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ABSTRACT

This paper investigates the channel capacity of unreachable memory cells (UMCs), where a cell
is deemed S-unreachable if it cannot store values beyond a specific state, §. Memories with
these impairments are modeled as discrete memoryless channels (DMCs), similar to those used
in information theory and communications. We derive Shannon-type capacity equations for
memories with unreachable levels and substitution errors. These novel equations generalize
classical Shannon capacity to systems with UMCs. We also compare ideal memories (without
imperfections or errors) with normal memories affected by random errors only, as well as
defective and erroneous memories. Our findings corroborate previous studies, particularly
regarding random distributions of defective cells. Our results highlight the impact of increasing
faulty cells and substitution errors, demonstrating the necessity of greater redundancy to

maintain system performance.
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1. INTRODUCTION

Point-to-point communication systems can operate in space, between a transmitter and receiver,
or in time, where symbols are stored and later retrieved. These systems depend on accurate
channel estimation and understanding of channel capacity to minimize errors and optimize
performance. Many types of research highlights various approaches to improving signal
reliability and data rates, and reducing error probabilities, focusing on the critical roles of SNR,
antenna configurations, and advanced estimation techniques (Hameed 2021; Ali and Hreshee
2023; Al-Ja'afari et al. 2021).

Channel coding plays a crucial role in determining the maximum data rate that a channel can
transfer. The foundational ideas of information theory were introduced by Claude E. Shannon
in his groundbreaking 1948 work (Shannon, 1948). The capacity theorem, which is central to
understanding these concepts, is revisited in (Brémaud, 2017) and serves as a primary reference
for general aspects of information theory.

The necessity for reliable storage devices, namely non-volatile memories (NVMs) like flash
memory and phase-change memory (PCM), is rising across various applications. NVMs are a
type of memory that can keep data even when power is unplugged. These multi-level storage
devices provide permanent data retention, quick access speeds, low power usage, improved
durability, and scalable storage capacities, making them an essential technology in modern
systems (Dolecek and Sala 2016). However, the gradual deterioration of the read channel,
which causes a decline in reliability over time, is a major obstacle to NVM technology. This
deterioration largely arises from repeated programming and erasing cycles in flash memory,
causing issues such as charge trapping within oxide and interface states (Olivo, Ricco, and
Sangiorgi 1986; Compagnoni et al. 2009). These trapped charges result in what are referred to
be stuck-at or unreachable levels (see (Wachter-Zeh and Yaakobi 2016; Heegard 1983)), which
can fully or partially prevent a cell from changing states even if new charges are applied, thus
limiting the cell’s functionality. In order to operate, PCM cells alternate between two states:
amorphous and crystalline. These cells can become unreliable (or inaccessible, as described in
(Gleixner, Pellizzer, and Bez 2009; Pirovano et al. 2004; Gabrys, Sala, and Dolecek 2014)) if
they fail to transition states during the heating and cooling processes, leaving them fixed in a
one phase. In multi-level PCM cells, defects may arise either at extreme states or within sub-
states of the crystalline layer. Each multi-level cell functions as a symbol across a discrete
alphabet of size q, representing one of the q possible levels. Unreachable memory cell
restriction is described in (Gabrys, Sala, and Dolecek 2014) (see also Definition 1) and is seen

as the dual of partially stuck memory cells (PSMC), which is defined in (Wachter-Zeh and
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Yaakobi 2016; Al Kim, Puchinger, et al. 2023). Fig. 1 illustrates writing and reading in MLC
memory (cf. Section 1) with two such unreliable cells, where only the lower levels are
adjustable with two restricted cells. Cell0 and Cell2 can only be programmed at the first and
second levels, with their most significant bits (MSBs) fixed as "0" and unable to change to "1"
during encoding. In contrast, Celll is fully functional, allowing all four states through
adjustments its MSB and LSB (least significant bit), illustrated by four colors in ascending
order: blue, green, orange, and red. The decoder interprets each level index (an integer in 0, 1,
2, 3) as a pair of bits, (b1, b2), constructing symbols from the binary alphabet {0, 1}2. Symbol0
corresponds to bits (b1, 0) from Cell0, Symboll to Celll, and so on. These symbols concatenate
into a codeword of length n.

