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ABSTRACT  

Land cover is essential for accurately observing land-use changes and assessing soil erosion 

risks. The study area between the Wasit, Misan, and Thi-Qar governorates is an ecological zone 

suffering from human-made soil erosion as crop cultivation, livestock grazing, etc. This 

research aims to analyze vegetation dynamics and evaluate soil cover utilizing Normalized 

Difference Vegetation Index (NDVI) data from 2013 and 2018-2021 during summer and 

winter, leveraging Landsat-8, Operational Land Imager (OLI) and a Thermal Infrared Sensor 

(TIRS), and QGIS. Warmer months exhibited a decrease in water bodies and vegetative cover 

compared to colder months. The changes from 2013 to 2021 were about 17%, distributionally 

as a 21% reduction in winter and 3.5% in summer. NDVI values and C-factor of RUSLE were 

calculated to estimate soil erosion, where Slight erosion occurrences exceeding 70%, while 

moderate and higher levels are found near Lake Shewicha and temporary water bodies. High to 

extremely high erosion types concentrated in tributaries of the Tigris River. Soil erosion 

increased between 2013 and 2021 by 4.2 and 18 Km2, respectively. The erosion soil for 2013 

increased in November compared to April, except for slight to moderate and very high erosion, 

which decreased by 2%. In 2021, erosion decreased in December compared to April for all 

types, except for slight erosion increased by about 6%. The findings aim to help urban planners 

and land-use managers promote sustainable land management and soil conservation. 
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1. INTRODUCTION 

As urbanization accelerates globally, effective land management strategies are crucial for 

addressing environmental challenges, particularly in rapidly developing regions (Morgan, 

2005);(Salih & Dhiaa, 2023) like Iraq. Land use refers to how humans utilize specific areas for 

crop cultivation, livestock grazing, etc. In contrast, land cover describes the natural or human-

made elements, such as vegetation, on the land surface. It is greatly affected by drought, floods, 

burning, etc. (Durigon et al., 2014). To protect the soil from various climatic factors such as 

scarcity of water, cropping, livestock husbandry, urbanization, and agriculture are an insulating 

layer of the land cover (Al-Bahrani et al., 2021). Previous research has demonstrated that 

vegetation cover significantly reduces soil erosion by enhancing infiltration and minimizing 

surface runoff (Adekalu et al., 2006). Therefore, creating accurate maps of land cover is 

essential for effective management. Land cover maps are a tool for combating disasters, 

updating conservation strategies, addressing environmental disturbances, and combating 

erosion. Different vegetation types and human activities protect or expose the soil to erosive 

forces. If not managed sustainably, agricultural practices can lead to increased vulnerability and 

loss of topsoil. Additionally, urbanization often exacerbates erosion due to the removal of 

vegetation and the increase in impervious surfaces, which can cause higher runoff and sediment 

displacement. 

So, the soil erosion models included the effect of vegetation cover and the land. The equation 

of soil erosion (USLE) and its revised equation (RUSLE) (Wischmeier & Smith, 1978; Renard 

et al., 1997);(Cheng et al., 2024) is considered one of the most famous equations for estimating 

soil erosion. It is expressed in terms of cover management and is symbolized by (C-factor). It 

is a link between soil erosion in areas with cover of vegetation and areas with tilled soils or 

soils that are permanently bare during cropping periods. To provide information on cover 

management, field surveys are used. Recently, new technologies have been relied upon to 

provide essential cover management, like remote sensing (Meusburger et al., 2010). This tool 

is essential for collecting surface data that facilitates vegetation mapping, is low-cost, fast, and 

accurate in analyzing data, and requires less equipment than on-site surveying. In addition, the 

data from remote sensing can be employed with GIS to facilitate the identification and 

assessment of soil erosion. 

Identifying any changes in vegetation cover is a necessary step in understanding the system on 

Earth. There are several ways to identify changes in vegetation cover, where they are located, 

and how to measure them, such as the percentage of images, the difference in images, and 

others. Knowing the extent of vegetation growth through vegetation cover indices is one of the 
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most widely used (Richards, 2022), which depends on measuring specific types of radiation. 

