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ABSTRACT  

This paper investigates the channel capacity of unreachable memory cells (UMCs), where a cell 

is deemed 𝑠̃-unreachable if it cannot store values beyond a specific state, 𝑠̃. Memories with 

these impairments are modeled as discrete memoryless channels (DMCs), similar to those used 

in information theory and communications. We derive Shannon-type capacity equations for 

memories with unreachable levels and substitution errors. These novel equations generalize 

classical Shannon capacity to systems with UMCs. We also compare ideal memories (without 

imperfections or errors) with normal memories affected by random errors only, as well as 

defective and erroneous memories. Our findings corroborate previous studies, particularly 

regarding random distributions of defective cells. Our results highlight the impact of increasing 

faulty cells and substitution errors, demonstrating the necessity of greater redundancy to 

maintain system performance. 
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1.  INTRODUCTION 

Point-to-point communication systems can operate in space, between a transmitter and receiver, 

or in time, where symbols are stored and later retrieved. These systems depend on accurate 

channel estimation and understanding of channel capacity to minimize errors and optimize 

performance. Many types of research highlights various approaches to improving signal 

reliability and data rates, and reducing error probabilities, focusing on the critical roles of SNR, 

antenna configurations, and advanced estimation techniques (Hameed 2021; Ali and Hreshee 

2023; Al-Ja'afari et al. 2021). 

Channel coding plays a crucial role in determining the maximum data rate that a channel can 

transfer. The foundational ideas of information theory were introduced by Claude E. Shannon 

in his groundbreaking 1948 work (Shannon, 1948). The capacity theorem, which is central to 

understanding these concepts, is revisited in (Brémaud, 2017) and serves as a primary reference 

for general aspects of information theory. 

The necessity for reliable storage devices, namely non-volatile memories (NVMs) like flash 

memory and phase-change memory (PCM), is rising across various applications. NVMs are a 

type of memory that can keep data even when power is unplugged. These multi-level storage 

devices provide permanent data retention, quick access speeds, low power usage, improved 

durability, and scalable storage capacities, making them an essential technology in modern 

systems (Dolecek and Sala 2016). However, the gradual deterioration of the read channel, 

which causes a decline in reliability over time, is a major obstacle to NVM technology. This 

deterioration largely arises from repeated programming and erasing cycles in flash memory, 

causing issues such as charge trapping within oxide and interface states (Olivo, Ricco, and 

Sangiorgi 1986; Compagnoni et al. 2009). These trapped charges result in what are referred to 

be stuck-at or unreachable levels (see (Wachter-Zeh and Yaakobi 2016; Heegard 1983)), which 

can fully or partially prevent a cell from changing states even if new charges are applied, thus 

limiting the cell’s functionality. In order to operate, PCM cells alternate between two states: 

amorphous and crystalline.  These cells can become unreliable (or inaccessible, as described in 

(Gleixner, Pellizzer, and Bez 2009; Pirovano et al. 2004; Gabrys, Sala, and Dolecek 2014)) if 

they fail to transition states during the heating and cooling processes, leaving them fixed in a 

one phase. In multi-level PCM cells, defects may arise either at extreme states or within sub-

states of the crystalline layer. Each multi-level cell functions as a symbol across a discrete 

alphabet of size q, representing one of the q possible levels. Unreachable memory cell 

restriction is described in (Gabrys, Sala, and Dolecek 2014) (see also Definition 1) and is seen 

as the dual of partially stuck memory cells (PSMC), which is defined in (Wachter-Zeh and 
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Yaakobi 2016; Al Kim, Puchinger, et al. 2023). Fig. 1 illustrates writing and reading in MLC 

memory (cf. Section 1) with two such unreliable cells, where only the lower levels are 

adjustable with two restricted cells. Cell0 and Cell2 can only be programmed at the first and 

second levels, with their most significant bits (MSBs) fixed as "0" and unable to change to "1" 

during encoding. In contrast, Cell1 is fully functional, allowing all four states through 

adjustments its MSB and LSB (least significant bit), illustrated by four colors in ascending 

order: blue, green, orange, and red. The decoder interprets each level index (an integer in 0, 1, 

2, 3) as a pair of bits, (b1, b2), constructing symbols from the binary alphabet {0, 1}2. Symbol0 

corresponds to bits (b1, 0) from Cell0, Symbol1 to Cell1, and so on. These symbols concatenate 

into a codeword of length n. 

