saleh

Table 6 outputs of ar4 dataset

Evaluation

Criteria

Algorithms

stacking Voting Adaboost Xgboost bagging

Accuracy 90.57% 90.57% 84.91% 92.45% 90.57%

Precision 91.11% 91.11% 85.13% 93.46% 91.11%

Recall 90.57% 90.57% 84.91% 92.45% 90.57%

F1-score 90.55% 90.55% 84.89% 92.42% 90.55%

Table 7 outputs of ar5 dataset

Evaluation

Criteria

Algorithms

Stacking Voting Adaboost Xgboost bagging

Accuracy 99.2% 95.56% 99.2% 95.56% 91.11%

Precision 99.2% 95.56% 99.2% 95.56% 91.42%

Recall 99.2% 95.56% 99.2% 95.56% 91.11%

F1-score 99.2% 95.56% 99.2% 95.56% 91.08%

Table 8 outputs of ar6 dataset

Evaluation

Criteria

Algorithms

stacking Voting adaboost Xgboost bagging

Accuracy 97.78% 97.78% 97.78% 97.78% 88.89%

Precision 97.87% 97.87% 97.87% 97.87% 89.56%

Recall 97.78% 97.78% 97.78% 97.78% 88.89%

F1-score 97.78% 97.78% 97.78% 97.78% 88.89%

The proposed model using ensemble learning clearly outperforms previous studies in anomaly

prediction, as it benefits from combining the strengths of a set of base models to achieve higher

accuracy and better generalization ability. As Table 9 shows, the improvement in the

performance of the proposed model is manifested in better accuracy and balance rates compared

to traditional models, which enhances its reliability and effectiveness in detecting abnormal

patterns.

The table above shows the superiority of the proposed model using ensemble learning in

anomaly prediction over other traditional methods and techniques .

5. CONCLUSION

Recently, there has been an increasing need to develop complex, high-quality software systems,

and to improve the quality of software before delivering it to users, prediction of software

defects or anomalies must be used. In this research paper, ensemble learning models (bagging,

stacking, voting, Adaboost, Xgboost) were used for the prediction process. The method was to

use the Softlab data set, and after the data processing process was completed, including data

balancing and the data oversampling process, then the data was divided into training data and

test data of 80% and 20%, and to evaluate the prediction performance. Four performance

measures were used (accuracy,precision,recall,F1-score) where the results of the method

showed the superiority of the ensemble model (stacking ,adaboost, voting) as it obtained a

Kufa Journal of Engineering, Vol. 16, No. 3, July 2025 653

prediction accuracy of to (99.2%) compared to the previous studies shown in the table and it

had the best predictive performance.

In future work, the work can be applied to more than one data set. Deep learning models can

also be combined with the ensemble model.

(ar1) (ar3)

(ar4) (ar5)

(ar6)

Fig. 4. shows the results of the dataset (ar1,ar3,ar4,ar5,ar6) when implementing

the proposed approach using ensemble learning.

84.00%

88.00%

92.00%

96.00%

100.00%

A
cc
u
ra
cy

P
re
ci
si
o
n

R
e
ca
ll

F1
-s
co
re

stacking

Voting

adaboost

Xgboost

Bagging
84.00%

88.00%

92.00%

96.00%

100.00%

A
cc
u
ra
cy

P
re
ci
si
o
n

R
e
ca
ll

F1
-s
co
re

stacking

Voting

adaboost

Xgboost

bagging

80.00%

84.00%

88.00%

92.00%

96.00%

A
cc
u
ra
cy

P
re
ci
si
o
n

R
e
ca
ll

F1
-s
co
re

stacking

Voting

Adaboost

Xgboost

bagging
84.00%

88.00%

92.00%

96.00%

100.00%

A
cc
u
ra
cy

P
re
ci
si
o
n

R
e
ca
ll

F1
-s
co
re

Stacking

Voting

Adaboost

Xgboost

bagging

84.00%

88.00%

92.00%

96.00%

100.00%

A
cc
u
ra
cy

P
re
ci
si
o
n

R
e
ca
ll

F1
-s
co
re

stacking

Voting

adaboost

Xgboost

bagging

654 Hasan and Saleh

Table 9 Comparison of The Performance of The Proposed Model

 With Other Techniques of Previous Studies

dataset
Evaluation

Criteria

Proposed Model Ensemble learning
(Ren And

Liu,2019)

(Elife Ozturk et

al,2021)

Adaboost Xgboost bagging stacking Voteing SODM KNN MVKNN

ar1

Accuracy 98.53% 92.65% 91.18% 91.18% 92.65% 0.975 - -
Precision 98.58% 92.67% 91.84% 91.84% 92.70% 0.214 0.86 0.86