(VIs) are calculated from the equation that primarily depends on the electromagnetic spectrum 

regions, which the near-infrared (NIR) and red (Tucker, 1979);(Nourizadeh et al., 2023). 

Biophysical data indicated spatial and temporal changes (Im et al., 2012). The soils with the 

highest electromagnetic radiation ratios are areas with sparse vegetation. As for the most 

negligible radiation, the soils with dense vegetation cover contribute to reducing radiation 

(Durigon et al., 2014). the vegetation cover evaluates the relationship between the vegetation 

and the erosion of the soil (Zhongming et al., 2010). It also depends on the location and density 

of trees and the density of branches and leaves 

(Ichii, Kawabata and Yamaguchi, 2002) established climate parameters linked to the universal 

(NDVI). They demonstrated that temperature significantly affects biological activity, especially 

at high to mid-latitudes in the northern hemisphere, as temperature varies greatly between years. 

(Wang et al., 2003) indicated that vegetation production and, thus, NDVI are directly affected 

by rainfall. The relationship can be predicted by analyzing the appropriate spatial pattern. The 

factors that result the differences in the cover land and NDVIs are climate, relief, hydrology, 

and land use (Yun-hao et al., 2001);(Cheng et al., 2024). 

NDVI measures vegetation activity, separating green vegetation from other surfaces, as 

chlorophyll needs red light for photosynthesis and reflecting near-infrared (NIR) wavelengths. 

The NDVI index has become helpful in analyzing satellite images to determine vegetation cover 

differences. Suppose the NDVI function is for two bands, both near-infrared and red spectrum 

(Defries & Townshend, 1994), (Garrigues et al., 2007); (Nourizadeh et al., 2023). The NDVI 

will calculate the vegetation cover for two dates separately. Then, the results of the two dates 

will be subtracted from each other, and the most recent date will be subtracted from the oldest. 

This will produce a layer containing the difference in vegetation cover during that period, which 

will be less affected by topography and lighting (Li et al., 2005), (Lu et al., 2005). This approach 

is called post-classification. This method makes it easy to obtain the variations in the vegetation 

cover in the study, and it also provides a study in which the spectral classifications of the images 

are compared. Draw maps of the type of natural transformation in the two dates (Singh, 

1989);(Al-doski, 2013). 

Despite numerous studies on land use and soil erosion, a notable lack of research focuses on 

the specific effects of climate factors like rainfall on vegetation cover in the Iraq-Iran border 

region. The study intended to assess changes in vegetation cover and analyze their relationship 

with soil erosion in a watershed between Kut and Amara, utilizing NDVI data from 2013 to 

2021. By elucidating the dynamics of vegetation cover and its role in soil erosion, this research 
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aims to inform land management practices and enhance sustainability in the region . 

2. STUDY AREA 

The study area is between three governorates: Wasit, Misan, and Thi Qar, which are in the 

eastern part of Iraq and extend to the Iraqi-Iranian border, as shown in Fig.1, which extends 

from the highlands in Iran to the plains in central Iraq. Approximately seventy-five percent of 

the study area includes flat terrain, showing a mild gradient in the southwestern regions. The 

remaining twenty-five percent is in the northeastern regions and along the Iranian frontier. This 

region is observed by valleys interspersed with low anticlinal folds. The altitudinal difference 

in the study area is from 3 to 250 meters, with a mean elevation of 126.5 meters above the 

average mean sea level (Al-Abadi et al., 2016). It consists of three main basins, namely Lake 

Shuwaija, the Tigris River, and theAL-Teeb River, which were determined based on (DEM). 

Its raised temperatures and aridity describe this geographical area during the summer season, 

cold conditions in the winter, and temperate weather during the spring and autumn. Almost 

90% of the yearly precipitation occurs from November and April, mainly during the winter 

months of December through March. The subsequent six months demonstrate conditions that 

are both dry and exceedingly warm. The region recorded an average annual precipitation of 

about 212 mm/year, considered by a varying distribution of rainfall between the plains and 

mountainous regions; furthermore, through the application of technologies remote sensing, the 

vegetative cover of this area will be quantitatively assessed (Al-Abadi et al., 2016). 