Non-volatile memory (NVM) channels differ from traditional communication channels by 

some physical constraints, such as unreachable levels, and unique error patterns. Moreover, 

NVM errors are often asymmetric and magnitude-limited, unlike symmetric noise in 

conventional channels (Dolecek and Sala 2016). As an instant, multi-level cell (MLC) flash 

memory shows frequent asymmetric errors and technologies like phase-change RAM 

(PCRAM) face challenges such as limited write endurance and data retention. These factors 

necessitate the analysis of channel capacity and the development of solutions for NVM-specific 

defects and errors. Furthermore, emerging memory technologies like STT-MRAM, RRAM, 

and PCRAM encounter impediments such as limited write endurance, small read windows, and 

data retention issues under extreme conditions (Chih et al., 2021).  

The performance degradation in NVM devices can be relieved by employing system-level 

channel codes, as these memories are analogous to point-to-point communication systems. The 

concept of using error correction techniques to improve reliability in such memories dates back 

to the 1970s (Kuznetsov and Tsybakov 1974).  

The article is organized as follows: Section 2 provides a review of related work on non-volatile 

memories (NVMs) with defects and errors. Section 3 clearly sates our contribution and lists our 

Theorems. Section 4 gives our notations. Sections 5 and 6 are to recall Shannon capacity and 

other related work that directly comparable to our derived channel capacity expressions in 

Sections 7. We discuss our simulation results in Section 8. Finally, Section 5 concludes the 

paper and offers suggestions for future work. 

2. RELATED WORK  

The first attempt to model a dual problem, i.e., stuck-at defects, mathematically and estimate 

some bounds on the capacity can be found in (Heegard and Gamal 1983). The authors in 
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(Heegard and Gamal 1983) studied an extreme scenario in which binary fully defective 

memories were considered. 

In combination with a coset coding and another error-correcting code, Mahdavifar and Vardy 

(Mahdavifar and Vardy 2015) show how the state-of-the-art capacity-achieving codes can be 

used in order to asymptotically achieve the capacity of the binary defective memory (Heegard 

1983). Recent work in (Wachter-Zeh and Yaakobi 2016, Section VIII) provides code 

constructions, without correcting substitution errors, for non-writable memories at levels 𝑠̃ (cf. 

Section 4.1). The authors (Wachter-Zeh and Yaakobi 2016, Section IX) formulate a capacity 

expression without considering any additional errors in a channel if both encoder and decoder 

know the state of the memory, i.e., the positions and states of the partially stuck-at cells. 

However, due to substitution errors caused by inter-cell interference noise or other disturbances, 

the writing process may be unsuccessful (Dolecek and Sala 2016). Additionally, the reading 

process may also fail possibly due to errors in data interpretation or signal degradation 

(Solomon and Y. Cassuto 2019). Thus, works demanding error correction codes and capacity 

consideration to tolerate both types of issues, i.e., faulty memory that suffer random errors are 

inevitable. The recent work in (Al Kim, Puchinger, et al. 2023) introduces diverse algorithms 

that are capable of overcoming the combination of substitution errors and partially stuck 

memory cells (PSMC). The authors examine the code rates while both problems are studied. 

Gabrys et al. in (Gabrys, Sala, and Dolecek 2014) suggest a coding scheme that programs the 

unreliable cells only at specific voltage levels, which are lower than the standard threshold, 

thereby reducing the likelihood of error occurrence. Their approach utilizes generalized tensor 

product codes to enhance reliability. Al Kim and Sidorenko (Al Kim and Sidorenko 2023) in 

their recent work have also suggested codes and bounds on memory with inaccessible levels. 

Nonetheless, they (Al Kim, Puchinger, et al. 2023; Mahdavifar and Vardy 2015; Gabrys, Sala, 

and Dolecek 2014; Al Kim and Sidorenko 2023) did not involve the capacity formulations 

regarding channels of this kind. 

Fig. 1. Multi-Level Cell (MLC) Device (cf. Section 1)) with Two Restricted Cells  

and One Normal Cell. A similar figure is in (Al Kim and Sidorenko 2023). 
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Ben-Hur and Cassuto paper (Ben-Hur and Yuval Cassuto 2021) addresses a similar problem 

with a single erroneous state, namely a barrier state. Their work as shown in (Ben-Hur and 

Yuval Cassuto 2021, Fig.2) explores the capacity of the barrier channel. However, the authors 

focus on a dominant error that is happening in the 0 state, i.e., a higher probability when 

transitioning into and out of this state. 