Recall 98.53% 92.68% 91.18% 91.18% 92.65% 0.67 0.93 0.93

F1-Score 98.53% 92.64% 91.19% 91.19% 92.66% 0.324 0.89 0.89

ar3

Accuracy 95.45% 95.45% 90.91% 90.91% 99.3% - - -

Precision 95.87% 95.87% 92.42% 92.42% 99.3% - 0.89 0.89

Recall 95.45% 95.45% 90.91% 90.91% 99.3% - 0.90 0.90
F1-Score 95.46% 95.46% 90.91% 90.91% 99.3% - 0.89 0.89

ar4

Accuracy 84.91% 92.45% 90.57% 90.57% 90.57% 0.84 - -

Precision 85.13% 93.46% 91.11% 91.11% 91.11% 0.548 0.82 0.85
Recall 84.91% 92.45% 90.57% 90.57% 90.57% 0.85 0.84 0.86

F1-Score 84.89% 92.42% 90.55% 90.55% 90.55% 0.667 0.83 0.85

ar5

Accuracy 99.2% 95.56% 91.11% 99.2% 95.56% 0.914 - -
Precision 99.2% 95.56% 91.42% 99.2% 95.56% 0.778 0.76 0.85

Recall 99.2% 95.56% 91.11% 99.2% 95.56% 0.875 0.80 0.83

F1-Score 99.2% 95.56% 91.08% 99.2% 95.56% 0.824 0.78 0.84

ar6

Accuracy 97.78% 97.78% 88.89% 97.78% 97.78% 0.842 - -

Precision 97.87% 97.87% 89.56% 97.87% 97.87% 0.478 0.85 0.85

Recall 97.78% 97.78% 88.89% 97.78% 97.78% 0.733 0.79 0.79
F1-Score 97.78% 97.78% 88.89% 97.87% 97.87% 0.579 0.73 0.73

6. REFERENCES

Abbas, S. et al ,(2023), “Data and Ensemble Machine Learning Fusion Based Intelligent

Software Defect Prediction System”, http://dx.doi.org/10.32604/cmc.2023.037933

Abdou, A. S, and Darwish , N. R, (2018),“Early Prediction of Software Defect using Ensemble

Learning: A Comparative Study”, International Journal of Computer Applications (0975 –

8887) Volume 179 – No.46.

AL-FRAIHAT, D. et al, (2024), “Hyperparameter Optimization for Software Bug Prediction

Using Ensemble Learning”, Digital Object Identifier 10.1109/ACCESS.2024.3380024

Ali , U. et al, “Software Defect Prediction Using Variant based Ensemble Learning and Feature

Selection Techniques”, Published Online October (2020) in MECS (http://www.mecs-

press.org/) DOI: 10.5815/ijmecs.2020.05.03

Balogun, A. et al , (2018), “Software Defect Prediction Using Ensemble Learning: An ANP

Based Evaluation Method”, http://dx.doi.org/10.46792/fuoyejet.v3i2.200

Balogun, A.. et al , (2020), “SMOTE-Based Homogeneous Ensemble Methods for Software

Defect Prediction”, O. Gervasi et al. (Eds.): ICCSA 2020, LNCS 12254, pp. 615–631.

https://doi.org/10.1007/978-3-030-58817-5_45

Burkov, Andriy. (2019). “The hundred-page machine learning” book. Vol. 1. Quebec City, QC,

Canada: Andriy Burkov, https://doi.org/10.1080/15228053.2020.1766224

Kufa Journal of Engineering, Vol. 16, No. 3, July 2025 655

Elife Ozturk et al, (2021), “Multi-view learning for software defect prediction” , e-Informatica

Software Engineering Journal , Volume 15, Issue 1.

Ernest Kwame Ampomah et al , (2020),“Evaluation of Tree-Based Ensemble Machine

Learning Models in Predicting Stock Price Direction of Movement”,

http://dx.doi.org/10.3390/info11060332

Hersh A. Mohammed et al, (2020), “A COMPARATIVE EVALUATION OF DEEP

LEARNING METHODS IN DIGITAL IMAGE CLASSIFICATION” , Kufa Journal of

Engineering Vol. 13, No. 4, October 2022, P.P. 53-69

Huda, S. et al , (2021),“An ensemble oversampling model for class imbalance problem in

software defect prediction”, Citation information: DOI 10.1109/ACCESS.2018.2817572

Jiayao Chen et al, (2021),“Machine learning-based classification of rock discontinuity trace:

SMOTE oversampling integrated with GBT ensemble learning”,

https://doi.org/10.1016/j.ijmst.2021.08.004

Jun-hai Zhai et al, (2012) ,“Dynamic ensemble extreme learning machine based on sample

entropy”, Soft Comput 16:1493–1502,

Khuat, T. T. and Le , M. , (2019), “Ensemble learning for software fault prediction problem

with imbalanced data”, Vol. 9, No. 4, pp. 3241~3246 ISSN: 2088-8708, DOI:

10.11591/ijece.v9i4.pp3241-3246

Matloob, F. et al , (2019),“A Framework for Software Defect Prediction Using Feature

Selection and Ensemble Learning Techniques”, Published Online December 2019 in MECS

(http://www.mecs-press.org/) DOI: 10.5815/ijmecs 12.02.

