

PROCEEDING OF 9TH INTERNATIONAL SCIENTIFIC CONFERENCE, COLLEGE OF VETERINARY MEDICINE UNIVERSITY OF BASRAH, NOV. 6-7, 2024, IRAQ.

BASRAH JOURNAL OF VETERINARY RESEARCH, 2025, 24(S1):45-55. https://bjvr.uobasrah.edu.iq/

The Effect of Sex and Genetic Lines on the Skull Dimension for Japanese Quail

Ahmed S. Shaker¹, Questan A. Ameen², Israa H. Abd Alsada³, Luay W. Alsalihi⁴, Adel J. Hussein⁵.

- 1 -Medical Laboratory Technology, Al-Qalam University College, Kirkuk, Iraq.
- 2-Animal production department, college of agricultural science engineering, Suliamani University, Iraq.
- 3-Anatomy and Histopathology Department, College of veterinary Medicine, Suliamani University, Iraq.
- 4 -College of veterinary Medicine, Kirkuk University, Kirkuk, Iraq.
- 5 -Department Of Anatomy and Histology, College of Veterinary Medicine, University of Basrah, Iraq.

Corresponding Author Email Address: ahmed.shaker@algalam.edu.iq

ORCID ID: https://orcid.org/0000-0001-5395-9096

DOI: https://doi.org/10.23975/bjvr.2025.155340.1161

Received: 21 Nov. 2024 Accepted: 26 March 2025

Abstract

The aim of this study was to contribute to quail head morphology and Create basic data sources for comparative measurement in the quail skull. The current experiment was done in the poultry farm of the animal production department, college of Agriculture - Kirkuk University, from (22/04/2022 to 22/07/2022), 120 unsexed chicks were used (White quail=40, Brown quail=40, and Gray quail=40), rearing on the cages, the diet and the water ad libitum when the flock reached 120 days of age 5 male, and female were chosen randomly to slaughter. Following the slaughter, the heads were gathered, boiled, and the characteristics of the skull were measured using a Caliper Vernier with an accuracy of 0.01 mm. There were significant differences in some dimensions, as the Pro. The Sprameaticus of squamosal bone was larger in the brown genetic line compared to the white one, which was smaller. This is also the case with Postorbital process, as for the other dimensions, there were no significant differences between the genetic lines. There were highly significant differences in many dimensions, where the female white quail excelled over the rest of the birds in the Cerebellar prominent trait, and in the Exoccipital bone trait and Postorbital process, the male white quail excelled over the other birds. The gray female quail also excelled in the Postorbital process, The Dorsal middle point of frontonasal structure, and the Middle point of frontonasal structure Basilar tuberculum of basioccipital bone, over the other of the birds. As for Paraoccipital process, white males, gray males and females outperformed other birds. As for the other characteristics, there was no significant effect among the studied interactions.

Keywords: Japanese quail, genetic line, skull dimension, skull bones,

Introduction

The species known as Coturnix japonica, or quail, belongs to the Phasianidae family (1). Japanese quail was successfully transferred from Japan to America, Europe, and the Middle East and Near East. The taming of Japanese quail began in Japan in the 11th decade (2, 3). Quails are also often utilized as experimental animals. Due to these characteristics, rapid development, early sexual maturity, and low feed consumption, quails are commonly employed as in vivo models in physiological, pathological, toxicological, and anatomical research (4, 5). The rise in quail meat and egg consumption in recent years has also bolstered the bird's economic aspect (6, 7, 8). Color of quail feathers is regarded as a race or hereditary characteristic. Mutations in the color are responsible for variations in the color of quail feathers (9). White, brown, yellow, wild type (gray), and roux are the hues of the feathers (10). Owing to their unique mode of transportation, birds acquired some physical characteristics that set them apart from other creatures (11). The avian skeleton is adapted to active flying, in contrast to that of mammals. This special capacity is crucial to the preservation of bird species (12, 13). The thin bony plates of the quail's skull are made of cartilaginous templates or connective tissue, much like in the skulls of all birds (14). Birds have a third form of bone tissue termed the medullary bone in addition to the cortical and cancellous bones. The latter acts as a calcium store, which is crucial for females in relation to the development of their eggshells (15, 16). Like other vertebrates, avian skulls are composed of two parts: the splanchnocranium and the neurocranium. The Occipital, sphenoidale, squamosum, parietale, frontale, paired ossa otica, unpaired os mesethmoidale, ectethmoidale, and lacrimale comprise the neurocranium in birds (17, 18). Aerodynamic in form, the head tapers rostrally. The form and size of the bird's beak mostly determines the size and shape of its thin,