We count on these papers as our foundation to derive our capacity formulas considering 𝑞-ary 

memories with unreachable levels. Our work also generalize the capacity expression of the 

barrier channel in (Ben-Hur and Yuval Cassuto 2021) since we suggest 𝑞-ary system in which 

any chosen state among 𝑞 many could be the barrier state (cf. for example Fig. 4). We imply 

by our simulation results that these capacity expressions satisfy prior works that have been 

mentioned above. For instance, the outcomes in (Al Kim and Sidorenko 2023) align with our 

findings in this paper. 

3. CONTRIBUTION 

This paper presents Shannon-type capacity equations as reference points, enabling future and 

past work on channels with multiple types of errors to be directly related to our formulas. We 

also draw them to easily visualize the channel model of these capacities. The main derived 

capacity expressions that are our contribution in this work are as follows. 

• Theorem 1: capacity of an unreachable memory system at any 𝑠̃ with disjoint errors, 

• Theorem 2: capacity with joint errors in 𝑛 cells with 𝑠̃= 𝑞 − 2, 

• Theorem 3: generalization of Theorem 2 for arbitrary 𝑠̃ ∈ {0,1, … , 𝑞 − 1}, and 

• Theorem 4: achievable capacity expressions in Theorem 1, Theorem 2, and Theorem 3. 

Publications such as (Mahdavifar and Vardy 2015; Wachter-Zeh and Yaakobi 2016; Al Kim, 

Puchinger, et al. 2023; Al Kim and Sidorenko 2023; Gabrys, Sala, and Dolecek 2014), among 

others, can apply our formulations to compare their code rates with our capacity formulations 

We simulate our derived formulas to compare capacity across different channel regimes, as the 

following: 

• an idealized memory with full capacity, 

• a 𝑞-ary symmetric channel (𝑞SC) modeling a discrete memoryless channel (DMC) with 

substitution errors only, 

• defective memory without random errors, and 

• a 𝑞-ary defective channel, denoted by 𝑞DC(𝑝) (cf. Definition 3), representing defective 

memory.  

Our results are consistent with prior code constructions’ rates, some of which reach our capacity 
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limits. While we have not included these rate results here, readers can explore them further in 

(Kuznetsov and Tsybakov 1974; Heegard and Gamal 1983; Heegard 1983; Gabrys, Sala, and 

Dolecek 2014; Solomon and Y. Cassuto 2019; Mahdavifar and Vardy 2015; Wachter-Zeh and 

Yaakobi 2016; Al Kim, Puchinger, et al. 2023; Al Kim and Sidorenko2023). Nevertheless, we 

state Theorem 4 that proves these codes achieve our capacity equations. 

4. PRELIMINARIES 

4.1. Notations 

Denote by ℤ/𝑞ℤ the set of integers modulo 𝑞. For 𝑔, 𝑓 ∈  ℤ>0, denote [𝑓 ] = {0, 1, . . . , 𝑓 − 1}. 

For a prime power 𝑞, let 𝔽𝑞 denote the finite field of order 𝑞. Let {𝒔̃, 𝒔 ∈ 𝔽𝑞
𝑛: 𝒔 + 𝒔̃ = 𝒒 − 𝟏}. 

The (Hamming) weight 𝑤𝑡(𝒂) of a vector 𝒂 ∈ 𝔽𝑞
𝑛 equals its number of non-zero entries. We 

use the notation (𝑞 −  1)𝑛 and 𝒒 −  𝟏 ∈  𝔽𝑞
𝑛 interchangeably to refer to a vector of length 𝑛 

where each element is an integer equal to 𝑞 − 1. In addition, we represent 𝒂 ∈  𝔽𝑞
𝑛 as 𝒒 − 𝟏 −

𝒔̃ ∈  𝔽𝑞
𝑛, meaning that 𝒒 − 𝟏 − 𝒔̃ is a vector of length 𝑛 where all its non-zero components 

indicate the positions of a memory with non-programmable levels, and 𝒔̃ is a vector of length 

𝑛, i.e., {𝒔̃ ∈  𝔽𝑞
𝑛 ∶ 𝑤𝑡(𝒒 − 𝟏 − 𝒔̃) ≠  𝟎}. To coincide with works considering codes for 

memories with unreachable levels over finite fields, we also define a total ordering "≤" on the 

elements of 𝔽𝑞 such that 0 ≤  1 ≤  𝑥 for all 𝑥 ∈ 𝔽𝑞\ {0}. In other words, 0 is the smallest 

element in 𝔽𝑞, and 1 is the next smallest element in 𝔽𝑞. To maintain uncomplicated notation, 

we sometimes represent an element 𝑥 ∈  𝔽𝑞 by an integer value, which is calculated as 𝑞 −

|{𝑦 ∈  𝔽𝑞| 𝑥 ≤  𝑦}|. For example, let 𝑞 =  22 where 𝔽22  =  {0, 1, 𝛼, 𝛼2} and 𝛼 be a primitive 

element in 𝔽22 , and let 𝑥 =  𝛼2, then the integer value that associates with 𝛼2 is 22 − |{𝛼2}| = 