Non-volatile memory (NVM) channels differ from traditional communication channels by
some physical constraints, such as unreachable levels, and unique error patterns. Moreover,
NVM errors are often asymmetric and magnitude-limited, unlike symmetric noise in
conventional channels (Dolecek and Sala 2016). As an instant, multi-level cell (MLC) flash
memory shows frequent asymmetric errors and technologies like phase-change RAM
(PCRAM) face challenges such as limited write endurance and data retention. These factors
necessitate the analysis of channel capacity and the development of solutions for NVM-specific
defects and errors. Furthermore, emerging memory technologies like STT-MRAM, RRAM,
and PCRAM encounter impediments such as limited write endurance, small read windows, and
data retention issues under extreme conditions (Chih et al., 2021).

The performance degradation in NVM devices can be relieved by employing system-level
channel codes, as these memories are analogous to point-to-point communication systems. The
concept of using error correction techniques to improve reliability in such memories dates back
to the 1970s (Kuznetsov and Tsybakov 1974).

The article is organized as follows: Section 2 provides a review of related work on non-volatile
memories (NVMs) with defects and errors. Section 3 clearly sates our contribution and lists our
Theorems. Section 4 gives our notations. Sections 5 and 6 are to recall Shannon capacity and
other related work that directly comparable to our derived channel capacity expressions in
Sections 7. We discuss our simulation results in Section 8. Finally, Section 5 concludes the

paper and offers suggestions for future work.

2. RELATED WORK
The first attempt to model a dual problem, i.e., stuck-at defects, mathematically and estimate

some bounds on the capacity can be found in (Heegard and Gamal 1983). The authors in
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(Heegard and Gamal 1983) studied an extreme scenario in which binary fully defective
memories were considered.

In combination with a coset coding and another error-correcting code, Mahdavifar and Vardy
(Mahdavifar and Vardy 2015) show how the state-of-the-art capacity-achieving codes can be
used in order to asymptotically achieve the capacity of the binary defective memory (Heegard
1983). Recent work in (Wachter-Zeh and Yaakobi 2016, Section VIII) provides code
constructions, without correcting substitution errors, for non-writable memories at levels § (cf.
Section 4.1). The authors (Wachter-Zeh and Yaakobi 2016, Section IX) formulate a capacity
expression without considering any additional errors in a channel if hoth encoder and decoder

know the state of the memory, i.e., the positions and states of the partially stuck-at cells.
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Fig. 1. Multi-Level Cell (MLC) Device (cf. Section 1)) with Two Restricted Cells
and One Normal Cell. A similar figure is in (Al Kim and Sidorenko 2023).
However, due to substitution errors caused by inter-cell interference noise or other disturbances,
the writing process may be unsuccessful (Dolecek and Sala 2016). Additionally, the reading
process may also fail possibly due to errors in data interpretation or signal degradation
(Solomon and Y. Cassuto 2019). Thus, works demanding error correction codes and capacity
consideration to tolerate both types of issues, i.e., faulty memory that suffer random errors are
inevitable. The recent work in (Al Kim, Puchinger, et al. 2023) introduces diverse algorithms
that are capable of overcoming the combination of substitution errors and partially stuck
memory cells (PSMC). The authors examine the code rates while both problems are studied.
Gabrys et al. in (Gabrys, Sala, and Dolecek 2014) suggest a coding scheme that programs the
unreliable cells only at specific voltage levels, which are lower than the standard threshold,
thereby reducing the likelihood of error occurrence. Their approach utilizes generalized tensor
product codes to enhance reliability. Al Kim and Sidorenko (Al Kim and Sidorenko 2023) in
their recent work have also suggested codes and bounds on memory with inaccessible levels.
Nonetheless, they (Al Kim, Puchinger, et al. 2023; Mahdavifar and Vardy 2015; Gabrys, Sala,
and Dolecek 2014; Al Kim and Sidorenko 2023) did not involve the capacity formulations

regarding channels of this kind.
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Ben-Hur and Cassuto paper (Ben-Hur and Yuval Cassuto 2021) addresses a similar problem
with a single erroneous state, namely a barrier state. Their work as shown in (Ben-Hur and
Yuval Cassuto 2021, Fig.2) explores the capacity of the barrier channel. However, the authors
focus on a dominant error that is happening in the O state, i.e., a higher probability when
transitioning into and out of this state.

