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ABSTRACT  

Software plays a vital role in all aspects of our daily lives, specifically in the fields of medicine 

and industry. In order to design high-quality and reliable software and avoid risks resulting 

from software errors, including physical and human errors, this is considered a major challenge 

due to the limited time and budget specified. Therefore, most software development companies 

tend to use machine learning for prediction. With the presence of software defects that 

contribute to improving the quality and safety of the software produced, this is done by relying 

on and using records, previous projects, and available data. this paper proposed machine 

learning and ensemble learning suite to predict software anomalies. The evaluated approach is 

for models in the PROMISE real-word dataset repository containing 5 projects (Turkish 

company SOFTLAB). The model applies the basic algorithms (Random Forest (RF), Decision 

Tree (DT), Extra Tree) and the learning model ensemble (Adaboost, xgboost ,Stack, Voting, 

bagging) and metrics (accuracy, recall, F1 score, accuracy) to measure the prediction 

performance of the models and a comparison was made between the proposed model 

algorithms. Both adaboost , stack achieved prediction accuracy about 99.2% when implemented 

on the ar5 dataset. 
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1. INTRODUCTION 

The importance of identifying anomalies in software systems has increased over the past few 

years. With increasing software applications in our daily lives, ensuring its quality has now 

become extremely important.  Because modern software systems are complex and implicitly 

interconnected, the quality assurance process, in turn, is insufficient for large systems that are 

constantly updated (Balogun,2020). Software failures have been led to catastrophic disasters so 

it's is necessary to link software failures, underscoring of effective anomaly detection. 

Furthermore, software bugs and glitches have a significant financial impact. The field of 

software engineering always gives priority to producing high-quality software. The process of 

detecting software anomalies is an important part of software development. If software defects 

are found early in software development process, this enables QA experts to focus on the 

problematic modules rather than the entire software. This method can reduce development costs 

without sacrificing the quality of the final product. Early detection of problematic modules can 

facilitate early changes, ensure timely delivery of a high-quality product that satisfies 

customers, and enhance confidence of development team. Anticipating software defects can 

reduce testing and maintenance costs while increasing the quality of the final output. A simple 

software glitch can lead to serious consequences and system crashes. Software defects are of 

different types, including incorrect program data, errors in design, installation, specifications, 

and others. Since the testing phase is the most expensive in the software development life cycle, 

discovering and fixing software defects before the testing phase. makes identifying the causes 

of failure easier and less expensive, as the process of predicting software defects is an essential 

part of software testing (Shi and Abbas ,2023) and (Abdou,2018) Over the past two decades, 

many algorithm such as statistics, neural network, machine learning techniques….etc  used to 

predict and detect software anomaly. To achieve high prediction accuracy, ensemble learning 

is used, which combines many individual classifiers, which is more accurate in prediction than 

using a single classifier. In general, machine learning techniques are divided into three types: 

-  First supervised techniques, which need pre-trained training data. 

-  second, unsupervised techniques, which need to use specific algorithms to identify and 

structure the data,  

- Finally semi-supervised hybrid techniques Combines the two types. 

One critical element that makes it possible to reduce field failure rates and increase the 

reliability of complex software systems is the ability to anticipate or identify problems before 

they arise. Various methods have been proposed in many recent researches to identify 

anomalies in software systems (Monni ,2019) and (Hersh A. Mohammed et al,2020). Because 
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ensemble learning techniques can enhance the model's capacity for generalization, they are 

employed to address the issue of class imbalance. Different classifiers can produce different 

classification errors because they are trained on different sets of data. That being said, each 

classifier's matching errors aren't always the same. The ensemble learning approaches, which 

combine these classifiers through various mechanisms, can mitigate the biased learning 

resulting from class imbalance classification. Both bagging and boosting are popular ensemble 

learning techniques. Boosting-based approaches concentrate on hard-to-classify cases and 

continuously train each classifier using data from a weighted sample of the original data. 