3 ∈ ℤ/𝑞ℤ. Our theorems in this paper are defined over the set ℤ/𝑞ℤ = {0, 1, . . . , 𝑞 − 1} but can 

also be applied to 𝔽𝑞 ≔ {0, 1, 𝛼, . . . , 𝛼𝑞−2} due to the one-to-one mapping between ℤ/𝑞ℤ and 

𝔽𝑞. 

Definition 1. (Unreachable Memory Cells (UMC)) In a block of 𝑛 𝑞-ary memory cells, a cell is 

defined as unreachable at level 𝑠̃ if it can store only values up to 𝑠̃. A non-writable cell at level 

𝑞 − 1 is just a normal cell as it is capable of being programmed until its (𝑞 − 1)-th level. In 

contrast, an unreachable cell at level 0 is said fully non-programmable, meaning it can only 

store the 0 symbol. 

5. STANDARD CHANNEL CAPACITY FOR DISCRETE MEMORYLESS 

CHANNEL (DMC) 

We start by recalling the well-known channel capacity derived by Shannon (Shannon 1948). 
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5.1. Channel capacity  

The channel coding theorem introduced by Shannon (Shannon 1948) concerns the possibility 

of communicating via a noisy channel with an arbitrarily small error. The channel capacity 𝐶 

is defined as the maximum mutual information between two discrete random variables 𝑋 and 𝑌 

, which can be achieved by an input distribution 𝑃𝑋(·). 

𝐶 = max
𝑃𝑋

𝐼(𝑋;  𝑌 )                                                                      (1) 

The mutual information can be described by the Entropy of random variables as follows: 

𝐼(𝑋;  𝑌 ) = 𝐻(𝑋) − 𝐻(𝑋|𝑌 )  = 𝐻(𝑋𝑌 ) − 𝐻(𝑋|𝑌 ) − 𝐻(𝑌 |𝑋)             (2)    

Entropy is the logarithmic weighted uncertainty in a probability distribution, defined as:  

𝐻(𝑋) = − ∑ 𝑃𝑋(𝑎)𝑎∈ 𝑠𝑢𝑝𝑝(𝑃𝑋) log2 𝑃𝑋(𝑎)             (3) 

5.2. Entropy functions and memory capacity 

Definition 2. (q-ary Entropy Function) The 𝑞-ary entropy function, ℎ𝑞(𝜀), measures the 

uncertainty of an event occurring with probability 𝜀 in a system with an alphabet size of 𝑞. It is 

defined as: 

ℎ𝑞(𝜀) = 𝜀 log𝑞(𝑞 − 1)  − 𝜀 log𝑞 𝜀 − (1 −  𝜀) log𝑞(1 −  𝜀) 

This function generalizes the binary entropy function and is used in systems operating with q-

ary symbols. For q = 2, it reduces to the binary entropy function 

ℎ2(𝜀) = −𝜀 log2 𝜀 − (1 −  𝜀) log2(1 −  𝜀).      (4) 

Note that to relate Eq.4 and Eq.3, we set 𝑃𝑋(0)  =  𝜀 and 𝑃𝑋(1)  =  1 −  𝜀.  

Then 𝐻(𝑋)  =  ℎ2(𝜀). 

Definition 3. (𝑞-ary Erasure Channel and q-ary Defective Channel) A 𝑞-ary erasure channel 

(𝑞EC) is a communication channel model where transmitted symbols can be erased with some 

probability, leaving the decoder uncertain about the symbol received, which can take any of the 

q possible values. 

Conversely, a 𝑞-ary defective channel denoted by (𝑞DC(𝑝)), is a channel model where stored 

symbols may fail to be programmed with some probability 𝑝, leaving the encoder unable to 

store certain symbols. 

5.3. Channel models 

In information theory, several channel models exist, with discrete memory-less channels. One 

of the most important models is the binary symmetric channel (BSC), which has a binary input 

alphabet 𝑋 and a binary output alphabet 𝑌. 
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The general formula for the capacity of this channel can be obtained by evaluating Eq.1 as given 

in (Brémaud 2017): 

𝐶 = max
𝑃𝑋

𝐼(𝑋;  𝑌 ) = 1 − ℎ2(𝜀) ,                     (5) 

where ℎ2(𝜀) is the binary entropy function, representing the uncertainty of a BSC with 

crossover probability 𝜀. 