typically tiny facial bones. The borders between the bones of the neurocranium are nearly undetectable since the bones of the neurocranium are entirely merged with one another (19).

The shape of the beak dictates the conformation of the facial skeleton (20). Because of the moveable connection with the skull, one unique trait is the capacity to lift the upper half of the beak. The os quadratum, the major component of the maxillopalatine apparatus, ensures this. The temporomandibular joint in mammals is analogous to it (21, 22). Particularly in tiny birds, the braincase is quite massive, and the orbits are very big, divided from one another by a narrow interorbital septum. Other vertebrates are unable to achieve the range of head mobility that the skull has because it is joined to the vertebral column by a single occipital condyle (23, 24). Similar to other birds, it can be difficult, if not completely impossible, to distinguish the sex of quails based only on the physical characteristics of their skulls. We think that the gender distinction in quails will be successfully achieved by the application of geometric morphometrics in skull dimensions (25).

A frequently used method in the taxonomic categorization of animals is craniometrics, in this instance, morphometric data is used to establish differences interspecific (26).From perspective of intraspecific polymorphism and interspecific comparisons, the skull is an object of both geometric and linear morphometric, the study of species patterns and evolutionary processes is also made possible by geometric morphometries (27). The main uses of feather colors have been in the following domains: sex selection; speciation and regional difference analysis; and diversity evolution (28).

The majority of plumage color variations within and across species have a significant genetic component. According to many recent researches, quail plumage color changes are mostly caused by the interplay of certain gene mutations or combinations of mutations (29). In an effort to connect the effects of feather color with growth characteristics in Japanese quails, also came to the conclusion that morphological traits specifically, feather color played a major role in both the identification process and the choice of quail varieties (30). The taxonomic categorization of animals and the identification of gender differences have benefited from the widespread use of geometric morphometric techniques on a variety of breeds and species in recent years (31). Therefore, the present study was conducted to determine the effect of plumage color patterns to identify the form differences between male and female quail individuals and to use geometric morphometries to assess the sex dimorphism of quail craniums.

Materials And Methods

The current experiment was done in the poultry farm of the animal production department, college of Agriculture - Kirkuk University, from (22/04/2022 to 22/07/2022), 120 unsexed chicks were used (White quail=40, Brown quail=40, and Gray quail=40), rearing on the cages, the diet and the water ad libitum when the flock reached 120 days of age 5 male, and female were chosen randomly to slaughter from each line. Following the slaughter all the heads were undergo dissection, muscles ,and skin and soft tissues were removed, the heads were gathered, boiled for a half hour ,and soaked in 5% hydrogen peroxide (H2O2) for 30 min to remove fatty tissue. Following these steps, the skulls were allowed to dry at room temperature in a wellventilated area for one week (32), and the characteristics of the skull were measured using a Caliper Vernier with an accuracy of 0.01 mm according to (33) landmarks. A general linear model (GLM) within the SPSS program was used to calculate the mean, standard error, and significance. Duncan multiple range test was used to test the differences between the means (34).

Result

Table 1. Shows the effect of the genetic line of the Japanese quail on the size dimensions. There were significant differences in some dimensions, as the Pro. Sprameaticus of sequamosal bone was larger in the brown genetic line (18.876) mm compared to the white one, which was smaller. This is also the case with the Postorbital process (16.833) mm, as for the other dimensions, there were no significant differences between the genetic lines. Table 2 shows the effect of the genetic line of the Japanese quail on the sex of the bird. The table shows that there are no significant differences in the dimensions of size.

