Kufa Journal of Engineering

Vol. 16, No. 3, July 2025, P.P. 639-657

Article history: Received 25 June 2024, last revised 16 January 2025,
accepted 16 January 2025

PREDICTION OF SOFTWARE ANOMALIES METHODS
BASED ON ENSEMBLE LEARNING METHODS

Raghda Azad Hasan! and Ibrahim Ahmed Saleh?

1 MSC student, Software Department, Faculty of Computer Science and Mathematics,
University of Mosul, Nineveh, Iraq. Email: raghda.22csp16@student.uomosul.edu.iq

2 Professor, Department of Software, Faculty of Computer Science and Mathematics,
University of Mosul, Nineveh, Iraq. Email: i.hadedi@uomosul.edu.com

https://doi.org/10.30572/2018/KJE/160336

ABSTRACT

Software plays a vital role in all aspects of our daily lives, specifically in the fields of medicine
and industry. In order to design high-quality and reliable software and avoid risks resulting
from software errors, including physical and human errors, this is considered a major challenge
due to the limited time and budget specified. Therefore, most software development companies
tend to use machine learning for prediction. With the presence of software defects that
contribute to improving the quality and safety of the software produced, this is done by relying
on and using records, previous projects, and available data. this paper proposed machine
learning and ensemble learning suite to predict software anomalies. The evaluated approach is
for models in the PROMISE real-word dataset repository containing 5 projects (Turkish
company SOFTLAB). The model applies the basic algorithms (Random Forest (RF), Decision
Tree (DT), Extra Tree) and the learning model ensemble (Adaboost, xgboost ,Stack, Voting,
bagging) and metrics (accuracy, recall, F1 score, accuracy) to measure the prediction
performance of the models and a comparison was made between the proposed model
algorithms. Both adaboost, stack achieved prediction accuracy about 99.2% when implemented

on the ar5 dataset.

KEYWORDS

Software Engineering, Software Defect Prediction, Ensemble Learning, Random Forest,
Decision Tree, Boosting, Stacking.

@ @ This work is licensed under a Creative Commons Attribution 4.0 International License.
E:.'I'.

https://creativecommons.org/licenses/by/4.0/

640 Hasan and Saleh

1. INTRODUCTION
The importance of identifying anomalies in software systems has increased over the past few
years. With increasing software applications in our daily lives, ensuring its quality has now
become extremely important. Because modern software systems are complex and implicitly
interconnected, the quality assurance process, in turn, is insufficient for large systems that are
constantly updated (Balogun,2020). Software failures have been led to catastrophic disasters so
it's is necessary to link software failures, underscoring of effective anomaly detection.
Furthermore, software bugs and glitches have a significant financial impact. The field of
software engineering always gives priority to producing high-quality software. The process of
detecting software anomalies is an important part of software development. If software defects
are found early in software development process, this enables QA experts to focus on the
problematic modules rather than the entire software. This method can reduce development costs
without sacrificing the quality of the final product. Early detection of problematic modules can
facilitate early changes, ensure timely delivery of a high-quality product that satisfies
customers, and enhance confidence of development team. Anticipating software defects can
reduce testing and maintenance costs while increasing the quality of the final output. A simple
software glitch can lead to serious consequences and system crashes. Software defects are of
different types, including incorrect program data, errors in design, installation, specifications,
and others. Since the testing phase is the most expensive in the software development life cycle,
discovering and fixing software defects before the testing phase. makes identifying the causes
of failure easier and less expensive, as the process of predicting software defects is an essential
part of software testing (Shi and Abbas ,2023) and (Abdou,2018) Over the past two decades,
many algorithm such as statistics, neural network, machine learning techniques....etc used to
predict and detect software anomaly. To achieve high prediction accuracy, ensemble learning
is used, which combines many individual classifiers, which is more accurate in prediction than
using a single classifier. In general, machine learning techniques are divided into three types:
- First supervised techniques, which need pre-trained training data.
- second, unsupervised techniques, which need to use specific algorithms to identify and
structure the data,
- Finally semi-supervised hybrid techniques Combines the two types.
One critical element that makes it possible to reduce field failure rates and increase the
reliability of complex software systems is the ability to anticipate or identify problems before
they arise. Various methods have been proposed in many recent researches to identify

anomalies in software systems (Monni ,2019) and (Hersh A. Mohammed et al,2020). Because

Kufa Journal of Engineering, Vol. 16, No. 3, July 2025 641

ensemble learning techniques can enhance the model's capacity for generalization, they are
employed to address the issue of class imbalance. Different classifiers can produce different
classification errors because they are trained on different sets of data. That being said, each
classifier's matching errors aren't always the same. The ensemble learning approaches, which
combine these classifiers through various mechanisms, can mitigate the biased learning
resulting from class imbalance classification. Both bagging and boosting are popular ensemble
learning techniques. Boosting-based approaches concentrate on hard-to-classify cases and
continuously train each classifier using data from a weighted sample of the original data.
Through the use of bootstrapped clones of training data, bag-based techniques construct distinct
classifiers (AL-FRAIHAT ,2024)and(Balogun ,2018). Since ensemble learning techniques are
widely used for the detection and prediction process and are working to improve them, they
have recently been widely used (Huda ,2021). The goal of this research is to improve the
prediction of software anomalies, where a framework is presented for predicting anomalies in
a software system and using ensemble learning techniques (Matloob ,2019),(Sharm ,2023) and
(Zhao ,2017). It presents a framework for predicting anomalies in a software system and using
ensemble learning techniques. The paper proposes ensemble learning methods to predict
software anomalies to obtain the best prediction accuracy, where ensemble learning models
(bagging, stacking, XGboost, Adaboost) were used. Using (Random Forest (RF) , Decision
Tree (DT)) algorithms as two basic parameters and trained on a dataset from a Turkish white
goods company SOFTLAB.