Thus, we one can generalize Eq.5 into q-ary entropy that is expressed by: 

𝐶 = max
𝑃𝑋

𝐼(𝑋;  𝑌 ) = 1 − ℎ𝑞(𝜀) .                       (6) 

6. CHANNEL CAPACITY FOR PARTIALLY STUCK-AT CELLS 

According to (Wachter-Zeh and Yaakobi 2016, Section IX), if both the encoder and decoder 

are aware of the memory state, including the locations and levels of the partially stuck-at cells, 

the capacity 𝐶𝑞(𝑝, 𝑠) (in the authors’ notations 𝑠 =  𝑠𝜙𝑖 ∀𝑖) without considering any additional 

errors in a channel is 

𝐶𝑞(𝑝, 𝑠) = 1 − 𝑝 + 𝑝 log𝑞(𝑞 −  𝑠) .                                            (7) 

It is assumed that a cell is partially stuck at level 𝑠 with some probability 𝑝, where 𝑢 =  𝑝𝑛. 

Accordingly, there are 𝑛 −  𝑢 normal cells, i.e. non-defect memory cells, with probability  

(1 − 𝑝) and thus 𝑛 −  𝑢 =  (1 − 𝑝)𝑛. 

It is worth noting that referring to Eq.7, the finite field size 𝑞, critically impacts the NVM 

channel capacity 𝐶𝑞(𝑝, 𝑠). It represents the number of distinct levels in memory and influences 

log𝑞(𝑞 −  𝑠) term in Eq.7, which quantifies usable levels amidst 𝑠 unreachable ones. Larger 𝑞 

reduces the impact of 𝑠, increasing capacity, while smaller 𝑞 amplifies effect of 𝑠, and thus 

reducing capacity. 

Remark 1. If error does not be considered as in (Wachter-Zeh and Yaakobi 2016, Section IX) 

and we assume a memory without any probability of partially stuck at some levels  

(𝑝 = 0, 𝑠 = 0). Then, Eq. 7 becomes (𝐶𝑞(0, 0) = 1) which is an optimal storage memory of a 

full capacity to store any vector of information of length 𝑛. 

Remark 2. If error does not be considered as in (Wachter-Zeh and Yaakobi 2016, Section IX) 

such that 𝜀 = 0 and we assume a memory with a partially stuck at 𝑠 =  𝑞 − 1 (a cell can not 

store anything). Then, Eq. 7 becomes 𝐶𝑞(𝑝, 𝑞 − 1) = 1 − 𝑝 which agrees with (Heegard and 

Gamal 1983, Eq. (1.2)). 

7. CHANNEL CAPACITY FOR MEMORY WITH UNREACHABLE LEVELS AND 

SUBSTITUTION ERRORS 

We assume that the encoder is aware of the locations and values of defective cells through 
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techniques such as "read voltage threshold" checks, while the decoder is not. This setup mirrors 

a realistic scenario in flash devices, where these checks help prevent the encoder from writing 

to worn-out cells. Conversely, flash memories rely on the decoder’s Error Correction Codes 

(ECC) capabilities to maintain data integrity and manage cell wear. In this context, we derive 

capacity expressions for various scenarios, finding that capacity reaches its maximum (cf. 

(Heegard and Gamal 1983, Eq. (1.2))) when both the encoder and decoder are informed about 

the locations of the faulty cells. 

We do not specify the source of substitution errors or the reasons a cell becomes unreachable, 

as these errors can occur anywhere within the system of n cells following the uniform 

distribution. 

Definition 4. (Entropy in Memory Cells) Assume a system of a memory with n cells that can 

be programmable at 𝒔̃ = (𝑠̃0, 𝑠̃1, . . . , 𝑠̃𝑛 − 1) ∈ {0, 1, . . . , 𝑞 −  1}𝑛, where the Hamming weight 

of (𝑞 −  1) 𝑛 −  𝒔̃ is at most u, i.e., 𝑤𝑡((𝑞 −  1)𝑛 −  𝒔̃) ≤  𝑢. Consider 𝑛 −  𝑢 are normal 

cells, and 𝑢 cells are in a state of having inaccessible levels 𝒔̃, meaning they cannot reach certain 

states. Errors occurring in the 𝑛 − 𝑢 normal cells introduce uncertainty, measured by the 𝑞-ary 

entropy function ℎ𝑞(𝜀) (cf. Definition 2). 