Through the use of bootstrapped clones of training data, bag-based techniques construct distinct 

classifiers (AL-FRAIHAT ,2024)and(Balogun ,2018).  Since ensemble learning techniques are 

widely used for the detection and prediction process and are working to improve them, they 

have recently been widely used (Huda ,2021). The goal of this research is to improve the 

prediction of software anomalies, where a framework is presented for predicting anomalies in 

a software system and using ensemble learning techniques (Matloob ,2019),( Sharm ,2023) and 

(Zhao ,2017). It presents a framework for predicting anomalies in a software system and using 

ensemble learning techniques. The paper proposes ensemble learning methods to predict 

software anomalies to obtain the best prediction accuracy, where ensemble learning models 

(bagging, stacking, XGboost, Adaboost) were used. Using (Random Forest (RF) , Decision 

Tree (DT)) algorithms as two basic parameters and trained on a dataset from a Turkish white 

goods company SOFTLAB.  

The rest of the paper refers to related works that focuses on reviewing the prediction based on 

ensemble learning described in Section 2. While Section 3 includes the paper's methodology, 

dataset, preprocessing, and machine learning methods, the experimental results are compared 

and analyzed in detail at the end. 

2. RELATED WORK 

Prediction software anomalies are a process of predicting abnormal performance phenomena 

anomalies to frustrate future incidents. Many researchers worked about software anomalies 

some about detection and other about prediction, and artificial intelligence methods are widely 

applied. This section will briefly review the most important methods based anomaly detection 

methods and specifically highlight ensemble learning. 

In 2018, Abdul Latif O. Balogun et al. It is argued that clustering methods can give better results 

in software defect prediction (SDP). They evaluated the performance of individual classifiers 

(Sequential Minimal Optimization (SMO), Multi-layer Perceptron (MLP), k-Nearest Neighbor 
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(kNN), decision tree) and ensemble classifiers (bagging, boosting, stacking, and voting) in SDP 

using 11 defective datasets. programs and also 11 performance measures, and the results of 

their proposed method showed that boosting is the best prediction method, and among the 

individual classifiers, the decision tree ranked first with a score of 0.0410, and they stressed the 

need to take into account performance measures to achieve the best predictive performance, so 

that they are implemented before selecting the model or Process classifier (Balogun ,2018).   

  In 2019, REN and LIU presented a predictive study using the self-data mining method to 

predict software defects in classification and ranking. They proved that software metrics and 

software defects are causally related. During the model training phase, when predicting the 

ranking, the errors of defect-free units are replaced with a negative value, and the errors of 

defective units remain unchanged. While the true values of defective units are replaced with a 

positive value ≥1.5, the false values of defect-free units are replaced with a negative value 

during classification prediction. Using the NASA, Promise, and Softlab datasets, the self-data 

mining approach is a very practical and effective method for predicting software defects (REN 

and LIU, 2019). 

In 2020, Umair Ali and others presented a classification framework for prediction using 

ensemble learning and feature selection techniques to achieve high performance, where variable 

that causes low performance is eliminated. They proposed framework works using four data 

sets from MDP repository, the results of proposed framework showed that this framework 

outperforms ten basic classifiers that are subject to supervision, including the algorithms “Naïve 

Bayes (NB), Multi-Layer Perceptron (MLP), Radial Basis Function ( RBF), Support Vector 

Machine (SVM), K Nearest Neighbor (KNN), k-Star (K*), One Rule (OneR), PART, Decision 

Tree (DT), and Random Forest (RF).” The performance was evaluated using three Performance 

metrics including F-measure, Accuracy, and MCC (Ali,2020).  In the same year, Muhammad 

Amimul Ihsan Aqeel and Wan Hussein Wan Ishaq conducted a study on Ensemble, 

classification and clustering techniques to improve the quality and efficiency of software defect 

prediction. Their study was conducted using 13 data sets from the NASA MDP repository, and 

the prediction performance was evaluated using 3 metrics including (Accuracy, F-measure, 

MAE). Where ensemble learning models were used (RF, ET, XgBoost, LGBM, STC), As for 

supervised models (PAC, QDA, GNB) and regarding unsupervised learning models (KNN, 