3. DATA SET 

The land use change raster data was sourced from the Landsat 8 satellite, launched on February 

11, 2013, to monitor the Earth. This launch was part of the Landsat Data Continuity Mission 

(LDCM), a partnership between NASA and the U.S. Geological Survey (USGS). Landsat 8 is 

equipped with an Operational Land Imager (OLI) and a Thermal Infrared Sensor (TIRS), 

enabling the study of global warming by monitoring Earth's surface temperature. The data for 

this study, covering the years 2013 and 2018–2021, was obtained from the USGS website 

(https://earthexplorer.usgs.gov). While efforts were made to collect raw raster images for both 

summer and winter over these five years, some images were used due to cloud cover. 

Ultimately, two images per season were downloaded each year, resulting in a total of 20 images 

to cover the study area. 

4. METHOD 

The combination of the (GIS) and Remote Sensing methodologies enhanced the accuracy of 

estimates of the RUSLE model, which was primarily developed by (Kebede et al., 2021) 

(Fenjiro et al., 2020). The RUSLE model was affected by some factors: cover the land (c), soil 
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(K), terrain (LS), rainfall (R), and practice of support (P). This model was utilized to evaluate 

the spatial distribution of soil erosion by the following equation: 

A = R × K × LS × C × P                                                        (1) 

where A represents the mean loss of soil (t /ha*year), R denotes the erosivity of rainfall (MJ 

mm/ ha*h* year), K indicates soil erodibility (t /ha*MJ* mm), LS refers to topographic factor, 

C signifies the vegetation cover, and P corresponds to control practice. 

Fig.1. Location of area study by used google satellite service in QGIS 3.15.28 software 

4.1. THE EROSIVITY OF RAINFALL 

The factor of rainfall erosivity (R) is a key driver of rain-induced erosion. It reflects the impact 

of rainfall and subsequent runoff on the soil surface in a specific geographic area. It is widely 

recognized in the literature as a fundamental factor in soil erosion processes (Abdulkareem et 

al., 2017). This study collected detailed rainfall data from 2003 to 2021 from the Bureau of 

Meteorology. This data was processed using QGIS software version 3.15.28, utilizing the 

kriging method for interpolation. The R-factor was then estimated using the equations below 

and applied to the (RUSLE) model. 

                                                   (2) 

                                      (3) 

mean annual rainfall (p)mm. 

4.2. ERODIBILITY OF THE SOIL 

Soil erodibility, denoted as the K factor, indicates the soil’s long-term response to erosive 

forces, which are influenced by rainfall dynamics and subsequent runoff (Abdulkareem et al., 
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2017). To determine soil type, soil samples were obtained from the field and classified using 

sieve analysis. The K factor was computed using equations (4) and (5), with interpolation 

performed through the kriging method using QGIS 3.15.28 software. 

   (4) 

   (5) 

Here, f represents the primary particle size fraction in percentage, while m denotes the 

arithmetic mean of the particle size boundaries of that fraction. 

4.3. TERRAIN FACTOR 

The terrain factor, represented by the LS factor, explanations the impact of geomorphological 

processes on erosion, incorporating both slope length and steepness (Lü et al., 2012);(Cheng et 

al., 2024). To calculate the LS factor, raster data from a Digital Elevation Model (DEM) created 

from topographic maps was used. The LS factor was computed using QGIS 3.15.28’s raster 

calculator module, applying the following equation: 

     (6) 

where the slope length represents as θ denotes the slope angle, m indicates the variable slope 

length power, and n signifies the slope steepness power. 

4.4. THE PRACTICE CONTROL FACTOR 

The practice control factor, or support practice factor in the RUSLE equation, is a dimensionless 

ratio that compares soil loss under specific management practices to tilled soil. These practices 

aim to reduce runoff by altering slope steepness, flow patterns, or direction (Gong et al., 2022). 

The factor varies from 0 to 1, where reduced values signify enhanced runoff control. In this 

study, approximately 92% of the area is bare soil, so the P factor was set to 1 for the RUSLE 

model soil erosion estimation. 