7.1. The capacity while disjoint errors happening in 𝒏 − 𝒖 cells 

Theorem 1 (Capacity of an Unreachable Memory System at any 𝑠̃ with Disjoint Errors). Let 

Definition 4 hold. The capacity of this memory system, disturbed by random errors in the 𝑛 −

 𝑢 normal cells, is: 

  𝐶𝑞(𝑝, ε, 𝑠̃) = 1 − 𝑝 + 𝑝 log𝑞( 𝑠̃ + 1) – (1 − 𝑝 ) ℎ𝑞(𝜀)  (8) 

where 𝑝 is the proportion of cells without errors, 𝑠̃ is the number of inaccessible levels in the 𝑢 

cells, and ℎ𝑞(𝜀) is the 𝑞-ary entropy function from Definition 2. 

Proof. In this memory system, 𝑢 cells have inaccessible levels with probability 𝑝, meaning they 

are assumed to not subjecting to further substitution errors. The (𝑛 − 𝑢) remaining cells are 

normal and may experience random errors with crossover probability 𝜀.  

The uncertainty (or entropy) in the 𝑛 −  𝑢 normal cells is measured by the 𝑞-ary entropy 

function ℎ𝑞(𝜀). The contribution of this entropy to the overall system capacity is weighted by 

(1 − 𝑝), as the errors occur only in the 𝑛 −  𝑢 normal cells. 

On the other hand, the 𝑢 cells with inaccessible levels 𝑠̃ contribute a capacity of 𝑝 log𝑞( 𝑠̃ + 1), 

i.e., only one level is not programmable. Remember that 𝑠 + 𝑠̃ = 𝑞 − 1, where s  

(cf. Section 6). 

The total capacity is the sum of the contributions from both 𝑢 and 𝑛 −  𝑢 cells, leading to the 
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formula:  

𝐶𝑞(𝑝, ε, 𝑠̃) = 1 − 𝑝 + 𝑝 log𝑞( 𝑠̃ + 1) – (1 − 𝑝) ℎ𝑞(𝜀). 

Thus, the capacity is reduced due to the entropy arising from the errors in the n − u nor- mal 

cells, while the u cells contribute a reduced capacity due to their restricted levels. This 

concludes the proof.  

Fig. 2 depicts the channel model for the capacity as stated in Theorem 1. The upper part of the 

figure shows the 𝑞-ary symmetric channel (𝑞SC) with a crossover probability of 𝜀 representing 

the possibility that a normal cell experiences a substitution error.  

During the writing (or reading) process, a value is stored (or retrieved) in ℤ/𝑞ℤ or 𝔽q, differing 

from the intended value with probability 
𝜀

𝑞−1
. The lower part, on the other hand, illustrates the 

unreliable cells, which are assumed to not experience any random errors during the reading and 

writing operations. We call the channel in the lower part with 𝑞DC(𝑝) a 𝑞-ary defective channel, 

(cf. Definition 3). 

Corollary 1 (Capacity in Theorem 1 fulfilling Eq.7 and Eq.8). If 𝑠̃ = 𝑞 − 1, i.e., all cells are 

fully reachable (cf. Definition 1) and thus 𝑝 = 0, then Eq.8 coincides with: 

𝐶𝑞(0, 𝜀, 𝑞 − 1) = 1 − ℎ𝑞(𝜀). 

If 𝜀 = 0, i.e., substitution errors are not considered, the Eq.8 becomes 

𝐶𝑞(𝑝, 0, 𝑠̃)  =  1 − 𝑝 + 𝑝 log𝑞(𝑞 − 𝑠). 

Proof. When 𝑠̃ = 𝑞 − 1, all cells are fully reachable, meaning there are no inaccessible levels. 

Thus, 𝑝 = 0, eliminating the 𝑝 terms in Eq.8. The capacity formula simplifies to: 

𝐶𝑞(0, 𝜀, 𝑞 − 1) = 1 − ℎ𝑞(𝜀), 

which matches the general formula for the capacity, Eq.6. Furthermore, if the system has no 

substitution errors, i.e., ℎ𝑞(0)  =  0, Eq. 8 reduces to Eq. 7. 