We count on these papers as our foundation to derive our capacity formulas considering g-ary
memories with unreachable levels. Our work also generalize the capacity expression of the
barrier channel in (Ben-Hur and Yuval Cassuto 2021) since we suggest g-ary system in which
any chosen state among q many could be the barrier state (cf. for example Fig. 4). We imply
by our simulation results that these capacity expressions satisfy prior works that have been
mentioned above. For instance, the outcomes in (Al Kim and Sidorenko 2023) align with our

findings in this paper.

3. CONTRIBUTION

This paper presents Shannon-type capacity equations as reference points, enabling future and
past work on channels with multiple types of errors to be directly related to our formulas. We
also draw them to easily visualize the channel model of these capacities. The main derived
capacity expressions that are our contribution in this work are as follows.

e Theorem I: capacity of an unreachable memory system at any § with disjoint errors,

e Theorem 2: capacity with joint errors in n cells with §=q — 2,

e Theorem 3: generalization of Theorem 2 for arbitrary § € {0,1, ...,q — 1}, and

e Theorem 4: achievable capacity expressions in Theorem 1, Theorem 2, and Theorem 3.
Publications such as (Mahdavifar and Vardy 2015; Wachter-Zeh and Yaakobi 2016; Al Kim,
Puchinger, et al. 2023; Al Kim and Sidorenko 2023; Gabrys, Sala, and Dolecek 2014), among
others, can apply our formulations to compare their code rates with our capacity formulations
We simulate our derived formulas to compare capacity across different channel regimes, as the
following:

 an idealized memory with full capacity,

e a g-ary symmetric channel (gSC) modeling a discrete memoryless channel (DMC) with
substitution errors only,

e defective memory without random errors, and

e a g-ary defective channel, denoted by gDC(p) (cf. Definition 3), representing defective
memory.

Our results are consistent with prior code constructions’ rates, some of which reach our capacity
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limits. While we have not included these rate results here, readers can explore them further in
(Kuznetsov and Tsybakov 1974; Heegard and Gamal 1983; Heegard 1983; Gabrys, Sala, and
Dolecek 2014; Solomon and Y. Cassuto 2019; Mahdavifar and Vardy 2015; Wachter-Zeh and
Yaakobi 2016; Al Kim, Puchinger, et al. 2023; Al Kim and Sidorenko2023). Nevertheless, we

state Theorem 4 that proves these codes achieve our capacity equations.

4. PRELIMINARIES

4.1. Notations

Denote by Z/qZ the set of integers modulo q. For g, f € Zq, denote [f | ={0,1,...,f —1}.
For a prime power g, let IF, denote the finite field of order q. Let {S,s € Fg: s +§ = q — 1}.
The (Hamming) weight wt(a) of a vector a € [F equals its number of non-zero entries. We
use the notation (¢ — 1)" and q — 1 € Ff interchangeably to refer to a vector of length n
where each element is an integer equal to ¢ — 1. In addition, we representa € Fgasq —1 —
§ € g, meaning that ¢ — 1 — §'is a vector of length n where all its non-zero components
indicate the positions of a memory with non-programmable levels, and § is a vector of length
n, ie,{§ € Fg : wt(q —1—8) # 0}. To coincide with works considering codes for
memories with unreachable levels over finite fields, we also define a total ordering "<" on the
elements of F, such that 0 < 1 < x for all x € F,\ {0}. In other words, 0 is the smallest
element in [Fy, and 1 is the next smallest element in [F;. To maintain uncomplicated notation,
we sometimes represent an element x € [F, by an integer value, which is calculated as g —
I{y € Fylx < y}|. Forexample, let g = 22 where F,2 = {0, 1, @, @*} and a be a primitive
element in F,2 , and let x = a?, then the integer value that associates with a? is 22 — |{a?}| =
3 € Z/qZ. Our theorems in this paper are defined over the set Z/qZ = {0, 1,...,q — 1} but can
also be applied to F, :={0,1,a,..., @972} due to the one-to-one mapping between Z/qZ and
Fy,.
Definition 1. (Unreachable Memory Cells (UMC)) In a block of n g-ary memory cells, a cell is
defined as unreachable at level § if it can store only values up to §. A non-writable cell at level
q — 1 is just a normal cell as it is capable of being programmed until its (q — 1)-th level. In
contrast, an unreachable cell at level 0 is said fully non-programmable, meaning it can only
store the 0 symbol.