GMM, K-mean) The results were decisive for the high-accuracy prediction of ensemble 

learning techniques, with STC outperforming all algorithms on all three metrics. QDA achieved 

high performance, while for the unsupervised learning algorithms, the KNN and GMM 

algorithms excelled for the three performance measures (Mohammad Amimul Ihsan,2020). 
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In 2021, Yaqub Kayode Sahid et al presented a model to eliminate what previous studies had 

struggled with in terms of prediction accuracy and performance metrics. Considering that most 

previous studies relied on accuracy to measure SDP which was insufficient, they presented their 

approach that uses six ensemble learning models (Cat Boost, Light Gradient Boosting Machine 

(LGBM), Extreme Gradient Boosting (XgBoost), Cat Boost, Logistic Regression, LGBM 

Boosting, XgBoost Boosting) was trained on three NASA data sets and its performance was 

evaluated using performance metrics (accuracy, area under the curve (AUC), accuracy, recall, 

F-measure and Matthew Correlation Coefficient (MCC). The results showed the superiority of 

the Cat Boost system in terms of reducing training time and excessive setup. The model was 

compared with the basic logistic regression model for six sets of data, and the result was high 

performance of the proposed ensemble t model (Saheed et al,2021). 

In 2023, R. Mamatha and others emphasized importance of using machine learning for 

predicting software defects, they applied promise warehouse data sets for this task. The model   

integrating Naive Bayes and Boosting techniques to form a model whose predictions are strong 

and more reliable. The data was improved with accuracy and high performance, as these 

combined models allowed for the elimination and removal of excess structure, bias, and also 

variance. In general, the integration of algorithms showed the strengths and weaknesses of each 

classifier separately (R. Mamatha et al,2023). In the same year, Junyi Xin   et al, By creating 

initial models, a processing process is carried out on the images, after which models of  

proposed approach based on ensemble learning are implemented to detect defects in  images. 

The convolutional neural network models ((off-the-shelf CNN, bagged CNN, and boosted 

CNN) are also compared. The results of the proposed approach showed high performance of 

the bagged CNN network, with training and testing accuracy reaching (96.1% and 95.1%), 

respectively (Xin, J. et al,2023). 

  Also in the same year 2023, Sagheer Abbas and others also presented an intelligent system for 

predicting software anomalies (defective modules) present within software. The system is based 

on feature selection and clustering machine learning techniques. This approach was evaluated 

and trained on five datasets from NASA. This system consists of three stages for better 

forecasting. In the first stage, the applied decision tree is combined with support vector 

machines and naive Bayes. In the second stage, predictions of the techniques (mobilization, 

voting, and stacking) are combined. The final stage is applied to fuzzy logic to improve 

predictive accuracy. The results of the proposed system showed a predictive accuracy of up to 

(92.08%), and this result demonstrates the superiority of the system’s performance over many 

other advanced techniques (Sagheer Abbas,2023). 
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In 2024, Misbah Ali et al presented a two-stage approach in which four supervised algorithms 

are used. In the second stage, individual algorithms and classifiers are combined to improve 

predictive capabilities. They relied on using NASA data from the MDP repository. Seven 

datasets were used to implement and train the two stages. Iterative parameter optimization was 

performed in the first stage to increase and improve the performance accuracy. In the second 

stage, the base classifiers are combined to make final high-accuracy predictions from these 

individual classifiers (Random Forest). , Support Vector Machine, Naïve Bayes, and Artificial 

Neural Network) The authors confirmed the superiority of the proposed approach voting 

ensemble-based software Defect prediction (VESDP) model based on twenty modern 

technologies (Misbah Ali et al,2024). 

3. METHODOLOGY  

This part present the methodology, where the method used ensemble learning to predict 

software anomalies is described. The motivation behind its use is that it improves the 

generalization ability of software defect prediction algorithms, and that the application of 

ensemble learning algorithms has achieved achievements. For published literature. The RF and 

DT algorithms were applied as individual basic classifiers in the proposed model. 

3.1. Data Set 

The PROMISE repository provided datasets for this study, including other software modules. 