MISBAH ALI et al , (2024),“Software Defect Prediction Using an Intelligent Ensemble-Based

Model”, VOLUME 12, https://creativecommons.org/licenses/by-nc-nd/4.0 /

Mohammad Amimul Ihsan Aquil, Wan Hussain Wan Ishak, (2020), “Predicting Software

Defects using Machine Learning Techniques”,

https://doi.org/10.30534/ijatcse/2020/352942020

Monni, C. , and Pezze`, M. , (2019), “Energy-Based Anomaly Detection A New Perspective

for Predicting Software Failures”, http://dx.doi.org/10.13140/RG.2.2.29124.88967

Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu. (2010),A general software defect-proneness

prediction framework. IEEE transactions on software engineering, 37(3), 356-370 ,

656 Hasan and Saleh

R. Mamatha et al, (2023),“Enhanced Software Defect Prediction Through Homogeneous

Ensemble Models .”

REN AND LIU, (2019), “Predicting Software Defects Using Self-Organizing Data Mining” ,

Digital Object Identifier 10.1109/ACCESS.2019.2927489.

Sagheer Abbas et al, (2023), “Bata and Ensemble Machine Learning Fusion Based Intelligent

Software Defect Prediction System”, http://dx.doi.org/10.32604/cmc.2023.037933

Saheed , Y. K. et al, (2021),“An Ensemble Learning Approach for Software Defect Prediction

in Developing Quality Software Product”,

https://www.researchgate.net/publication/355490443_An_Ensemble_Learning_Approach_for

_Software_Defect_Prediction_in_Developing_Quality_Software_Product?enrichId=rgreq-

732adb78eca05ef05a16767ff9755563-

XXX&enrichSource=Y292ZXJQYWdlOzM1NTQ5MDQ0MztBUzoxMTA0MDg4MjMwM

DQzNjQ4QDE2NDAyNDY1NTUwMDc%3D&el=1_x_2&_esc=publicationCoverPdf

Sebastian Raschka, (2017) ,“Machine Learning and Deep Learning with Python, scikit-learn,

and TensorFlow”,[book], Copyright © Packt Publishing

Sharm, T. et al, (2023),“Ensemble Machine Learning Paradigms in Software Defect

Prediction”, Available online at www.sciencedirect.com Procedia Computer Science 218 199–

209

Shi ,T. , Zou , Z. and Ai , J., (2023),“Software Operation Anomalies Diagnosis Method Based

on a Multiple Time Windows Mixed Model”, Appl. Sci. 13, 11349.

https://doi.org/10.3390/app132011349

Shuo Feng, et al. (2021),“Investigation on the stability of SMOTE-based oversampling

techniques in software defect prediction”. https://doi.org/10.1016/j.infsof.2021.106662

Sivalingan H , (2024),“Cloud-Smart Surveillance: Enhancing Anomaly Detection In Video

Streams With DfConvlstm-Based Vae-Ga" , Kufa Journal of Engineering Vol. 15, No. 4,

October 2024, P.P. 125-140.

Xibin DONG et al , (2020),“A survey on ensemble learning”, Front. Comput. Sci., 14(2): 241–

258 https://doi.org/10.1007/s11704-019-8208-z

Xin, J. et al, (2023),“Ensemble learning based defect detection of laser sintering”,

https://doi.org/10.1049/ote2.12108

Kufa Journal of Engineering, Vol. 16, No. 3, July 2025 657

Xin-She Yang, (2019),“Introduction to Algorithms for Data Mining and Machine Learning”

[book], https://www.elsevier.com/books-and-journals

Yan-yan SONGand Ying LU, (2015),“Decision tree methods: applications for classification

and prediction”, Shanghai Archives of Psychiatry, Vol. 27, No. 2

http://dx.doi.org/10.11919/j.issn.1002-0829.215044

YI PENG et al , (2011) ,“ENSEMBLE OF SOFTWARE DEFECT PREDICTORS: AN AHP-

BASED EVALUATION METHOD”, International Journal of Information Technology &

Decision Making Vol. 10, No. 1 187–206 .

Zhao, Z. , (2017), “Ensemble Methods for Anomaly Detection”, Dissertations - ALL. 817.

https://surface.syr.edu/etd/817