The rest of the paper refers to related works that focuses on reviewing the prediction based on
ensemble learning described in Section 2. While Section 3 includes the paper's methodology,
dataset, preprocessing, and machine learning methods, the experimental results are compared

and analyzed in detail at the end.

2. RELATED WORK

Prediction software anomalies are a process of predicting abnormal performance phenomena
anomalies to frustrate future incidents. Many researchers worked about software anomalies
some about detection and other about prediction, and artificial intelligence methods are widely
applied. This section will briefly review the most important methods based anomaly detection
methods and specifically highlight ensemble learning.

In 2018, Abdul Latif O. Balogun et al. It is argued that clustering methods can give better results
in software defect prediction (SDP). They evaluated the performance of individual classifiers

(Sequential Minimal Optimization (SMO), Multi-layer Perceptron (MLP), k-Nearest Neighbor

642 Hasan and Saleh

(kNN), decision tree) and ensemble classifiers (bagging, boosting, stacking, and voting) in SDP
using 11 defective datasets. programs and also 11 performance measures, and the results of
their proposed method showed that boosting is the best prediction method, and among the
individual classifiers, the decision tree ranked first with a score of 0.0410, and they stressed the
need to take into account performance measures to achieve the best predictive performance, so
that they are implemented before selecting the model or Process classifier (Balogun ,2018).

In 2019, REN and LIU presented a predictive study using the self-data mining method to
predict software defects in classification and ranking. They proved that software metrics and
software defects are causally related. During the model training phase, when predicting the
ranking, the errors of defect-free units are replaced with a negative value, and the errors of
defective units remain unchanged. While the true values of defective units are replaced with a
positive value >1.5, the false values of defect-free units are replaced with a negative value
during classification prediction. Using the NASA, Promise, and Softlab datasets, the self-data
mining approach is a very practical and effective method for predicting software defects (REN
and LIU, 2019).

In 2020, Umair Ali and others presented a classification framework for prediction using
ensemble learning and feature selection techniques to achieve high performance, where variable
that causes low performance is eliminated. They proposed framework works using four data
sets from MDP repository, the results of proposed framework showed that this framework
outperforms ten basic classifiers that are subject to supervision, including the algorithms “Naive
Bayes (NB), Multi-Layer Perceptron (MLP), Radial Basis Function (RBF), Support Vector
Machine (SVM), K Nearest Neighbor (KNN), k-Star (K*), One Rule (OneR), PART, Decision
Tree (DT), and Random Forest (RF).” The performance was evaluated using three Performance
metrics including F-measure, Accuracy, and MCC (Ali,2020). In the same year, Muhammad
Amimul Thsan Aqgeel and Wan Hussein Wan Ishaq conducted a study on Ensemble,
classification and clustering techniques to improve the quality and efficiency of software defect
prediction. Their study was conducted using 13 data sets from the NASA MDP repository, and
the prediction performance was evaluated using 3 metrics including (Accuracy, F-measure,
MAE). Where ensemble learning models were used (RF, ET, XgBoost, LGBM, STC), As for
supervised models (PAC, QDA, GNB) and regarding unsupervised learning models (KNN,
GMM, K-mean) The results were decisive for the high-accuracy prediction of ensemble
learning techniques, with STC outperforming all algorithms on all three metrics. QDA achieved
high performance, while for the unsupervised learning algorithms, the KNN and GMM

algorithms excelled for the three performance measures (Mohammad Amimul Thsan,2020).

Kufa Journal of Engineering, Vol. 16, No. 3, July 2025 643

In 2021, Yaqub Kayode Sahid et al presented a model to eliminate what previous studies had
struggled with in terms of prediction accuracy and performance metrics. Considering that most
previous studies relied on accuracy to measure SDP which was insufficient, they presented their
approach that uses six ensemble learning models (Cat Boost, Light Gradient Boosting Machine
(LGBM), Extreme Gradient Boosting (XgBoost), Cat Boost, Logistic Regression, LGBM
Boosting, XgBoost Boosting) was trained on three NASA data sets and its performance was
evaluated using performance metrics (accuracy, area under the curve (AUC), accuracy, recall,
F-measure and Matthew Correlation Coefficient (MCC). The results showed the superiority of
the Cat Boost system in terms of reducing training time and excessive setup. The model was
compared with the basic logistic regression model for six sets of data, and the result was high
performance of the proposed ensemble t model (Saheed et al,2021).