5. STANDARD CHANNEL CAPACITY FOR DISCRETE MEMORYLESS
CHANNEL (DMC)

We start by recalling the well-known channel capacity derived by Shannon (Shannon 1948).
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5.1.  Channel capacity

The channel coding theorem introduced by Shannon (Shannon 1948) concerns the possibility
of communicating via a noisy channel with an arbitrarily small error. The channel capacity C
is defined as the maximum mutual information between two discrete random variables X and Y
, which can be achieved by an input distribution Py (-).

CzrgaXI(X; Y) (1)

The mutual information can be described by the Entropy of random variables as follows:
IX; Y)=HX)—-HX|Y) =HXY)—-HX|Y)—H( |X) 2)
Entropy is the logarithmic weighted uncertainty in a probability distribution, defined as:
H(X) = = Xae supp(py) Px(a) log; Px(a) €)

5.2.  Entropy functions and memory capacity
Definition 2. (g-ary Entropy Function) The g-ary entropy function, h,(e), measures the

uncertainty of an event occurring with probability € in a system with an alphabet size of q. It is
defined as:

hge(e) =€ loga(q—1) —elogse— (1 — ¢) log,(1 — &)
This function generalizes the binary entropy function and is used in systems operating with q-

ary symbols. For q = 2, it reduces to the binary entropy function
h,(¢) = —¢elog, e — (1 — €)log,(1 — ¢). 4)

Note that to relate Eq4 and Eq.3, we set Px(0) = ¢ and Pyx(1) =1 — e.
Then H(X) = h,(¢).

Definition 3. (g-ary Erasure Channel and g-ary Defective Channel) A g-ary erasure channel
(qEC) 1s a communication channel model where transmitted symbols can be erased with some
probability, leaving the decoder uncertain about the symbol received, which can take any of the
q possible values.

Conversely, a g-ary defective channel denoted by (qDC(p)), is a channel model where stored
symbols may fail to be programmed with some probability p, leaving the encoder unable to

store certain symbols.

5.3.  Channel models
In information theory, several channel models exist, with discrete memory-less channels. One
of the most important models is the binary symmetric channel (BSC), which has a binary input

alphabet X and a binary output alphabet Y.
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The general formula for the capacity of this channel can be obtained by evaluating Eq.1 as given

in (Brémaud 2017):
C=rr[1,aXI(X; Y)=1-hy(e), (5)
X

where h,(€) is the binary entropy function, representing the uncertainty of a BSC with

crossover probability &.