Table 3 shows the effect of the interaction between the genetic line and sex of the Japanese quail on size dimensions. There were highly significant differences in many dimensions, where the female white quail excelled over the rest of the birds in the Cerebellar prominentia trait (13.634) mm, and in the Exoccipital bone trait and Postorbital process, the male white quail excelled over the other birds (6.718, 15.731) mm respectively. The gray female quail also excelled in the Postorbital process, Dorsal middle point of frontonsal structure, and Middle point of frontonasal structure Basilar tuberculum of basioccipital bone (17.022, 4.941, 24.626) mm respectively, over the other of the birds. As for Paraoccipital process, white males, gray males and females outperformed other birds (15.481, 15.833, 15.654) respectively. As for the other of the characteristics, there was no significant effect among the studied interactions.

Table 1: The effect of genetic line on the Skull dimensions

Traits	White line		Brown lin	ie	Gray line		
Traits	Mean	SD	Mean	SD	Mean	SD	
Cerebellar prominentia	13.447 a	0.08	13.412 a	0.07	13.521 a	0.08	
Exoccipital Bone	6.272 a	0.13	6.454 a	0.12	6.126 a	0.13	
Proc. Suprameaticus of sequamosal bone	18.193 b	0.14	18.867 a	0.13	18.604 ab	0.14	
Temporal fossa	15.301 b	0.08	15.650 a	0.08	15.386 b	0.08	
Postorbital Process	16.544 ab	0.10	16.833 a	0.09	16.538 b	0.10	
Dorsal Middle point of frontonasal structure	4.602 a	0.09	4.757 a	0.08	4.705 a	0.09	
Craniolateral terminal point of frontal bone	6.020 a	0.11	6.154 a	0.11	6.294 a	0.11	
Foramen magnum high	2.846 a	0.05	2.890 a	0.04	2.959 a	0.05	
Foramen magnum Width	3.740 a	0.05	3.907 a	0.04	3.844 a	0.05	
Paraoccipital process	14.804 a	0.22	15.358 a	0.21	15.271 a	0.22	
Postorbital process	14.917 b	0.17	15.549 a	0.16	15.221 ab	0.17	
Middle point of frontonasal structure Basilar tuberculum of basioccipital bone	24.051 a	0.12	24.427 a	0.11	24.421 a	0.12	

Means not having a common letter (a, b,) within each column differ significantly (P<0.05).

Discussion

In this experiment, the skull of quail birds was examined to determine and see the morphological differences between the male and female, in addition to the differentiation of dimension in some specific bones that related to the effect of the color. The study found that the male and female samples' form

variances were quite close to one another. Meanwhile, the diversity between genetic lines was more evident. And that what was table 1 revealed. It shows the effect of the genetic line of the Japanese quail on the size dimensions. There were significant differences in some dimensions, as the Pro.

Table 2: The effect of gender on the skull dimensions

Traits	Male		Female		
Traits	Mean	SD	Mean	SD	
Cerebellar prominentia	13.586	0.07	13.334	0.09	
Exoccipital Bone	6.334	0.12	6.234	0.16	
Proc. Suprameaticus of sequamosal bone	18.322	0.12	18.787	0.16	
Temporal fossa	15.504	0.07	15.387	0.10	
Postorbital Process	16.571	0.09	16.706	0.12	
Dorsal Middle point of frontonasal structure	4.671	0.08	4.705	0.10	
Craniolateral terminal point of frontal bone	6.276	0.10	6.036	0.14	
Foramen magnum high	2.886	0.04	2.911	0.06	
Foramen magnum Width	3.759	0.04	3.902	0.06	
Paraoccipital process	15.370	0.20	14.918	0.27	
Postorbital process	15.495	0.15	14.964	0.20	
Middle point of frontonasal structure Basilar tuberculum of basioccipital bone	24.254	0.11	24.345	0.15	

Means not having a common letter within each column differ significantly (P<0.05).