In 2023, R. Mamatha and others emphasized importance of using machine learning for
predicting software defects, they applied promise warehouse data sets for this task. The model
integrating Naive Bayes and Boosting techniques to form a model whose predictions are strong
and more reliable. The data was improved with accuracy and high performance, as these
combined models allowed for the elimination and removal of excess structure, bias, and also
variance. In general, the integration of algorithms showed the strengths and weaknesses of each
classifier separately (R. Mamatha et al,2023). In the same year, Junyi Xin et al, By creating
initial models, a processing process is carried out on the images, after which models of
proposed approach based on ensemble learning are implemented to detect defects in images.
The convolutional neural network models ((off-the-shelf CNN, bagged CNN, and boosted
CNN) are also compared. The results of the proposed approach showed high performance of
the bagged CNN network, with training and testing accuracy reaching (96.1% and 95.1%),
respectively (Xin, J. et al,2023).

Also in the same year 2023, Sagheer Abbas and others also presented an intelligent system for
predicting software anomalies (defective modules) present within software. The system is based
on feature selection and clustering machine learning techniques. This approach was evaluated
and trained on five datasets from NASA. This system consists of three stages for better
forecasting. In the first stage, the applied decision tree is combined with support vector
machines and naive Bayes. In the second stage, predictions of the techniques (mobilization,
voting, and stacking) are combined. The final stage is applied to fuzzy logic to improve
predictive accuracy. The results of the proposed system showed a predictive accuracy of up to
(92.08%), and this result demonstrates the superiority of the system’s performance over many

other advanced techniques (Sagheer Abbas,2023).

644 Hasan and Saleh

In 2024, Misbah Ali et al presented a two-stage approach in which four supervised algorithms
are used. In the second stage, individual algorithms and classifiers are combined to improve
predictive capabilities. They relied on using NASA data from the MDP repository. Seven
datasets were used to implement and train the two stages. Iterative parameter optimization was
performed in the first stage to increase and improve the performance accuracy. In the second
stage, the base classifiers are combined to make final high-accuracy predictions from these
individual classifiers (Random Forest). , Support Vector Machine, Naive Bayes, and Artificial
Neural Network) The authors confirmed the superiority of the proposed approach voting
ensemble-based software Defect prediction (VESDP) model based on twenty modern

technologies (Misbah Ali et al,2024).

3. METHODOLOGY

This part present the methodology, where the method used ensemble learning to predict
software anomalies is described. The motivation behind its use is that it improves the
generalization ability of software defect prediction algorithms, and that the application of
ensemble learning algorithms has achieved achievements. For published literature. The RF and

DT algorithms were applied as individual basic classifiers in the proposed model.

3.1. Data Set

The PROMISE repository provided datasets for this study, including other software modules.
The datasets were pre-processed by cleaning and normalizing the raw data to ensure
compatibility with the models. For instance, Halstead complexity, code size, and McCabe
cyclomatic complexity metrics were computed for each software module. The processed dataset
was divided into 80% training data and 20% test data.

The input process involves mapping these computed metrics into the model's input structure.
Specifically, features such as code complexity metrics were scaled to ensure balanced input
ranges. If the software predicts defects, the program first extracts these features, organizes them
in structured datasets, and then feeds them into the prediction model. This ensures the seamless
integration of data collection and input into the prediction workflow.

Table 1. SOFTLAB Dataset.

Dataset Instances Attributes Minority Majority

arl 122 30 9 113
ar3 64 30 8 56
ar4 108 30 20 88
ar5 37 30 8 29

ar6 101 30 15 87

Kufa Journal of Engineering, Vol. 16, No. 3, July 2025 645

Table 2. SOFTLAB Dataset Attribute

NO. Attribute
1 total loc numeric
2 blank loc numeric
3 comment loc numeric
4 code and comment loc numeric
5 executable loc numeric
6 unique_operands numeric
7 unique_operators numeric
8 total operands numeric
9 total operators numeric
10 halstead vocabulary numeric
11 halstead length numeric
12 halstead volume numeric
13 halstead level numeric
14 halstead difficulty numeric
15 halstead effort numeric
16 halstead error numeric
17 halstead time numeric
18 branch count numeric
19 decision_count numeric
20 call pairs numeric
21 condition count numeric
22 multiple condition count numeric
23 cyclomatic_complexity numeric
24 cyclomatic_density numeric
25 decision_density numeric
26 design_complexity numeric
27 design_density numeric
28 normalized cyclomatic_complexity numeric
29 formal parameters numeric
30 defects {clean,buggy}

3.2. Data pre-processing

After selected training dataset, pre-processing of this data is performed, which includes four
sub-activities that improves the performance of proposed model: 1) dataset partitioning, 2)
cleaning, 3) normalization, and 4) oversampling.

The first sub-activity as mentioned previously of the pre-processing phase is process of
partitioning data set. The training and testing datasets are divided into two groups in this step,

80% and 20%.