Thus, we one can generalize Eq.5 into g-ary entropy that is expressed by:

Czrgixl(X;Y)zl—hq(s). (6)

6. CHANNEL CAPACITY FOR PARTIALLY STUCK-AT CELLS
According to (Wachter-Zeh and Yaakobi 2016, Section [X), if both the encoder and decoder
are aware of the memory state, including the locations and levels of the partially stuck-at cells,
the capacity Cy(p, s) (in the authors’ notations s = s4i Vi) without considering any additional
errors in a channel is

Cq(p,s) =1—p+plogelqg — ). ()
It is assumed that a cell is partially stuck at level s with some probability p, where u = pn.
Accordingly, there are n — u normal cells, i.e. non-defect memory cells, with probability
(1—-p)andthusn — u = (1 —p)n.
It is worth noting that referring to Eq.7, the finite field size g, critically impacts the NVM
channel capacity C,(p, s). It represents the number of distinct levels in memory and influences
log,(q — s) term in Eq.7, which quantifies usable levels amidst s unreachable ones. Larger q
reduces the impact of s, increasing capacity, while smaller g amplifies effect of s, and thus
reducing capacity.
Remark 1. If error does not be considered as in (Wachter-Zeh and Yaakobi 2016, Section [X)
and we assume a memory without any probability of partially stuck at some levels
(p = 0,s = 0). Then, Eq. 7 becomes (C,(0,0) = 1) which is an optimal storage memory of a
full capacity to store any vector of information of length n.
Remark 2. If error does not be considered as in (Wachter-Zeh and Yaakobi 2016, Section IX)
such that € = 0 and we assume a memory with a partially stuck at s = g — 1 (a cell can not
store anything). Then, Eq. 7 becomes C,(p,q — 1) = 1 — p which agrees with (Heegard and
Gamal 1983, Eq. (1.2)).

7. CHANNEL CAPACITY FOR MEMORY WITH UNREACHABLE LEVELS AND
SUBSTITUTION ERRORS

We assume that the encoder is aware of the locations and values of defective cells through
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techniques such as "read voltage threshold" checks, while the decoder is not. This setup mirrors
a realistic scenario in flash devices, where these checks help prevent the encoder from writing
to worn-out cells. Conversely, flash memories rely on the decoder’s Error Correction Codes
(ECC) capabilities to maintain data integrity and manage cell wear. In this context, we derive
capacity expressions for various scenarios, finding that capacity reaches its maximum (cf.
(Heegard and Gamal 1983, Eq. (1.2))) when both the encoder and decoder are informed about
the locations of the faulty cells.
We do not specify the source of substitution errors or the reasons a cell becomes unreachable,
as these errors can occur anywhere within the system of n cells following the uniform
distribution.
Definition 4. (Entropy in Memory Cells) Assume a system of a memory with n cells that can
be programmable at § = ($y, $y,...,5, —1) €{0,1,...,q — 1}", where the Hamming weight
of (q — 1)™— §is at most u, i.e.,, wt((q — 1)™ — §) < u. Consider n — u are normal
cells, and u cells are in a state of having inaccessible levels §, meaning they cannot reach certain
states. Errors occurring in the n — u normal cells introduce uncertainty, measured by the g-ary
entropy function hy () (cf. Definition 2).
7.1.  The capacity while disjoint errors happening in n — u cells
Theorem 1 (Capacity of an Unreachable Memory System at any § with Disjoint Errors). Let
Definition 4 hold. The capacity of this memory system, disturbed by random errors in the n —
u normal cells, is:

Cq(p,e,8)=1—p+ploge(§+1)-(1—p)hy(e) (8)
where p is the proportion of cells without errors, § is the number of inaccessible levels in the u
cells, and h, (¢) is the g-ary entropy function from Definition 2.
Proof. In this memory system, u cells have inaccessible levels with probability p, meaning they
are assumed to not subjecting to further substitution errors. The (n — u) remaining cells are
normal and may experience random errors with crossover probability &.
The uncertainty (or entropy) in the n — u normal cells is measured by the g-ary entropy
function h,(&). The contribution of this entropy to the overall system capacity is weighted by
(1 — p), as the errors occur only in the n — u normal cells.
On the other hand, the u cells with inaccessible levels § contribute a capacity of p log,(§ + 1),
i.e., only one level is not programmable. Remember that s+ 8§ =gq —1, where s
(cf. Section 6).

The total capacity is the sum of the contributions from both u and n — wu cells, leading to the
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formula:

Cq(p,e,8)=1—p+plog,(5§+1)—(1—p)hy(e).