4.5. THE VEGETATION COVER FACTOR 

The vegetation cover factor, or C-factor, quantifies vegetation's protection against rainfall- 

induced erosion in the RUSLE (Wischmeier & Smith, 1978);(Renard et al., 1997);(Xiong et al., 

2023). It denoted the link between soil degradation, certain vegetation cover, and management 

practices compared to bare, tilled soil. Estimating the C-factor using the (NDVI) from high- 

resolution images yields more accurate results than traditional methods without NDVI 

(Vatandaşlar & Yavuz, 2017). The equations developed by (Knijff et al., 2002) can be 

effectively applied to the highland regions of northeastern Iraq and other vulnerable ecosystems 

(Nourizadeh et al., 2023). The quantity, type, and growth stage of vegetation significantly 
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influence the C-factor, as vegetation mitigates rainfall's kinetic energy before soil impact, 

reducing erosion (Qian et al., 2022). In this study, the C-factor was estimated using the rescaled 

NDVI (Tucker, 1979)(Nourizadeh et al., 2023) as follows: 

    (7) 

    (8) 

     (9) 

The C-factor can be mapped using remote sensing to create a spatial model for improving soil 

erosion assessment (Meusburger et al., 2010). Remote sensing deals with several benefits over 

traditional data collection methods, such as the ability to use GIS to detect differences in land 

use (Weng, 2002; Oñate-Valdivieso & Sendra, 2010;Wu et al., 2006), assess soil degradation 

(El Baroudy, 2011), and evaluate soil erosion (Panagosa et al., 2015). 

A difference in NDVI (DNDVI) was calculated to analyze vegetation changes. This process 

compares NDVI values from two different dates, using images where NDVI values range from 

-1 to +1 (Sellers, 1985; Spanner et al., 1990;Al-doski, 2013). The DNDVI image is created by 

subtracting the NDVI image from one date from that of another date (Cakir et al., 2006;  

Al- doski, 2013). In this study, the NDVI image from 2013 was subtracted from the 2021 image 

using the equation below: 

DNDVI = NDVI (2013) - NDVI (2021)                                         (10) 

As noted, changes in the C-factor are critical for calculating soil erosion in various regions, 

making it essential for sustainable soil erosion management. To create a C-factor map, temporal 

images from the OLI sensor on the Landsat 8 satellite, (the USGS website 

(https://earthexplorer.usgs.gov)), were used from 2013 and 2018 to 2021. The visible and near-

infrared bands have a spatial resolution of 30 x 30 meters. The C-factor was calculated twice 

for 2013 and 2018–2021. Using Eq.8, the NDVI was derived from these images, and the C-factor 

was calculated using Eq.9 within the QGIS 3.15.28 software. 

5. THE RESULT 

The RUSLE model factors were estimated utilizing (GIS) technology to consider all the various 

factors. It was used in the years 2013 and 2018 to 2021 by Eq.1. The spatial resolution was 30 

meters. The result of these factors P, R, K, C, and LS are displayed in Fig.2. 

5.1. The Vegetation Cover Factor 

After downloading the raw images into QGIS 3.15.28 software, several images contained cloud 
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cover, obscuring the true reflection of the vegetation. These clouded images were excluded 

from the analysis. For 2013, 2018, and 2021, NDVI values were calculated twice yearly—once 

in summer and once in winter. Water bodies and vegetation tend to decrease in warmer months, 

while colder months show more abundant vegetation. This seasonal difference resulted in 

variations in C-factor values, as changes directly influence them in the vegetation index 

(Nourizadeh et al., 2023). 

  

Fig.2. The result of R factor 2013 and 2021, LS factor, K factor by QGIS 3.15.28 software 

In the study area, the cover of vegetation results indicated that the landscape mainly consists of 

water bodies, bare soil, sparse vegetation, and a few regions with medium-density plant cover. 

Overall, the area has little vegetation. The NDVI values, crucial for evaluating vegetation health 

and coverage, were accurately calculated using satellite data from Landsat 8, (the USGS 

website (https://earthexplorer.usgs.gov)), covering 2013 and 2018- 2021. These values ranged 

from -1 to +1 (Al-doski, 2013). Negative NDVI values correspond to surface types such as 

water bodies, clouds, and snow, while values around zero represent bare soil or rock. Healthy, 

green vegetation typically shows NDVI values close to +1, reflecting strong photosynthetic 
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activity and vitality. NDVI values below 0.2 indicate either water bodies or an absence of 

vegetation. Sparse vegetation is represented by values from 0.2 to 0.4, moderate vegetation 

cover between 0.4 and 0.6, and dense vegetation cover by values above 0.6. 