Cleaning, the second sub-activity is essential for the robustness of the model. Cleaning removes
inconsistent, incorrect, or unnecessary data points to ensure and enhance the accuracy of
anomaly detection and prediction models (Sivalingan H, 2024). By reducing noise, addressing
missing values, checking consistency, and correcting errors within the dataset, this stage

improves the quality and integrity of the data and produces better predictions by replacing

646 Hasan and Saleh

missing values in the dataset and using a statistical technique (mean) that allows gaps to be
filled with appropriate values in the data being used.
Normalization is a sub-activity of the third pre-processing step. Normalization is a commonly
used technique to balance feature scales between (0 and 1) to measure and standardize the
attributes of the input dataset. Normalization helps the machine learning model become more
stable and efficient while also facilitating convergence (Sivalingan H, 2024). By preventing
large-scale attributes from unduly affecting the model, it helps in achieving a neutral and
balanced learning process as a result. In addition, normalization helps ensure that the model
works consistently by managing differences in the data distribution (Mesbah Ali et al., 2024).
Logarithmic transformation, a technique that uses logarithmic transformation to transform data
by applying a logarithm to each value, was used to reduce the effect of outliers and disparities
between large and small numbers and improve the distribution by making the distribution close
to the normal distribution of values, as (log) helps address the problem of dealing with zero
values by adding one to each value before taking the logarithm (Dina Saeed et al., 2011)
log(1+X)

X' =log(1+X) (D
represents: X the original value in the dataset and X' represents the transformed value This type
of transformation was used because the data used contains zero values.
Oversampling is a sub-activity of the four pre-processing steps to solve the problem of class
imbalance when training models on imbalanced data. The oversampling technique solves the
imbalance problem by increasing the defective or abnormal minority class. Thus, a balance is
achieved between the two classes, the normal majority class and the abnormal or defective

minority class (Thanh, 2020;Shu Feng et al., 2021; and Jiao Chen et al., 2021).

3.3. MODELS

The motivation behind using ensemble learning is achieve most accurate in machine learning
where multiple models (often called "base learners" or "weak learners") are combined to create
a more robust and accurate predictive model. The main idea is that by aggregating the
predictions from multiple models, the ensemble can achieve better performance than any single
model could on its own. There are several common methods for creating ensembles, including
bagging, boosting, and stacking. Typically, there are two processes involved in creating an
ensemble of classifiers: 1. combining the classifier predictions; 2. Training several base
classifiers (Jun-hai Zhai et al,2012). From this angle, ensemble learning can be combined a

wide range of machine learning models to perform a wide range of tasks, including model

Kufa Journal of Engineering, Vol. 16, No. 3, July 2025 647

clustering and classification tasks (Xibin DONG et al,2020). In this paper table 3 shows the
selection of hyper-parameters for ensemble learning models

Table 3. hyper-parameters for the proposed models

Models Parameters of SOFTLAB data
estimator=RF
n_estimator=500
random_state=42
max_feature=5
tarin_size=80
test size=20
Estimators= Extrees,Catboost,GB
Voting classifier tarin_size=80
test_size=20
estimators=RF,SVM
final estimator=GB
n_estimator=700
learn_rate=0.3
tarin_size=80
test_size=20
n_estimator=300
random_state=42
Adaboost learn_rate=0.3

tarin_size=80

test size=20

Bagging classifier

Stacking classifier

Xgboost

Parameters directly affect the prediction accuracy, as they determine how well the model learns
from the data and how complex it is. For example, increasing the number of classifiers
(n_estimators) usually improves performance, but only up to a point, after which it may lead to
longer training times without significant improvement. Learning rate (learning_rate) balances
learning speed and accuracy; smaller values give more accurate results .

3.3.1. Diction Tree

A popular data mining technique for creating multi-covariate classification systems or creating
prediction algorithms for a target variable is decision tree approach. By using this strategy, a
population is divided into segments that resemble branches, creating an inverted tree with leaf,
internal, and root nodes. Being non-parametric, the technique may effectively handle sizable,
complex datasets without requiring a convoluted parametric structure. (Yan-yan SONG,2015)
The research data can be separated into training and validation datasets once the sample size is
sufficiently big. constructing a decision tree model using the training dataset and determining
the right tree size required to produce the best possible final model using the validation dataset.

Fig 1. shows the DT structure.

648

Hasan and Saleh

Decision Node

T v

Sub- |
Tree |

v

Decision Node

A

. Leaf Node Leaf Mode

v

Decision Node

v

Leaf Node

v

Leaf Node

1

Leaf Node

Fig. 1. Decision Tree algorithm

3.3.2. Random Forest algorithm

It is a popular supervised ensemble learning method that may be applied to regression or
classification tasks. The technique computes the average results from all the decision trees in
the group, which is made up of several independent groups of decision trees, and displays the
average results as the final output. Because it is a grouping strategy and has unpredictability,
which lowers the variance of the model, it performs better than individual models. The random

forest approach is displayed in Fig 2 because of its simplicity and accuracy of results (Xin-She

Yang,2019)and(Sebastian Raschka,2017).