The Sprameaticus of sequamosal bone was larger in the brown genetic line (18.876) mm compared to the white one, which was smaller. This is also the case with the Postorbital process (16.833) mm, as for the other dimensions, there were no significant differences between the genetic lines. This result was in agreement with (35), which shows the significant effect of the color pattern on the size and shape of the skull in avian. Table 3 shows the effect of the

interaction between the genetic line and sex of the Japanese quail on size dimensions. There were highly significant differences in many dimensions, where the female white quail excelled over the rest of the birds in the Cerebellar prominentia trait (13.634) mm, and in the Exoccipital bone trait and Postorbital process, the male white quail excelled over the other birds (6.718, 15.731) mm respectively.

Table 3: The effect of interaction between genetic lines and gender

	White*Male		White*Femal e Brown*male			Brown*Fo	emal	Gray*Male		Gray*Female		
Traits	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
СР	13.50 a b	0.1	13.63 a	0.1	13.34 b	0.1	13.50 b	0.1	13.43 b	0.1	13.35a b	0.1
EB	6.72 a	0.2	6.63 a b	0.2	5.98 c	0.1 7	6.23 bc	0.2	5.99 c	0.1 8	6.16 b c	0.2
PSSB	19.00 a	0.2	18.75 a	0.2	18.31 a	0.1 8	18.22 a	0.2	18.37 a	0.1 9	18.68 a	0.2
TF	15.58 a	0.1	15.51 a	0.1	15.30 a	0.1	15.45 a	0.1	15.36 a	0.1	15.48 a	0.1 4
PoP1	16.97a b	0.1 6	16.45 c	0.1 7	16.39 c	0.1	16.52 ab c	0.1 6	16.48 b c	0.1	17.02 a	0.1 7
DF	4.65 a b	0.1 4	4.81 a b	0.1	4.64 a b	0.1	4.50 b	0.1 4	4.59 a b	0.1	4.94 a	0.1 5
CTPF B	6.05 a	0.1 8	6.28 a	0.1 9	6.09 a	0.1 5	6.19 a	0.1 8	6.06 a	0.1 6	6.27 a	0.1 9
FMH	2.94 a	0.0	2.65 b	0.0	3.00 a	0.0 6	2.91 a	0.0 7	3.00 a	0.0 6	2.88 a	0.0 8
FMH	3.82 a	0.0	3.99 a	0.0	3.81 a	0.0 6	3.70 a	0.0 8	3.76 a	0.0 7	3.90 a	0.0 8
PaP	15.48 a	0.3 6	14.58 b	0.3 7	14.67 b	0.2 9	14.65 b	0.3	15.83 a	0.3	15.65 a	0.3 8
PoP2	15.73 a	0.2 8	15.19 a b	0.2 9	15.37 a b	0.2	15.57 ab	0.2 7	14.480 c	0.2	15.03 b	0.2 9
MFB	24.38 a b	0.2	24.56 a b	0.2	24.23 a b	0.1 6	24.08 ab	0.1 9	23.93 b	0.1 7	24.63 a	0.2

Means not having a common letter (a, b) within each column differ significantly (P<0.05). CP= Cerebellar prominentia, EB= Exoccipital Bone, PSSB= Proc. Suprameaticus of sequamosal bone, TF= Temporal fossa, PoP1= Postorbital Process, DF= Dorsal Middle point of frontonasal structure, CTPFB= Craniolateral terminal point of frontal bone, FMH= Foramen magnum height, PaP= Paraoccipital process, PoP2= Postorbital process, MFB= Middle point of frontonasal structure Basilar tuberculum of basioccipital bone