The datasets were pre-processed by cleaning and normalizing the raw data to ensure 

compatibility with the models. For instance, Halstead complexity, code size, and McCabe 

cyclomatic complexity metrics were computed for each software module. The processed dataset 

was divided into 80% training data and 20% test data. 

The input process involves mapping these computed metrics into the model's input structure. 

Specifically, features such as code complexity metrics were scaled to ensure balanced input 

ranges. If the software predicts defects, the program first extracts these features, organizes them 

in structured datasets, and then feeds them into the prediction model. This ensures the seamless 

integration of data collection and input into the prediction workflow. 

        Table 1. SOFTLAB Dataset. 

Dataset Instances Attributes Minority Majority 

ar1 122 30 9 113 

ar3 64 30 8 56 

ar4 108 30 20 88 

ar5 37 30 8 29 

ar6 101 30 15 87 
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 Table 2.  SOFTLAB Dataset Attribute 

NO. Attribute 

1 total_loc numeric 

2 blank_loc numeric 

3 comment_loc numeric 

4 code_and_comment_loc numeric 

5 executable_loc numeric 

6 unique_operands numeric 

7 unique_operators numeric 

8 total_operands numeric 

9 total_operators numeric 

10 halstead_vocabulary numeric 

11 halstead_length numeric 

12 halstead_volume numeric 

13 halstead_level numeric 

14 halstead_difficulty numeric 

15 halstead_effort numeric 

16 halstead_error numeric 

17 halstead_time numeric 

18 branch_count numeric 

19 decision_count numeric 

20 call_pairs numeric 

21 condition_count numeric 

22 multiple_condition_count numeric 

23 cyclomatic_complexity numeric 

24 cyclomatic_density numeric 

25 decision_density numeric 

26 design_complexity numeric 

27 design_density numeric 

28 normalized_cyclomatic_complexity numeric 

29 formal_parameters numeric 

30 defects {clean,buggy} 

3.2. Data pre-processing 

After selected training dataset, pre-processing of this data is performed, which includes four 

sub-activities that improves the performance of proposed model: 1) dataset partitioning, 2) 

cleaning, 3) normalization, and 4) oversampling.  

The first sub-activity as mentioned previously of the pre-processing phase is process of 

partitioning data set. The training and testing datasets are divided into two groups in this step, 

80% and 20%.  

 Cleaning, the second sub-activity is essential for the robustness of the model. Cleaning removes 

inconsistent, incorrect, or unnecessary data points to ensure and enhance the accuracy of 

anomaly detection and prediction models (Sivalingan H, 2024). By reducing noise, addressing 

missing values, checking consistency, and correcting errors within the dataset, this stage 

improves the quality and integrity of the data and produces better predictions by replacing 
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missing values in the dataset and using a statistical technique (mean) that allows gaps to be 

filled with appropriate values in the data being used. 

Normalization is a sub-activity of the third pre-processing step. Normalization is a commonly 

used technique to balance feature scales between (0 and 1) to measure and standardize the 

attributes of the input dataset. Normalization helps the machine learning model become more 

stable and efficient while also facilitating convergence (Sivalingan H, 2024). By preventing 

large-scale attributes from unduly affecting the model, it helps in achieving a neutral and 

balanced learning process as a result. In addition, normalization helps ensure that the model 

works consistently by managing differences in the data distribution (Mesbah Ali et al., 2024). 

Logarithmic transformation, a technique that uses logarithmic transformation to transform data 

by applying a logarithm to each value, was used to reduce the effect of outliers and disparities 

between large and small numbers and improve the distribution by making the distribution close 

to the normal distribution of values, as (log) helps address the problem of dealing with zero 

values by adding one to each value before taking the logarithm (Dina Saeed et al., 2011) 

log(1+X) 

 𝑋′ = log(1 + 𝑋)                                                                 (1) 

represents: X the original value in the dataset and X' represents the transformed value This type 

of transformation was used because the data used contains zero values. 

Oversampling is a sub-activity of the four pre-processing steps to solve the problem of class 

imbalance when training models on imbalanced data. The oversampling technique solves the 

imbalance problem by increasing the defective or abnormal minority class. Thus, a balance is 

achieved between the two classes, the normal majority class and the abnormal or defective 

minority class (Thanh, 2020;Shu Feng et al., 2021; and Jiao Chen et al., 2021). 