In this study area, the vegetation cover results show that the area consists of bodies of water or 

soil without vegetation cover, sparse vegetation, and few areas containing plants of medium 

density. There is little vegetation cover. 

After processing the satellite images, those affected by cloud cover were removed from the 

analysis for 2013 and 2018-2021. As a result, different months were selected for evaluation. 

For example, the fourth month was chosen to represent winter (the end of summer), while 

months 10, 12, and 11 were selected for 2018, 2013, 2020, 2019, and 2021, respectively, 

ensuring cloud-free images were used. 

NDVI was calculated for both summer and winter across 2013, 2018, and 2021, focusing on 

cloudless days and aiming to capture data at the end of each seasonal period whenever possible, 

as shown in Fig.3. These calculations revealed a significant gap in vegetation cover between 

summer and winter. Warmer months saw reduced water bodies and less vegetation, resulting in 

lower NDVI values, while colder months displayed more vegetation, leading to higher NDVI 

values. In some years, particularly in 2018, vegetation almost entirely disappeared by the end 

of the summer due to extreme temperatures. This left minimal plant life, whereas sparse 

vegetation was observed during winter. Notably, 2018 exhibited minimal vegetation cover, 

even in winter, due to changing climate conditions.  

These findings have profound implications for soil erosion. In hot summer months, when 

vegetation is scarce, the soil remains dry and loose, making it highly susceptible to erosion. 

When precipitation occurs in winter, the lack of vegetation to stabilize the soil increases erosion. 

Consequently, higher C-factor values are anticipated due to the NDVI calculations. 

After a thorough differential analysis of the NDVI results between 2013 and 2021 for winter 

and summer, notable disparities in vegetated regions were observed and those lacking 

vegetation are evident, as shown in Fig. 4. The variations within the geographic region suggest 

that climate change plays a significant role, highlighting the diverse environmental impacts 

affecting the area. In the DNDVI image Fig. 4, regions with notable changes are marked in red 

and blue. Red indicates areas that have experienced a significant loss of vegetation, while blue 

represents areas where vegetation has increased. Regions with little to no change are shaded in 

neutral gray, offering a clear visual distinction of vegetation stability. 
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Fig.3. The result of NDVI for the winter and summer seasons by QGIS 

3.15.28 software 

The areas with the most substantial negative changes in NDVI values, indicating a decline in 

vegetation cover, are predominantly concentrated in agricultural zones. There was a significant 

seasonal difference in NDVI values between winter and summer. Between 2013 and 2021, 
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approximately 21% of the land exhibited reduced vegetation cover during winter, compared to 

about 3.5% during summer. The total change in vegetation cover between these two years, 

(2013 and 2021), amounted to around 17%, as outlined in Table 1. 

As shown in Table 2, the most affected region within the study area is Thi-Qar Governorate, 

despite its relatively small size. It is followed by Wasit Governorate, with Misan Governorate 

experiencing the least impact. 

Fig.4. The difference between NDVI between 2013 and 2021 by QGIS 3.15.28 software  

Table 1: the percentage area for changing in study area 

 
total area 

(Km2) 

11/2021-2013 4/2021-2013 

class 
area class 

(Km2) 

percentage area 

class 
area class (Km2) 

percentage 

area class 

increased 14221.17 351.391 2.470901 866.249 6.091264 

decreased 14221.17 492.171 3.460833 3089.03 21.72135 
no change 14221.17 13377.57 94.06801 10265.94 72.18772 

Table 2: the percentage area for changing over government in study area 

  

Area (Km2) 