The gray female quail also excelled in the Postorbital process, Dorsal middle point of frontonsal structure, and Middle point of frontonasal structure Basilar tuberculum of basioccipital bone (17.022, 4.941, 24.626) mm respectively, over the other of the birds. As for Paraoccipital process, white males, gray males and females outperformed other birds (15.481, 15.833, 15.654) respectively. As for the other of the characteristics, there was no significant effect among the studied interactions. And that was in contrast with (36), which shows no significant effect of sex and color on the weight and head size. Still, one may argue that sex discrimination within the same species benefits from application of geometric form analysis. The disparities between boys and girls in longitudinal measures were discovered in a variety of skulls using classic morphometric techniques (37). Males exhibited longer dimensions than females in the majority of these investigations. But geometric analysis allowed it to be understood in terms of shape. Information about geometric morphometry was gathered in order to calculate the sexual dimorphism and use it on other species such as dogs, goats, and sheep using geometric analysis (38).

Conclusion

In this study, the effect of sexual dimorphism as well as the plumage color were studied by using the geometric morphometric method on the dimension of quail skull bones. Our study revealed a significant effect of the genetic lines of quail on the dimensions of the skull, especially in brown color line in some specific bones, meanwhile, no significant effect was shown between the sexes. Studies

of geometric morphology will be very helpful in the classification of sexual dimorphism studies as well as using the major positive correlations among body weight and most body dimensions in quails and it gives high and low ranges and will bring a different perspective to traditional morphometric studies.

Conflicts of interest

The authors declare that there is no conflict of interest.

Ethical Clearance

This work is approved by The Research Ethical Committee.

References

- 1. Dey, P., Ray, S. D., Kochiganti, V. H. S., Pukazhenthi, B. S., Koepfli, K.-P., & Singh, R. P. (2024). Mitogenomic Insights into the Evolution, Divergence Time, and Ancestral Ranges of Coturnix Quails. *Genes, 15*(6), 742. DOI; https://doi.org/10.3390/genes15060742
- 2. Çağlayan, T., & Şeker, E. (2015). Dağ nanesinin (Mentha caucasica) japon bıldırcınlarının (Coturnix coturnix japonica) performans, bazı vücut ölçüleri ve canlı ağırlık arasındaki ilişkilerine etkisi. *Eurasian Journal of Veterinary Sciences*, 31(1): 33-42.
- 3. Lukanov, H., & Pavlova, I. (2020). Domestication changes in Japanese quail (Coturnix japonica): A review. *World's Poultry Science Journal*, 76(4), 787–801. DOI:

https://doi.org/10.1080/00439339.2020.1823

4. Baer, J., Lansford, R., & Cheng, K. (2015). Japanese quail as a laboratory animal model. In Laboratory animal medicine (pp. 1087–1108). Elsevier. DOI:

https://doi.org/10.1016/b978-0-12-409527-4.00022-5

- 5. Redoy, M., Shuvo, A., & Al-Mamun, M. (2017). A review on present status, problems and prospects of quail farming in Bangladesh. *Bangladesh Journal of Animal Science*, 46(2), 109–120. DOI: https://doi.org/10.3329/bjas.v46i2.34439
- 6. Tertychnaya, T., Manzhesov, V., Andrianov, E., & Yakovleva, S. (2020). New aspects of application of microalgae Dunaliella Salina in the formula of enriched bread. *Earth Environ. Sci.* 422 012021. DOI: https://doi.org/10.1088/1755-1315/422/1/012021
- 7. Abd El-Hack, M. E., Majrashi, K. A., Fakiha, K. G., Roshdy, M., Kamal, M., Saleh, R. M., Khafaga, A. F., Othman, S. I., Rudayni, H. A., Allam, A. A., Moustafa, M., Tellez-Isaias, G., & Alagawany, M. (2024). Effects of varying dietary microalgae levels on performance, egg quality, fertility, and blood biochemical parameters of laying Japanese quails (Coturnix coturnix Japonica). *Poultry Science*, 103(4), 103454. DOI: https://doi.org/10.1016/j.psj.2024.103454
- 8. Dalle Zotte, A., & Cullere, M. (2024). Rabbit and quail: Little known but valuable meat sources. *Czech Journal of Animal Science*, 69(2), 39–47. DOI: https://doi.org/10.17221/165/2023-CJAS
- 9. Morris, K. M., Hindle, M. M., Boitard, S., Burt, D. W., Danner, A. F., Eory, L., Forrest, H. L., Gourichon, D., Gros, J., & Hillier, L. W. (2020). The quail genome: Insights into social behaviour, seasonal biology and infectious disease response. *BMC Biology*, *18*, 1–18. DOI: https://doi.org/10.1186/s12915-020-0743-4
- 10. Minvielle, F., Cecchi, T., Passamonti, P., Gourichon, D., & Renieri, C. (2009). Plumage colour mutations and melanins in the feathers of the Japanese quail: A first comparison. *Animal Genetics*, 40(6), 971–974. DOI: https://doi.org/10.1111/j.1365-2052.2009.01929.x