3.3. MODELS 

The motivation behind using  ensemble learning is achieve most accurate  in machine learning 

where multiple models (often called "base learners" or "weak learners") are combined to create 

a more robust and accurate predictive model. The main idea is that by aggregating the 

predictions from multiple models, the ensemble can achieve better performance than any single 

model could on its own. There are several common methods for creating ensembles, including 

bagging, boosting, and stacking. Typically, there are two processes involved in creating an 

ensemble of classifiers: 1. combining the classifier predictions; 2. Training several base 

classifiers (Jun-hai Zhai et al,2012). From this angle, ensemble learning can be combined a 

wide range of machine learning models to perform a wide range of tasks, including model 
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clustering and classification tasks (Xibin DONG et al,2020). In this paper table 3 shows the 

selection of hyper-parameters for ensemble learning models 

Table 3. hyper-parameters for the proposed models 

Models Parameters of SOFTLAB data 

Bagging classifier 

estimator=RF 

n_estimator=500 

random_state=42 

max_feature=5 

tarin_size=80 

test_size=20 

Voting classifier 

Estimators= Extrees,Catboost,GB 

tarin_size=80 

test_size=20 

Stacking classifier 
estimators=RF,SVM 

final_estimator=GB 

Xgboost 

n_estimator=700 

learn_rate=0.3 

tarin_size=80 

test_size=20 

Adaboost 

n_estimator=300 

random_state=42 

learn_rate=0.3 

tarin_size=80 

test_size=20 

Parameters directly affect the prediction accuracy, as they determine how well the model learns 

from the data and how complex it is. For example, increasing the number of classifiers 

(n_estimators) usually improves performance, but only up to a point, after which it may lead to 

longer training times without significant improvement. Learning rate (learning_rate) balances 

learning speed and accuracy; smaller values give more accurate results . 

3.3.1. Diction Tree 

A popular data mining technique for creating multi-covariate classification systems or creating 

prediction algorithms for a target variable is decision tree approach. By using this strategy, a 

population is divided into segments that resemble branches, creating an inverted tree with leaf, 

internal, and root nodes. Being non-parametric, the technique may effectively handle sizable, 

complex datasets without requiring a convoluted parametric structure. ( Yan-yan SONG,2015) 

The research data can be separated into training and validation datasets once the sample size is 

sufficiently big. constructing a decision tree model using the training dataset and determining 

the right tree size required to produce the best possible final model using the validation dataset. 

Fig 1.  shows the DT structure. 
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     Fig. 1. Decision Tree algorithm 

3.3.2. Random Forest algorithm 

It is a popular supervised ensemble learning method that may be applied to regression or 

classification tasks. The technique computes the average results from all the decision trees in 

the group, which is made up of several independent groups of decision trees, and displays the 

average results as the final output. Because it is a grouping strategy and has unpredictability, 

which lowers the variance of the model, it performs better than individual models. The random 

forest approach is displayed in Fig 2 because of its simplicity and accuracy of results (Xin-She 

Yang,2019)and(Sebastian Raschka,2017). 

    Fig. 2. Random Forest Algorithm 

3.3.3. Bagging classifier 

An ensemble technique is commonly referred to as Bootstrap Aggregation. Bootstrap 

Aggregating Ensemble Learning Bagging belongs to the category of group learning. It chooses 

a random subset of the whole set of data. By randomly selecting a portion of  original  training 

data and training a collection of decision trees, this method creates distinct models for each tree 

that are finished before training. The way it operates is to gather predictions from the trees and 

then determine a final forecast by voting for the majority of those who have similar expectations 

or by calculating the average of these choices (Burkov, Andriy,2019). 

3.3.4. Voting classifier 

Many classifiers continuously generate predictions and test result data in maximum voting 

method. By examining who received the most votes—more than half—the final prediction is 
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ascertained. This approach can be made more accurate by combining different classifiers  

(Q. Song et al,2010). The following is how the maximum voting classifier operates with 

Maximum: 

1-  Apply RF and ET classifiers to the training set.  