DNDVI  4/2021-2013 DNDVI  12/2021-2013 

classes government 
area class 

(Km2) 
%area 

area class 

(Km2) 
%area 

increased  632.164 38.5 6.090192 34.652 5.481489 

decreased Thi-Qar 632.164 239.51 37.88732 15.122 2.392101 

no change  632.164 354.15 56.02186 582.372 92.12356 

increased  6935.482 434.11 6.259262 191.3 2.75828 

decreased Wasit 6935.482 1740.617 25.09728 144.7 2.086373 

no change  6935.482 4760.75 68.64339 6599.463 95.15507 

increased  6653.522 403.428 6.063375 126.8136 1.905962 

decreased Misan 6653.522 1089.755 16.37862 333.377 5.010534 

no change  6653.522 5160.338 77.55799 6193.327 93.08344 

The appearance of C factor values is attributable to the varied vegetation indicators analyzed 

during the study. Upon showing a thorough investigation of the results about the coverage of 

vegetation, it became increasingly seeming that the geographical area under investigation was 

mainly categorized by the presence of wide water bodies, regions of soil that were 

conspicuously devoid of any significant vegetation, as well as isolated covers of sparse plant 

growth, alongside a limited number of zones that exhibited moderately dense vegetation, as 

shown in Fig.5. 
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Fig. 5. The map of C- factor for area study by QGIS 3.15.28 software 

 

5.2. The Result of Soil Erosion 

Within the specified study region, the soil erosion intensity confronted has been analytically 

considered into levels: slight, sight to moderate, moderate, moderate to high, high, very high, 
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extremely high and extremely. Concurrently, a widespread erosion of soil map indicating spatial 

distribution for soil erosion through area study was skillfully created by QGIS version 3.28.15. 

After collecting data to calculate soil erosion factors using Eq.1, the effect of these factor layers 

was analyzed to estimate soil erosion for 2013 and 2021, as shown in Fig.6. 

The control of slight erosion is in the general study area. In contrast, slight to moderate, 

moderate, and moderate to high in large parts of the total area are concentrated around water 

collection areas in Lake Shewicha and other temporary lakes. It is also apparent in the part of 

the upper catchment of the Teeb River and the small order around the Tigris River catchment. 

At the same time, the remains of the types are concentrated in the tributaries until extremely 

high erosion values are found in the body of the Tigris River. The control of slight erosion was 

observed throughout the study area, as its percentage ranged between more than 70% of the 

total area during the winter and summer seasons for the three governorates. This percentage 

reached 95% in the Dhi Qar Governorate and decreased to about 70% in the Misan Governorate, 

as shown in Table 3. In general, an increase in slight erosion is expected in 2021, with an 

estimated area of about 253 square kilometers at the end of winter and a decrease estimated at 

168 square kilometers at the end of summer. 

The types of soil erosion, sight to moderate, moderate, and moderate to high, it generally 

decreased between the end of winter and summer between 2013 and 2021, estimated at 146.77 

and 63 and 11 square kilometers, respectively, for April. As for the erosion values at the end of 

summer, they increased for the slight to moderate and moderate types by about 187 and 3.5 

square kilometers, respectively, while the moderate to high type decreased by about 8 square 

kilometers. As for the remains of the erosion types, they decreased between 2013 and 2021, as 

shown in Table 3. Generally, soil erosion increased between 2013 and 2021 by 4.2 and 18 

square kilometers, respectively. 

While the erosion values for 2013 increased in November compared to April, except for slight 

to moderate and very high erosion, which decreased by a high percentage of 2%, in 2021, 

erosion decreased in December compared to April for all types, except for slight erosion, it 

increased by about 6%. 

From the above results, the decrease in slight erosion has been transformed into the rest of the 

types of erosion, indicating the lack of sufficient vegetation cover to reduce the effects of 

erosion. In addition, if no measures are taken to prevent increased erosion or mitigate its impact 

on erosion. It deserves urgent attention and should be prioritized to implement effective soil 

conservation measures to reverse these harmful trends. 
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 Fig.6. The map of soil erosion for area study by QGIS 3.15.28 software 

6. CONCLUSION 

This study employed the (NDVI) from high-resolution Landsat 8 imagery to determine the soil 

cover management (C-factor) within the (RUSLE) framework, focusing on a watershed in the 

study area. By combining remote sensing technology with GIS, the research provided an 

efficient method for analyzing spatial and temporal variability in soil cover. The NDVI analysis 

conducted for summer and winter from 2013 and 2018 to 2021 highlighted significant seasonal 

differences in vegetation cover. The warmer months exhibited a notable reduction in vegetation 

and water bodies, with around 21% of land showing decreased cover in winter compared to 

3.5% in summer. Thi-Qar Governorate was the most affected area, followed by Wasit and 

Misan.The study found that slight erosion accounted for over 70% of the region, with more 

severe erosion concentrated around Lake Shewicha and the upper catchment of the Teeb River. 