Tree 1
[15] | a2
(as

| ag

ag |

g

Tree 2

by by |

Tree k

by ¢ k3

Fig. 2. Random Forest Algorithm
3.3.3. Bagging classifier
An ensemble technique is commonly referred to as Bootstrap Aggregation. Bootstrap
Aggregating Ensemble Learning Bagging belongs to the category of group learning. It chooses
a random subset of the whole set of data. By randomly selecting a portion of original training
data and training a collection of decision trees, this method creates distinct models for each tree
that are finished before training. The way it operates is to gather predictions from the trees and
then determine a final forecast by voting for the majority of those who have similar expectations
or by calculating the average of these choices (Burkov, Andriy,2019).
3.3.4. Voting classifier

Many classifiers continuously generate predictions and test result data in maximum voting

method. By examining who received the most votes—more than half—the final prediction is

Kufa Journal of Engineering, Vol. 16, No. 3, July 2025 649

ascertained. This approach can be made more accurate by combining different classifiers
(Q. Song et al,2010). The following is how the maximum voting classifier operates with
Maximum:

1- Apply RF and ET classifiers to the training set.

2- Keep track of both classes' performances and create a comparison.

3.3.5. Stacking classifier

As one of the clustering techniques in machine learning, stacking has shown benefits in the
competitive world (Mohammad Amimul Thsan,2020). The basic idea behind this technique is
to train a Meta classifier to help integrate the predictions of multiple learners using confidence
scores as features in different model ensembles. Three classifiers were used in the study:
Adaboot, decision tree, and Random Forest Classifiers. These classifiers use to test and train
different types of slots.

3.3.6. Xgboost

One tool that is part of the distributed machine learning community (DMLC) is called xgboost,
and it is well-known for its faster and more efficient gradient boosted decision tree performance.
In order to deploy it in computer environments, eXtreme, also known as XGBoost, is utilized
to help exploit all available hardware and memory resources, tweaking the model and
improving the algorithm (Y PENG et al ,2011). XGBoost offers three different methods for
gradient boosting: random, regular, and gradient boosting. It is also highly efficient in adding
and changing regulation parameters, maximizing memory usage, and cutting down on the
amount of time spent on computational tasks. Additionally, XGBoost can handle missing values
and enable parallel structures when data is fed to the trained model.

3.3.7. Adaboosting

It is one of the ensemble learning techniques for supervised machine learning that is used to
address classification and regression issues. Weight adjustments are used to train weak models
into strong models. Specifically, models with bad performance are assigned larger weights than
models with good performance. Basic models are trained on the data after the weights of the
training samples are changed, which enhances the models' ability to produce accurate results.
Models are trained in a sequential fashion, with the first model being trained first, and its
expectations being utilized to teach the subsequent model. The procedure is repeated until the
final model is reached and a final forecast is obtained (Xibin DONG et al,2020) The operation
of Adaboosting is shown in Fig 3.

650 Hasan and Saleh

Original Re-weighting Re-weighting
training [——{ fraining training
dataset dataset dataset
Classifier Classifier Classifier
Test dataset * l * *
Final result

Fig. 3. Adaboosting the framework

3.4. Evaluation Criteria

They are measures used to measure performance of predictive models used in the following
will mention the measures used to measure performance of proposed method:

The performance of ensemble machine learning models is evaluated using benchmarks. These
metrics are the traditional quality standards used to evaluate the effectiveness of predictive
models and used to measure the performance of our proposed method. Their definitions are
given below:

1- 1- Accuracy is the percentage of total cases that the classifier correctly predicts, shown in
equation (1) (Ernest Kwame Ampomah et al ,2020).

_ — tp+tn
2- accuracy Py (1)

3- Precision is the percentage of positively predicted cases out of all positively predicted

instances that the classifier correctly anticipated it is shown in equation (2)

. . _tp
precision = P 2)

4- Recall: the percentage of positively correlated cases out of all positively correlated instances

that the classifier correctly predicted it is shown in equation (3)

_
recall = P (3)

5- The F1- score shows the harmonic mean of recall and precision it is shown in equation (4).
4

where fp stands for false positive, tn for true negative, tp for true positive, and fn for false

2x precisionxrecall

F1 — score = —
precision+recall

negative.

4. RESULTS AND DISCUSSION

This section discusses the results that emerged when applying the proposed ensemble learning
classifiers or models to predict bugs and software defects using 5 SOFTLAB datasets (arl, ar3,
ard, ar5, ar6) after the processing operations mentioned in the previous section were completed

by removing the columns that It contains the values, applies normalization to the data, and then

Kufa Journal of Engineering, Vol. 16, No. 3, July 2025 651

performs processing to balance the data through the oversampling process for the purpose of
increasing performance accuracy. After that, the balanced data is divided into 20% for testing
and 80% for training. . Then the ensemble model classifiers and base classifiers were applied,
after which the predictive performance was evaluated through four performance metrics
(accuracy, precision, recall, F1 score). The results showed high accuracy 99.2% in some data
sets using the classifiers mentioned using different performance measures, including in Table4,
when the five data set was used, and accuracy performance measure was applied to it using the
Ensemble algorithms and the basic classifiers DT and RF, When implementing the (arl) data
set The results showed high accuracy ranging between 91.18 and 98.53, with Adaboost
achieving 98.53, while(bagging and stacking) achieved an accuracy of 91, while (voting and
xgboost) achieved an accuracy of 92. When implementing the ar3 data set, the accuracy ranged
between (90 and 99), with voting achieving 99.3%, while (bagging and stacking) had lower
accuracy, reaching 90.91%, while the accuracy of both (adaboost and xgboost) reached 95%,
as shown in Table 5. When implementing the (ar4) data set, the results were not high compared
to the rest of the other groups, as the accuracy ranged between (84 and 92). When implementing
the various algorithms, the accuracy of Adaboost was the lowest, as it achieved 84%, while
xgboost achieved 92%. As for (bagging, stacking, and voting), the accuracy was 90 % . The
results showed the highest accuracy when implemented on the data set (ar5), as the accuracy
reached 99.2% for the classifiers (adaboosting, stacking), while the results for the classifiers
(Vote and xgboosting) were 95.56%, while the filling classifier was the lowest, achieving

91.11% as shown in Table 7.