2- Keep track of both classes' performances and create a comparison.  

3.3.5. Stacking classifier 

As one of the clustering techniques in machine learning, stacking has shown benefits in the 

competitive world (Mohammad Amimul Ihsan,2020). The basic idea behind this technique is 

to train a Meta classifier to help integrate the predictions of multiple learners using confidence 

scores as features in different model ensembles. Three classifiers were used in the study: 

Adaboot, decision tree, and Random Forest Classifiers. These classifiers use to test and train 

different types of slots. 

3.3.6. Xgboost 

One tool that is part of the distributed machine learning community (DMLC) is called xgboost, 

and it is well-known for its faster and more efficient gradient boosted decision tree performance. 

In order to deploy it in computer environments, eXtreme, also known as XGBoost, is utilized 

to help exploit all available hardware and memory resources, tweaking the model and 

improving the algorithm (YI PENG et al ,2011). XGBoost offers three different methods for 

gradient boosting: random, regular, and gradient boosting. It is also highly efficient in adding 

and changing regulation parameters, maximizing memory usage, and cutting down on the 

amount of time spent on computational tasks. Additionally, XGBoost can handle missing values 

and enable parallel structures when data is fed to the trained model. 

3.3.7. Adaboosting 

It is one of the ensemble learning techniques for supervised machine learning that is used to 

address classification and regression issues. Weight adjustments are used to train weak models 

into strong models. Specifically, models with bad performance are assigned larger weights than 

models with good performance. Basic models are trained on the data after the weights of the 

training samples are changed, which enhances the models' ability to produce accurate results. 

Models are trained in a sequential fashion, with the first model being trained first, and its 

expectations being utilized to teach the subsequent model. The procedure is repeated until the 

final model is reached and a final forecast is obtained (Xibin DONG et al,2020) The operation 

of Adaboosting is shown in Fig 3. 
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Fig. 3. Adaboosting the framework 

3.4. Evaluation Criteria 

They are measures used to measure performance of predictive models used in the following 

will mention the measures used to measure performance of proposed method: 

The performance of ensemble machine learning models is evaluated using benchmarks. These 

metrics are the traditional quality standards used to evaluate the effectiveness of predictive 

models and used to measure the performance of our proposed method. Their definitions are 

given below: 

1- 1- Accuracy is the percentage of total cases that the classifier correctly predicts, shown in 

equation (1) (Ernest Kwame Ampomah et al ,2020). 

2- 𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =  𝒕𝒑+𝒕𝒏

𝒕𝒑+𝒕𝒏+𝒇𝒑+𝒇𝒏
                                                                                         (1) 

3-  Precision is the percentage of positively predicted cases out of all positively predicted 

instances that the classifier correctly anticipated it is shown in equation (2)  

  𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =  
𝒕𝒑

𝒕𝒑+𝒇𝒑
                                                                                                  (2) 

4-  Recall: the percentage of positively correlated cases out of all positively correlated instances 

that the classifier correctly predicted it is shown in equation (3)  

  𝒓𝒆𝒄𝒂𝒍𝒍 =  
𝒕𝒑

𝒕𝒑+𝒇𝒏
                                                                                                         (3) 

5- The F1- score shows the harmonic mean of recall and precision it is shown in equation (4). 

𝑭𝟏 − 𝒔𝒄𝒐𝒓𝒆 =  
𝟐∗ 𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏∗𝒓𝒆𝒄𝒂𝒍𝒍

𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏+𝒓𝒆𝒄𝒂𝒍𝒍
                                                                                       (4)  

where fp stands for false positive, tn for true negative, tp for true positive, and fn for false 

negative. 