- 11. Newton, Ian. (2007). The Migration Ecology of Birds. The Migration Ecology of Birds. DOI: http://doi.org/10.1016/B978-0-12-517367-4.X5000-1
- 12. Habib, M. B., & Ruff, C. B. (2008). The effects of locomotion on the structural characteristics of avian limb bones. *Zoological Journal of the Linnean Society,* 153(3), 601–624.v DOI: https://doi.org/10.1111/j.1096-3642.2008.00402.x
- 13. Dumont, E. R. (2010). Bone density and the lightweight skeletons of birds. Proceedings of the Royal Society B: *Biological Sciences*, 277(1691), 2193–2198. DOI: https://doi.org/10.1098/rspb.2010.0117
- 14. Thorogood, P. (1993). Differentiation and morphogenesis of cranial skeletal tissues. *The Skull, 1*, 112–152.
- 15. Tahara, R., & Larsson, H. C. (2019). Development of the paratympanic pneumatic system of Japanese quail. *Journal of Morphology*, 280(10), 1492–1529. DOI: https://doi.org/10.1002/jmor.21045
- 16. Szara, T., Duro, S., Gündemir, O., & Demircioğlu, İ. (2022). Sex determination in Japanese Quails (Coturnix japonica) using geometric morphometrics of the skull. *Animals*, *12*(3), 302. DOI: https://doi.org/10.3390/ani12030302
- 17. Sridevi, P., Rajalakshmi, K., SivaKumar, M., & Karthikeyan, A. (2020). Comparative gross anatomical studies on the neurocranium of Indian eagle owl, flamingo and common crow. *Journal of Experimental Zoology India*, 23(2). DOI: https://doi.org/10.18805/IJAR.B-4132
- 18. Duro, S., Ünal, B., Manuta, N., Çakar, B., Güzel, B. C., & Korkmazcan, A. (2024). Morphometric study of neurocranium in different male chicken breeds raised in Turkey. *Veterinaria*, 73(1), 44–52. DOI: https://doi.org/10.51607/22331360.2024.73.1.44

- 19. Navalón, G., Bright, J. A., Marugán-Lobón, J., & Rayfield, E. J. (2019). The evolutionary relationship among beak shape, mechanical advantage, and feeding ecology in modern birds. *Evolution*, 73(3), 422–435. DOI: https://doi.org/10.1111/evo.13655
- 20. Bright, J. A., Marugán-Lobón, J., Cobb, S. N., & Rayfield, E. J. (2016). The shapes of bird beaks are highly controlled by nondietary factors. *Proceedings of the National Academy of Sciences, 113*(19), 5352–5357.

https://doi.org/10.1073/pnas.1602683113

- 21. Onuk, B., & Kabak, M. (2012). Comparative study of masticatory muscles in the goose (Anser anser domesticus) and the long-legged buzzard (Buteo rufinus). *Ankara University Veterinary Fakultesi Dergisi*, 59(1).
- https://doi.org/10.1501/Vetfak_0000002493 22. Güzel, B. C., Manuta, N., Ünal, B., Ruzhanova-Gospodinova, I. S., Duro, S., Gündemir, O., & Szara, T. (2024). Size and shape of the neurocranium of laying chicken breeds. *Poultry Science*, 103(9), 104008. DOI:

https://doi.org/10.1016/j.psj.2024.104008

- 23. Bhullar, B.-A. S., Hanson, M., Fabbri, M., Pritchard, A., Bever, G. S., & Hoffman, E. (2016). How to make a bird skull: Major transitions in the evolution of the avian cranium, paedomorphosis, and the beak as a surrogate hand. *Integrative and Comparative Biology*, *56*(3), 389–403. DOI: https://doi.org/10.1093/icb/icw069
- 24. Knoll, F., & Kawabe, S. (2020). Avian palaeoneurology: Reflections on the eve of its 200th anniversary. *Journal of Anatomy*, 236(6), 965–979. DOI: https://doi.org/10.1111/joa.13160

- 25. Gündemir, O., Özkan, E., Dayan, M. O., & Aydoğdu, S. (2020). Sexual analysis in Turkey (Meleagris gallopavo) neurocranium using geometricmorphometric methods. *Turkish Journal of Veterinary & Animal Sciences*, 44(3), 681–687. DOI: https://doi.org/10.3906/vet-1910-92
- 26. Kenyon-Flatt, B. (2020). Taxonomic efficacy of the macaque skeleton: A geometric morphometric analysis of the crania and Postcrania with regard to Ecogeography and behavior. ISBN: 9798672197296
- 27. Boz, İ., Altundağ, Y., Szara, T., Hadziomerovic, N., Ince, N. G., Pazvant, G., Kahvecioğlu, O., Özkan, E., Manuta, N., & Gundemir, O. (2023).Geometric veterinary morphometry in anatomy. Veterinaria, 72(1), 15-27. DOI: http://doi.org/10.51607/22331360.2023.72.1 .15
- 28. Ng, C. S., & Li, W.-H. (2018). Genetic and molecular basis of feather diversity in birds. *Genome Biology and Evolution*, 10(10), 2572–2586. DOI: http://doi.org/10.1093/gbe/evy180
- 29. Ghosh Roy, S., Bakhrat, A., Abdu, M., Afonso, S., Pereira, P., Carneiro, M., & Abdu, U. (2024). Mutations in SLC45A2 lead to loss of melanin in parrot feathers. *G3: Genes, Genomes, Genetics, 14*(2), jkad254. DOI:

http://doi.org/10.1093/g3journal/jkad254

30. Farajiarough, H., Rokouei, M., Maghsoudi, A., & Ghazaghi, M. (2018). Comparative study of growth patterns in seven strains of Japanese quail using nonlinear regression modeling. *Turkish Journal of Veterinary & Animal Sciences*,

- 42(5), 441–451. DOI: http://doi.org/10.3906/vet-1801-13
- 31. Lansford, R., & Cheng, K. M. (2024). The Japanese quail. The UFAW Handbook on the Care and Management of Laboratory and Other Research Animals, 762–786.
- 32. Kundu, S. K., Rocky, Z. H., Al Maruf, M. A., Chowdhory, A. T., & Sayeed, A. (2023). Preparation of Quail (Coturnix coturnix) Skeleton to Promote the Teaching Facilities of Avian Anatomy Laboratory. *International Journal of Veterinary and Animal Research*, 6(3), 91–95. DOI: http://doi.org/10.5281/zenodo.10442793
- Marugán-Lobón, J., Blanco Miranda, 33. D., Chamero, B., & Martín Abad, H. (2020). On the importance of examining the relationship between shape data and biologically meaningful variables. An example studying allometry with geometric morphometrics. Spanish Journal of Palaeontology, 28(2), 139–148. https://doi.org/10.7203/sjp.28.2.17848
- 34. Duncan, D. B. (1955). New multiple range test. *Biometrics*, *11*(1), 1–42. DOI: http://dx.doi.org/10.2307/3001478
- 35. Zusi, R. L. (1993). Patterns of diversity in the avian skull. *The Skull*, 2, 391–437.