Table 4 outputs of arl dataset

Evaluation Algorithms
Criteria stacking Voting adaboost Xgboost Bagging
Accuracy 91.18% 92.65% 98.53% 92.65% 91.18%
Precision 91.84% 92.70% 98.58% 92.67% 91.84%
Recall 91.18% 92.65% 98.53% 92.68% 91.18%
Fl-score 91.19% 92.66% 98.53% 92.64% 91.19%

Table 5 outputs of ar3 dataset

Evaluation Algorithms
Criteria Stacking Voting Adaboost Xgboost Bagging
Accuracy 90.91% 99.3% 95.45% 95.45% 90.91%
Precision 92.42% 99.3% 95.87% 95.87% 92.42%
Recall 90.91% 99.3% 95.45% 95.45% 90.91%
Fl-score 90.91% 99.3% 95.46% 95.46% 90.91%

652 Hasan and Saleh

Table 6 outputs of ar4 dataset

Evaluation Algorithms
Criteria stacking Voting Adaboost Xgboost bagging
Accuracy 90.57% 90.57% 84.91% 92.45% 90.57%
Precision 91.11% 91.11% 85.13% 93.46% 91.11%
Recall 90.57% 90.57% 84.91% 92.45% 90.57%
F1-score 90.55% 90.55% 84.89% 92.42% 90.55%

Table 7 outputs of ar5 dataset

Evaluation Algorithms
Criteria Stacking Voting Adaboost Xgboost bagging
Accuracy 99.2% 95.56% 99.2% 95.56% 91.11%
Precision 99.2% 95.56% 99.2% 95.56% 91.42%
Recall 99.2% 95.56% 99.2% 95.56% 91.11%
F1-score 99.2% 95.56% 99.2% 95.56% 91.08%

Table 8 outputs of ar6 dataset

Evaluation Algorithms
Criteria stacking Voting adaboost Xgboost bagging
Accuracy 97.78% 97.78% 97.78% 97.78% 88.89%
Precision 97.87% 97.87% 97.87% 97.87% 89.56%
Recall 97.78% 97.78% 97.78% 97.78% 88.89%
F1-score 97.78% 97.78% 97.78% 97.78% 88.89%

The proposed model using ensemble learning clearly outperforms previous studies in anomaly
prediction, as it benefits from combining the strengths of a set of base models to achieve higher
accuracy and better generalization ability. As Table 9 shows, the improvement in the
performance of the proposed model is manifested in better accuracy and balance rates compared
to traditional models, which enhances its reliability and effectiveness in detecting abnormal
patterns.

The table above shows the superiority of the proposed model using ensemble learning in

anomaly prediction over other traditional methods and techniques .

5. CONCLUSION

Recently, there has been an increasing need to develop complex, high-quality software systems,
and to improve the quality of software before delivering it to users, prediction of software
defects or anomalies must be used. In this research paper, ensemble learning models (bagging,
stacking, voting, Adaboost, Xgboost) were used for the prediction process. The method was to
use the Softlab data set, and after the data processing process was completed, including data
balancing and the data oversampling process, then the data was divided into training data and
test data of 80% and 20%, and to evaluate the prediction performance. Four performance
measures were used (accuracy,precision,recall,F1-score) where the results of the method

showed the superiority of the ensemble model (stacking ,adaboost, voting) as it obtained a

Kufa Journal of Engineering, Vol. 16, No. 3, July 2025

653

prediction accuracy of to (99.2%) compared to the previous studies shown in the table and it

had the best predictive performance.

In future work, the work can be applied to more than one data set. Deep learning models can

also be combined with the ensemble model.

100.00% W stacking 100.00% M stacking
96.00% m Voting 96.00% H Voting
92.00% m adaboost 92.00% W adaboost
88.00% u Xghoost 88.00% B Xgboost
84.00% 9 i

’ > ¢ = o W Bagging 84.00% - c — v M bagging
T 2 § 8 g 2 0§ 8
s g = = 3 S o« ¢
< & o g & 5
(arl) (ar3)

96.00% H stacking 100.00% | Stacking

92.00% W Voting 96.00% W Voting

88.00% = Adaboost 92.00% = Adaboost

[| H Xgboost

84.00% ngOOSt 88.00% Bhoos

M bagging M bagging
80.00% - c - o 84.00%
8 ¢ B8 5 g 5 ® ¢
= 2 9] [s] © 5 O o
2§ = 2 5 8 & @
< & & g g o
o
(ard) (ar5)
100.00% W stacking
96.00% H Voting
92.00% ™ adaboost
W Xgboost
88.00%
M bagging
84.00%
oz s 3 ¢
S @ o 8
S 5 & 3
< & o
(ar6)

Fig. 4. shows the results of the dataset (arl,ar3,ar4,ar5,ar6) when implementing
the proposed approach using ensemble learning.