4. RESULTS AND DISCUSSION  

This section discusses the results that emerged when applying the proposed ensemble learning 

classifiers or models to predict bugs and software defects using 5 SOFTLAB datasets (ar1, ar3, 

ar4, ar5, ar6) after the processing operations mentioned in the previous section were completed 

by removing the columns that It contains the values, applies normalization to the data, and then 
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performs processing to balance the data through the oversampling process for the purpose of 

increasing performance accuracy. After that, the balanced data is divided into 20% for testing 

and 80% for training. . Then the ensemble model classifiers and base classifiers were applied, 

after which the predictive performance was evaluated through four performance metrics 

(accuracy, precision, recall, F1 score). The results showed high accuracy  99.2% in some data 

sets using the classifiers mentioned using different performance measures, including in Table4, 

when the five data set was used, and  accuracy performance measure was applied to it using the 

Ensemble algorithms and the basic classifiers DT and RF, When implementing the (ar1) data 

set The results showed high accuracy ranging between 91.18 and 98.53, with Adaboost 

achieving 98.53, while( bagging and stacking) achieved an accuracy of 91, while (voting and 

xgboost)  achieved an accuracy of 92. When implementing the ar3 data set, the accuracy ranged  

between )90 and 99(, with voting achieving 99.3%, while )bagging and stacking( had lower 

accuracy, reaching 90.91%, while the accuracy of both (adaboost and xgboost) reached 95%, 

as shown in Table 5. When implementing the )ar4( data set, the results were not high compared 

to the rest of the other groups, as the accuracy ranged between )  84 and 92(. When implementing 

the various algorithms, the accuracy of Adaboost was the lowest, as it achieved 84%, while 

xgboost achieved 92%. As for )bagging, stacking, and voting(, the accuracy was 90  % . The 

results showed the highest accuracy when implemented on the data set (ar5), as the accuracy 

reached 99.2% for the classifiers (adaboosting, stacking), while the results for the classifiers 

(Vote and xgboosting) were 95.56%, while the filling classifier was the lowest, achieving 

91.11% as shown in Table 7.    

   Table 4 outputs of ar1 dataset 

Evaluation 

Criteria  

Algorithms 

stacking Voting adaboost Xgboost Bagging 

Accuracy 91.18% 92.65% 98.53% 92.65% 91.18% 

Precision 91.84% 92.70% 98.58% 92.67% 91.84% 

Recall 91.18% 92.65% 98.53% 92.68% 91.18% 

F1-score 91.19% 92.66% 98.53% 92.64% 91.19% 

Table 5 outputs of ar3 dataset 

Evaluation 

Criteria  

Algorithms 

Stacking Voting Adaboost Xgboost Bagging 

Accuracy 90.91% 99.3% 95.45% 95.45% 90.91% 

Precision 92.42% 99.3% 95.87% 95.87% 92.42% 

Recall 90.91% 99.3% 95.45% 95.45% 90.91% 

F1-score 90.91% 99.3% 95.46% 95.46% 90.91% 
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Table 6 outputs of ar4 dataset 

Evaluation 

Criteria  

Algorithms 

stacking Voting Adaboost Xgboost bagging 

Accuracy 90.57% 90.57% 84.91% 92.45% 90.57% 

Precision 91.11% 91.11% 85.13% 93.46% 91.11% 

Recall 90.57% 90.57% 84.91% 92.45% 90.57% 

F1-score 90.55% 90.55% 84.89% 92.42% 90.55% 

Table 7 outputs of ar5 dataset 

Evaluation 

Criteria  

Algorithms 

Stacking Voting Adaboost Xgboost bagging 

Accuracy 99.2% 95.56% 99.2% 95.56% 91.11% 

Precision 99.2% 95.56% 99.2% 95.56% 91.42% 

Recall 99.2% 95.56% 99.2% 95.56% 91.11% 

F1-score 99.2% 95.56% 99.2% 95.56% 91.08% 

Table 8 outputs of ar6 dataset 

Evaluation 

Criteria  

Algorithms 

stacking Voting adaboost Xgboost bagging 

Accuracy 97.78% 97.78% 97.78% 97.78% 88.89% 

Precision 97.87% 97.87% 97.87% 97.87% 89.56% 

Recall 97.78% 97.78% 97.78% 97.78% 88.89% 

F1-score 97.78% 97.78% 97.78% 97.78% 88.89% 

The proposed model using ensemble learning clearly outperforms previous studies in anomaly 

prediction, as it benefits from combining the strengths of a set of base models to achieve higher 

accuracy and better generalization ability. As Table 9 shows, the improvement in the 

performance of the proposed model is manifested in better accuracy and balance rates compared 

to traditional models, which enhances its reliability and effectiveness in detecting abnormal 

patterns.   