- 36. Moradian, H., Esmailizadeh, A. K., Sohrabi, S. S., Nasirifar, E., Askari, N., Mohammadabadi, M. R., & Baghizadeh, A. (2014). Genetic analysis of an F 2 intercross between two strains of Japanese quail provided evidence for quantitative trait loci affecting carcass composition and internal organs. *Molecular Biology Reports*, 41, 4455–4462.
- http://doi.org/10.1007/s11033-014-3316-1
- 37. Demircioğlu, I., Demiraslan, Y., Gürbüz, I., & Dayan, M. O. (2021). Geometric morphometric analysis of skull and mandible in Awassi ewe and ram. *Kafkas Üniversitesi Veteriner Fakültesi Dergisi*, 27(1). DOI: http://doi.org/10.9775/kvfd.2020.24714
- 38. Demiraslan, Y., Özgel, Ö., Gürbüz, İ., & Kaştan, Ö. (2021). The mandibles of the Honamli and Hair goat (Capra hircus); a geometric morphometric study. *Ankara Üniversitesi Veteriner Fakültesi Dergisi*. DOI: https://doi.org/10.33988/auvfd.759964

تأثير الجنس والخطوط الوراثية على أبعاد الجمجمة في السمان الياباني

أحمد سامي شاكر 1 ، كيستان على أمين 2 ، إسراء حميد عبد السادة 3 ، لؤي وليد الصالحي 4 ، عادل جبار حسين 5

- 1. قسم تقنيات المختبرات الطبية، كلية القلم الجامعة، كركوك، العراق.
- 2. قسم الإنتاج الحيواني، كلية هندسة العلوم الزراعية، جامعة السليمانية، العراق.
- 3. قسم التشريح والانسجة المرضية، كلية الطب البيطري، جامعة السليمانية، العراق
 - 4. كلية الطب البيطرى، جامعة كركوك، العراق
- 5. قسم التشريح والانسجة المرضية، كلية الطب البيطري، جامعة البصرة، العراق

الخلاصة

هدفت هذه الدراسة إلى المساهمة في مور فولوجيا رأس السمان وتكوين مصادر بيانات أساسية للقياس المقارن في جمجمة السمان. أجريت التجربة الحالية في مزرعة الدواجن التابعة لقسم الإنتاج الحيواني بكلية الزراعة - جامعة كركوك، للفترة من 2022/04/22 إلى 2022/07/22 إلى 2022/07/22 إلى 2022/07/22 إلى 2022/07/22 إلى 2022/07/22 إلى 2022/07/22 إلى اسمان رمادي عشوائيًا للذبح. وبعد الذبح تم جمع الرؤوس وغليها وقياس خصائص الجمجمة باستخدام جهاز الفيرنيا بدقة 0.01 مم. وكانت هناك فروق معنوية في بعض الأبعاد، حيث كان عظم Pro. كن هناك فروق معنوية بين الخطوط الوراثية، وكانت هناك فروق معنوية عالية في العديد من الأبعاد، حيث تقوقت أنثى السمان Postorbital process و Exoccipital bone وفي صفة وي العديد من الأبعاد، حيث تقوقت أنثى السمان الأبيض على بقية الطيور في صفة Cerebellar prominentia وفي صفة Postorbital process وفي صفة Postorbital process وفي منا الأبيض على بقية الطيور، كما تقوقت أنثى السمان الرمادية في Exoccipital bone أما بالنسبة لعملية ما بعد القذالي فقد تفوقت الذكور البيضاء والذكور والإناث الرمادية على بقية الطيور، أما بالنسبة لعملية ما بعد القذالي فقد تفوقت الذكور البيضاء والذكور والإناث الرمادية على بقية الطيور، أما بالنسبة لعملية ما بعد القذالي فقد تفوقت الذكور البيضاء والذكور والإناث الرمادية على بقية الطيور، أما بالنسبة لعملية ما بعد القذالي فقد تفوقت الذكور البيضاء والذكور والإناث الرمادية على بقية الطيور،

الكلمات المفتاحية: السمان الياباني، الخط الوراثي، أبعاد الجمجمة، عظام الجمجمة.