Erosion types increased between 2013 and 2021, shifting from slight erosion to more severe 

types, indicating inadequate vegetation cover to mitigate erosion. The C-factor maps generated 

are valuable for emergency managers in assessing natural hazards and promoting urban 

sustainability. However, further validation and adjustments are needed to confirm their 

applicability in different topographies, vegetation types, and soil conditions. 
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 Table 3: The %area Soil Erosion in the governments in 2013 and 2021 

 
 
 
 
 

The result for 4/ 2013 and 2021 
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Sight to 803.65 11.59 959.80 14.43 16.79 2.66 728.41 10.50 891.09 13.39 13.97 2.21 -146.77 -2.56 

Moderate                   
 Moderate  417.89 6.03 517.94 7.78 7.73 1.22 383.45 5.53 490.82 7.38 6.37 1.01 62.92-

 -1.12 

 
Moderate 131.92 1.90 156.57 2.35 2.34 0.37 122.49 1.77 155.20 2.33 1.96 0.31 -11.19 -0.22 

  high to              
 High  64.81 0.93 73.31 1.10 1.05 0.17 57.73 0.83 71.87 1.08 0.92 0.15 8.66-

 -0.14 

 
very high 103.02 1.49 124.69 1.87 1.97 0.31 93.61 1.35 120.44 1.81 1.55 0.25 -14.08 -0.27 

 
Extremely 30.43 0.44 39.04 0.59 0.32 0.05 27.81 0.40 37.72 0.57 0.24 0.04 -4.02 -0.07 

 
Extremely 19.27 0.28 25.44 0.38 0.04 0.01 17.65 0.25 25.28 0.38 0.03 0.00 -1.79 -0.03 

High               
 1.33  0.02 3.58 0.05 0.00 0.00 1.03 0.01 2.22 0.03 0.00 0.00 1.66-

 -0.02 

 
0.03 

 
The result for 11/ 2013 and 12/2021 

 
Classes Dec-2013 Nov-2021 difference 

   -11 between 
Kut Misan Thi Qar Kut Misan Thi Qar 12/2021 and 2013 

 
Area 

)2(Km 

 
% 

area 

 
Area 

)2(Km 

 
% 

area 

 
Area 

)2(Km 

 
% 

area 

 
Area 

)2(Km 

 
% 

area 

 
Area 

)2(Km 

 
% 

area 

 
Area 

)2(Km 

 
% 

area 

 
Area 

)2(Km 

 
% 

area 

Sight 5385.24 77.65 4749.16 71.38 603.29 95.43 5304.73 76.49 4664.1 70.10 600.56 95.00 -168.26 -2.87 
  3  

Sight to 759.44 10.95 890.92 13.39 14.34 2.27 846.16 12.20 988.40 14.86 17.34 2.74 187.20 3.19 
Moderate                   

 Moderate  426.10 6.14 540.39 8.12 7.68 1.21 430.32 6.20 539.46 8.11 7.94 1.26 3.55

 0.09 

Moderate 134.94 1.95 168.81 2.54 2.45 0.39 131.42 1.89 163.95 2.46 2.54 0.40 -8.30 -0.11 
  high to              

 High  64.97 0.94 78.68 1.18 1.09 0.17 61.51 0.89 77.22 1.16 1.09 0.17 4.91-

 -0.07 

very high 102.05 1.47 133.02 2.00 2.01 0.32 100.33 1.45 130.23 1.96 2.06 0.33 -4.46 -0.06 

Extremely 30.60 0.44 41.21 0.62 0.37 0.06 30.16 0.43 40.45 0.61 0.34 0.05 -1.23 -0.02 

Extremely 19.83 0.29 27.11 0.41 0.04 0.01 19.40 0.28 26.54 0.40 0.04 0.01 -1.00 -0.02 
sever               

 1.02  0.01 3.87 0.06 0.00 0.00 0.95 0.01 3.83 0.06 0.00 0.00 0.11-

 0.00 

 
0.13 
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