The table above shows the superiority of the proposed model using ensemble learning in 

anomaly prediction over other traditional methods and techniques . 

5. CONCLUSION 

Recently, there has been an increasing need to develop complex, high-quality software systems, 

and to improve the quality of software before delivering it to users, prediction of software 

defects or anomalies must be used. In this research paper, ensemble learning models (bagging, 

stacking, voting, Adaboost, Xgboost) were used for the prediction process. The method was to 

use the Softlab data set, and after the data processing process was completed, including data 

balancing and the data oversampling process, then the data was divided into training data and 

test data of 80% and 20%, and to evaluate the prediction performance. Four performance 

measures were used (accuracy,precision,recall,F1-score ) where the results of the method 

showed the superiority of the ensemble model ( stacking ,adaboost, voting ) as it obtained a 
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prediction accuracy of to ( 99.2%) compared to the previous studies shown in the table and it 

had the best predictive performance. 

In future work, the work can be applied to more than one data set. Deep learning models can 

also be combined with the ensemble model. 

 

 

 

(ar1) (ar3) 

(ar4) (ar5) 

(ar6) 

Fig. 4. shows the results of the dataset (ar1,ar3,ar4,ar5,ar6) when implementing  

the proposed approach using ensemble learning.  
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Table 9 Comparison of The Performance of The Proposed Model 

 With Other Techniques of Previous Studies 

dataset 
Evaluation 

Criteria 

Proposed Model Ensemble learning 
(Ren And 

Liu,2019) 

(Elife Ozturk et 

al,2021) 

Adaboost Xgboost bagging stacking Voteing SODM KNN MVKNN 

ar1 

Accuracy 98.53% 92.65% 91.18% 91.18% 92.65% 0.975 - - 
Precision 98.58% 92.67% 91.84% 91.84% 92.70% 0.214 0.86 0.86 

Recall 98.53% 92.68% 91.18% 91.18% 92.65% 0.67 0.93 0.93 

F1-Score 98.53% 92.64% 91.19% 91.19% 92.66% 0.324 0.89 0.89 

ar3 

Accuracy 95.45% 95.45% 90.91% 90.91% 99.3% - - - 

Precision 95.87% 95.87% 92.42% 92.42% 99.3% - 0.89 0.89 

Recall 95.45% 95.45% 90.91% 90.91% 99.3% - 0.90 0.90 
F1-Score 95.46% 95.46% 90.91% 90.91% 99.3% - 0.89 0.89 

ar4 

Accuracy 84.91% 92.45% 90.57% 90.57% 90.57% 0.84 - - 

Precision 85.13% 93.46% 91.11% 91.11% 91.11% 0.548 0.82 0.85 
Recall 84.91% 92.45% 90.57% 90.57% 90.57% 0.85 0.84 0.86 

F1-Score 84.89% 92.42% 90.55% 90.55% 90.55% 0.667 0.83 0.85 

ar5 

Accuracy 99.2% 95.56% 91.11% 99.2% 95.56% 0.914 - - 
Precision 99.2% 95.56% 91.42% 99.2% 95.56% 0.778 0.76 0.85 

Recall 99.2% 95.56% 91.11% 99.2% 95.56% 0.875 0.80 0.83 

F1-Score 99.2% 95.56% 91.08% 99.2% 95.56% 0.824 0.78 0.84 

ar6 

Accuracy 97.78% 97.78% 88.89% 97.78% 97.78% 0.842 - - 

Precision 97.87% 97.87% 89.56% 97.87% 97.87% 0.478 0.85 0.85 

Recall 97.78% 97.78% 88.89% 97.78% 97.78% 0.733 0.79 0.79 
F1-Score 97.78% 97.78% 88.89% 97.87% 97.87% 0.579 0.73 0.73 
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