654 Hasan and Saleh

Table 9 Comparison of The Performance of The Proposed Model
With Other Techniques of Previous Studies

(Ren And (Elife Ozturk et

dataset Ezilil:::;:n Proposed Model Ensemble learning Liu,2019) al,2021)
Adaboost Xgboost bagging stacking Voteing SODM KNN MVKNN

Accuracy 98.53% 92.65% 91.18% 91.18% 92.65% 0.975 - -
arl Precision 98.58% 92.67% 91.84% 91.84% 92.70% 0.214 0.86 0.86
Recall 98.53% 92.68% 91.18% 91.18% 92.65% 0.67 0.93 0.93
F1-Score 98.53% 92.64% 91.19% 91.19% 92.66% 0.324 0.89 0.89

Accuracy 95.45% 95.45% 90.91% 90.91% 99.3% - - -
a3 Precision 95.87% 95.87% 92.42% 92.42% 99.3% - 0.89 0.89
Recall 95.45% 95.45% 90.91% 90.91% 99.3% - 0.90 0.90
F1-Score 95.46% 95.46% 90.91% 90.91% 99.3% - 0.89 0.89

Accuracy 84.91% 92.45% 90.57% 90.57% 90.57% 0.84 - -
ard Precision 85.13% 93.46% 91.11% 91.11% 91.11% 0.548 0.82 0.85
Recall 84.91% 92.45% 90.57% 90.57% 90.57% 0.85 0.84 0.86
F1-Score 84.89% 92.42% 90.55% 90.55% 90.55% 0.667 0.83 0.85

Accuracy 99.2% 95.56% 91.11% 99.2% 95.56% 0.914 - -
5 Precision 99.2% 95.56% 91.42% 99.2% 95.56% 0.778 0.76 0.85
ar Recall 99.2% 95.56% 91.11% 99.2% 95.56% 0.875 0.80 0.83
F1-Score 99.2% 95.56% 91.08% 99.2% 95.56% 0.824 0.78 0.84

Accuracy 97.78% 97.78% 88.89% 97.78% 97.78% 0.842 - -
ar6 Precision 97.87% 97.87% 89.56% 97.87% 97.87% 0.478 0.85 0.85
Recall 97.78% 97.78% 88.89% 97.78% 97.78% 0.733 0.79 0.79
F1-Score 97.78% 97.78% 88.89% 97.87% 97.87% 0.579 0.73 0.73

6. REFERENCES
Abbas, S. et al ,(2023), “Data and Ensemble Machine Learning Fusion Based Intelligent
Software Defect Prediction System”, http://dx.doi.org/10.32604/cmc.2023.037933

Abdou, A. S, and Darwish , N. R, (2018),“Early Prediction of Software Defect using Ensemble
Learning: A Comparative Study”, International Journal of Computer Applications (0975 —
8887) Volume 179 — No.46.

AL-FRAIHAT, D. et al, (2024), “Hyperparameter Optimization for Software Bug Prediction
Using Ensemble Learning”, Digital Object Identifier 10.1109/ACCESS.2024.3380024

Ali, U. et al, “Software Defect Prediction Using Variant based Ensemble Learning and Feature
Selection Techniques”, Published Online October (2020) in MECS (http://www.mecs-
press.org/) DOI: 10.5815/ijmecs.2020.05.03

Balogun, A. et al , (2018), “Software Defect Prediction Using Ensemble Learning: An ANP
Based Evaluation Method”, http://dx.doi.org/10.46792/fuoyejet.v3i2.200

Balogun, A.. et al, (2020), “SMOTE-Based Homogeneous Ensemble Methods for Software
Defect Prediction”, O. Gervasi et al. (Eds.): ICCSA 2020, LNCS 12254, pp. 615-631.
https://doi.org/10.1007/978-3-030-58817-5_45

Burkov, Andriy. (2019). “The hundred-page machine learning” book. Vol. 1. Quebec City, QC,
Canada: Andriy Burkov, https://doi.org/10.1080/15228053.2020.1766224

Kufa Journal of Engineering, Vol. 16, No. 3, July 2025 655

Elife Ozturk et al, (2021), “Multi-view learning for software defect prediction” , e-Informatica

Software Engineering Journal , Volume 15, Issue 1.