7.2. The capacity while joint errors happening in 𝒏 cells 

Theorem 2 (Capacity with Joint Errors in n Cells and 𝑠̃= 𝑞 − 2). Let Definition 4 hold, but now 

assume that errors can occur in any of the 𝑛 cells and (𝑠̃0, 𝑠̃1, . . . , 𝑠̃𝑛 − 1) ∈ {𝑞 − 2, 𝑞 −

2, . . . , 𝑞 − 2}𝑛. The channel capacity considering joint errors in any of the 𝑛 cells is given by: 

𝐶𝑞(𝑝, 𝜀, 𝜀𝑞−2, 𝑞 − 2) = 1 − 𝑝 + 𝑝 log𝑞 (𝑠̃ + 1) − ℎ𝑞(𝜀)(1 − 𝑝) − 𝑝 log𝑞(𝑠̃ + 1)ℎ𝑞(𝜀𝑞−2),        (9) 

where ℎ𝑞(𝜀) and ℎ𝑞(𝜀𝑞−2) are the 𝑞-ary entropy functions for 𝑛 −  𝑢 normal cells and 𝑢-

UMCs, respectively. 

Proof. In the joint case, random errors due to, e.g., a failure in a writing process can occur in 

both the 𝑛 −  𝑢 normal cells and the 𝑢 cells that are inaccessible at 𝑠̃= 𝑞 − 1. The entropy in 
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the normal cells follows the standard probability 𝜀, contributing the term ℎ𝑞(𝜀)(1 − 𝑝). In the 

𝑢-UMCs, errors occur in the range between the lowest level 0 and 𝑠̃= 𝑞 − 2, with crossover 

Fig. 2. Channel model for the capacity in a disjoint case. The state 𝒔̃ = 𝟎 means that a cell is 

wholly unreachable and thus only the value 𝟎 can be stored there. 

Fig. 3. 𝒔̃=
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probability of error denoted by 𝜀𝑞−2. The uncertainty in these cells is reflected by the entropy 

term 𝑝 log𝑞(𝑠̃ + 1)ℎ𝑞(𝜀𝑞−2), which reduces the overall capacity. Combining these two 

contributions, the total capacity is given by Eq.9, which accounts for the entropy in both normal 

and defective cells. 

One can visualize in Fig. 3 the capacity of a channel model as proved in Theorem 2. 

Corollary 2. If 𝜀 =  0 and 𝜀𝑞−2 = 0, the capacity 𝐶𝑞(𝑝, 0, 0, 𝑞 − 2) in Eq.9 coincides with the 

capacity 𝐶𝑞(𝑝, 𝑠) as given in Eq.7. Furthermore, if 𝑝 = 0, Eq.9 reduces to the 𝑞-ary channel 

capacity:                                                  𝐶𝑞(𝜀) = 1 − ℎ𝑞(𝜀), 

which matches the general formula for the capacity in Eq.6. 

Proof. For ε =  0 and εq−2 = 0, the channel behaves as if no errors occur, thus reducing the 

capacity expression to Cq(p, s) as in Eq.7. When p = 0, there are no UMCs, leading to the 

classical 𝑞-ary channel capacity, Cq(p, s) = 1 − hq(ε), as shown in Eq.6. 

7.3. A generalization of Theorem 2 

Theorem 3 (Generalization of Theorem 2). Let 𝒔̃ = {0,1, … , 𝑞 − 1}𝑛 with 𝑤𝑡((𝑞 − 1)𝑛  −

 𝒔̃)  ≤ 𝑢.  A generalization of the capacity from Theorem 2 is given by: 

𝐶𝑞(𝑝, 𝜀, 𝜀0, 𝜀1, . . . , 𝜀𝑞−2, 𝒔̃) = 1 − 𝑝 + ∑ 𝑝𝑠̃
𝑞−2
𝑠̃=0 [(𝑠̃ + 1) − 𝑙𝑜𝑔𝑞(𝑠̃ + 1)ℎ𝑞(𝜀𝑠̃)] − (1 − 𝑝)ℎ𝑞(𝜀),     (10) 

where 𝑝𝑠̃ denotes the probability of a cell to become unreachable at level 𝑠̃ that has a crossover 

probability 𝜀𝑠̃. 

Proof. The expression in Eq.10 is a generalization of the capacity from Eq.9. This means that 

u cells cannot be reached at arbitrary levels 𝑠̃. The probability 𝑝 for Unreachable Memory Cells 

(UMCs) splits into sub-probabilities according to the number of defective levels, 𝒔̃ =

(𝑠̃0, 𝑠̃1, . . . , 𝑠̃𝑛 − 1) ∈  {0,1, … , 𝑞 − 1}𝑛. The union bound on 𝑝0, 𝑝1, . . . , 𝑝𝑞−2 represent the 

probabilities at levels s˜ = 0, 0,1, … , 𝑞 − 2, respectively, with ∑ 𝑝𝑠̃ = 𝑝. 