Ernest Kwame Ampomah et al , (2020),“Evaluation of Tree-Based Ensemble Machine
Learning Models in Predicting Stock Price Direction of Movement”,

http://dx.doi.org/10.3390/info11060332

Hersh A. Mohammed et al, (2020), “A COMPARATIVE EVALUATION OF DEEP
LEARNING METHODS IN DIGITAL IMAGE CLASSIFICATION” , Kufa Journal of
Engineering Vol. 13, No. 4, October 2022, P.P. 53-69

Huda, S. et al , (2021),“An ensemble oversampling model for class imbalance problem in

software defect prediction”, Citation information: DOI 10.1109/ACCESS.2018.2817572

Jiayao Chen et al, (2021),“Machine learning-based classification of rock discontinuity trace:
SMOTE oversampling integrated with GBT ensemble learning”,
https://doi.org/10.1016/j.ijmst.2021.08.004

Jun-hai Zhai et al, (2012) ,“Dynamic ensemble extreme learning machine based on sample

entropy”, Soft Comput 16:1493-1502,

Khuat, T. T. and Le , M. , (2019), “Ensemble learning for software fault prediction problem
with imbalanced data”, Vol. 9, No. 4, pp. 3241~3246 ISSN: 2088-8708, DOI:
10.11591/ijece.v9i14.pp3241-3246

Matloob, F. et al , (2019),“A Framework for Software Defect Prediction Using Feature
Selection and Ensemble Learning Techniques”, Published Online December 2019 in MECS
(http://www.mecs-press.org/) DOI: 10.5815/ijmecs 12.02.

MISBAH ALl et al , (2024),“Software Defect Prediction Using an Intelligent Ensemble-Based
Model”, VOLUME 12, https://creativecommons.org/licenses/by-nc-nd/4.0/

Mohammad Amimul Thsan Aquil, Wan Hussain Wan Ishak, (2020), “Predicting Software
Defects using Machine Learning Techniques”,

https://doi.org/10.30534/ijatcse/2020/352942020

Monni, C. , and Pezze', M. , (2019), “Energy-Based Anomaly Detection A New Perspective
for Predicting Software Failures”, http://dx.doi.org/10.13140/RG.2.2.29124.88967

Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu. (2010),A general software defect-proneness

prediction framework. IEEE transactions on software engineering, 37(3), 356-370 ,

656 Hasan and Saleh

R. Mamatha et al, (2023),“Enhanced Software Defect Prediction Through Homogeneous
Ensemble Models .”

REN AND LIU, (2019), “Predicting Software Defects Using Self-Organizing Data Mining” ,
Digital Object Identifier 10.1109/ACCESS.2019.2927489.

Sagheer Abbas et al, (2023), “Bata and Ensemble Machine Learning Fusion Based Intelligent
Software Defect Prediction System”, http://dx.doi.org/10.32604/cmc.2023.037933

Saheed , Y. K. et al, (2021),“An Ensemble Learning Approach for Software Defect Prediction
in Developing Quality Software Product”,
https://www.researchgate.net/publication/355490443 An_Ensemble Learning Approach for
_Software Defect Prediction_in Developing Quality Software Product?enrichld=rgreq-
732adb78ecal5ef05a16767f19755563-
XXX&enrichSource=Y292ZXJQYWdIOzZMINTQ5SMDQOMztBUzoxMTAOMDg4MjMwM
DQzNjQ4QDE2NDAyNDY INTUwWMDc%3Dé&el=1 x 2& esc=publicationCoverPdf

Sebastian Raschka, (2017) ,“Machine Learning and Deep Learning with Python, scikit-learn,
and TensorFlow”,[book], Copyright © Packt Publishing

Sharm, T. et al, (2023),“Ensemble Machine Learning Paradigms in Software Defect
Prediction”, Available online at www.sciencedirect.com Procedia Computer Science 218 199—

209

Shi,T., Zou, Z. and Ai, J., (2023),“Software Operation Anomalies Diagnosis Method Based
on a Multiple Time Windows Mixed Model”, Appl. Sci. 13, 11349.
https://doi.org/10.3390/app132011349

Shuo Feng, et al. (2021),“Investigation on the stability of SMOTE-based oversampling
techniques in software defect prediction”. https://doi.org/10.1016/].infs0f.2021.106662

Sivalingan H , (2024),“Cloud-Smart Surveillance: Enhancing Anomaly Detection In Video
Streams With DfConvlstm-Based Vae-Ga" , Kufa Journal of Engineering Vol. 15, No. 4,
October 2024, P.P. 125-140.

Xibin DONG et al , (2020),“A survey on ensemble learning”, Front. Comput. Sci., 14(2): 241—
258 https://doi.org/10.1007/s11704-019-8208-z

Xin, J. et al, (2023),“Ensemble learning based defect detection of laser sintering”,

https://doi.org/10.1049/0te2.12108

Kufa Journal of Engineering, Vol. 16, No. 3, July 2025 657

Xin-She Yang, (2019),“Introduction to Algorithms for Data Mining and Machine Learning”

[book], https://www.elsevier.com/books-and-journals

Yan-yan SONGand Ying LU, (2015),“Decision tree methods: applications for classification
and prediction”, Shanghai Archives of Psychiatry, Vol. 27, No. 2
http://dx.doi.org/10.11919/j.issn.1002-0829.215044

YIPENG et al, (2011) ,“ENSEMBLE OF SOFTWARE DEFECT PREDICTORS: AN AHP-
BASED EVALUATION METHOD”, International Journal of Information Technology &
Decision Making Vol. 10, No. 1 187-206 .

Zhao, Z. , (2017), “Ensemble Methods for Anomaly Detection”, Dissertations - ALL. 817.
https://surface.syr.edu/etd/817