Fig. 4 shows the channel model for the generalization of Theorem 2. Since substitution errors 

occur randomly and can affect any cell in the memory (both 𝑛 −  𝑢 and 𝑢 cells), the 𝑞-ary 

symmetric channel (𝑞SC) with a crossover probability of 
𝜀

(𝑞−1)
 represents the likelihood that an 

𝑛 −  𝑢 normal cell experiences a substitution error. The lower part illustrates the u unreachable 

cells, which also experience random errors during the reading and writing operations, but with  

𝜀

(𝑞−𝑠̃)
, corresponding to the probability 𝑝𝑠̃ of being not reachable in the 𝑠̃ state. 

Theorem 4. The capacity expressions in Theorem 1, Theorem 2, and Theorem 3 are achievable. 
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Proof. We begin by noting the work in (Mahdavifar and Vardy 2015), which explicitly 

provides Hamming and convolutional coding schemes that achieve capacity. Additionally, 

Heegard demonstrated in (Heegard 1983) that random partitioned linear codes reach capacity, 

although this required solving an implicit optimization problem within the encoder. Further, 

Wachter-Zeh and Yaakobi verified capacity-achieving codes for 𝑠 = 1 and larger values of 𝑞 

in (Wachter-Zeh and Yaakobi 2016, Figs 2 and 3). By applying Corollary 1 and Corollary 2, 

our capacity expressions align with those in (Heegard and Gamal 1983; Mahdavifar and Vardy 

2015; Wachter-Zeh and Yaakobi 2016). Consequently, we infer that our capacities are indeed 

achievable.  

8. RESULTS AND DISCUSSIONS 

In Fig. 5, 6, and 7, we plot the channel capacity across different configurations, examining 

various values of 𝑞, 𝑝, 𝜀, and 𝑢 with 𝑠̃ = 𝑞 − 1. The plots illustrate capacities for multiple 

scenarios: “No UMCs” and “No errors” (𝐶𝑞(0, 0) = 1) representing ideal memory, “Only 

errors” as standard Shannon capacity for Discrete Memoryless Channels (DMCs) from Eq.5, 

“Only UMCs” without substitution errors from Eq.7, and “UMCs and errors” under non-

overlapping and overlapping conditions, as defined by Eq.8 and Eq.9, respectively. These 

figures reveal that an increase in UMCs results in greater capacity degradation, as seen in the 

long-dashed curve. Additionally, the most severe case occurs when errors overlap with UMC 

locations, as depicted by the dashed-dotted line, which is closest to real-world conditions. For 

instance, under error-free conditions, our results match the expressions in (Wachter-Zeh and 

Yaakobi 2016, Section IX), and for 𝑞 = 2 and erroneous system, our formulas coincide with 

those in (Heegard and Gamal 1983).Observing the sequence of these figures, we note that when 

𝜀 is low, the capacity from Eq.5 approaches optimal levels. However, as 𝜀 increases, the 

probability of errors rises, leading to significant capacity deterioration. This is because, as the 

number of 𝑢 cells and substitution errors in the system increases, more redundancy is required 

to compensate for these problems, resulting in lower capacity in the 𝑞DC(𝑝) channels.  

9. CONCLUSIONS 

In this paper, we developed comprehensive capacity expressions for multi-level non-volatile 

memory (NVM) channels, particularly those experiencing varied error types due to degraded 

read channels and restricted programmability. We generalized previous channel capacity 

formulations to accommodate cases with both disjoint and jointly occurring cells with 

unreachable levels and substitution errors, addressing the practical needs of modern memory 

storage technologies like flash memory and phase-change memory (PCM). Our derived 
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formulas offer a foundational reference for evaluating and comparing the rates of various coding 

schemes developed for NVMs under different channel conditions. Through simulations, we 

demonstrated the applicability of these capacity expressions across diverse memory conditions, 

including ideal, substitution-error-only, and defective memory channels with and without 

substitution error, aligning well with established capacity benchmarks. 

Furthermore, we demonstrate that these capacity expressions can be achieved with appropriate 

coding schemes, thus contributing a robust theoretical framework for future code designs in 

error-resilient memory storage. 

Future research might examine the usage of erasure coding to analyze a channel capacity with 

three considerations: unreliable states, erasures, and random errors. This extension would yield 

capacity formulas for a more comprehensive channel model, enhancing applicability in real-

world memory systems.  
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