Thus, the capacity is reduced due to the entropy arising from the errors in the n — u nor- mal
cells, while the u cells contribute a reduced capacity due to their restricted levels. This
concludes the proof.

Fig. 2 depicts the channel model for the capacity as stated in Theorem 1. The upper part of the
figure shows the g-ary symmetric channel (qSC) with a crossover probability of € representing
the possibility that a normal cell experiences a substitution error.

During the writing (or reading) process, a value is stored (or retrieved) in Z/qZ or [Fq, differing

from the intended value with probability ﬁ. The lower part, on the other hand, illustrates the

unreliable cells, which are assumed to not experience any random errors during the reading and
writing operations. We call the channel in the lower part with gDC(p) a g-ary defective channel,
(cf. Definition 3).
Corollary 1 (Capacity in Theorem 1 fulfilling Eq.7 and Eq.8). If § = q — 1, i.e., all cells are
fully reachable (cf. Definition 1) and thus p = 0, then Eq.8 coincides with:
Cq(0,6,qg —1) =1—hgy(e).
If € = 0, i.e., substitution errors are not considered, the Eq.8 becomes
Cq(,0,5) = 1—p+plogy(q —s).

Proof. When § = q — 1, all cells are fully reachable, meaning there are no inaccessible levels.
Thus, p = 0, eliminating the p terms in Eq.8. The capacity formula simplifies to:

Cq(0,6,q—1) =1—hy(e),
which matches the general formula for the capacity, Eq.6. Furthermore, if the system has no
substitution errors, i.e., hq(0) = 0, Eq. 8 reduces to Eq. 7.
7.2.  The capacity while joint errors happening in n cells
Theorem 2 (Capacity with Joint Errors in n Cells and §= g — 2). Let Definition 4 hold, but now
assume that errors can occur in any of the n cells and (§y,5,...,5, — 1) €{q—2,q9 —

2,...,q — 2}". The channel capacity considering joint errors in any of the n cells is given by:

Cq(p, € €q-2,q9 — 2) =1-p+plog, 5+ 1)—hy(e)(1 —p) —plogs(S+ 1)hy(g4-2), )]
where h,(e) and hg(g4-2) are the g-ary entropy functions for n — u normal cells and u-

UMCs, respectively.
Proof. In the joint case, random errors due to, e.g., a failure in a writing process can occur in

both the n — u normal cells and the u cells that are inaccessible at §= g — 1. The entropy in
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(rn — u)—Normal Cells
or UMC at ¢ — 1

With Substitution Errors

1—p

NCells s s s s e v v v v e e e e e s e e e s e e e s e e e e e s e e

u-UMC at
se{0,1,....q -2}

No Errors

c=q—2 r=q—2

Fig. 2. Channel model for the capacity in a disjoint case. The state § = 0 means that a cell is
wholly unreachable and thus only the value 0 can be stored there.

c=10 = r=10

(1 — u)—Normal Cells
or UMCatg—1

l/

nCells st e e e e e e e e e e e e ‘ PRI I R R R AR

With Substitution Errors

u-UMC at
s=q—2

With Substitution Errors

c=q—2

r=q—2

Fig. 3. Channel model for the capacity in a joint case. The state §=q — 2 means that a cell is not
programmable at only the state ¢ — 1 thus the latter value cannot be stored in that memory cell.

the normal cells follows the standard probability €, contributing the term h,()(1 — p). In the

u-UMCs, errors occur in the range between the lowest level 0 and §= q — 2, with crossover
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probability of error denoted by &,_,. The uncertainty in these cells is reflected by the entropy
term p log, (S + 1)h,(g4-2), which reduces the overall capacity. Combining these two
contributions, the total capacity is given by Eq.9, which accounts for the entropy in both normal
and defective cells.

One can visualize in Fig. 3 the capacity of a channel model as proved in Theorem 2.

Corollary 2. If e = 0 and g,_, = 0, the capacity C4(p,0,0,q — 2) in Eq.9 coincides with the
capacity C,(p,s) as given in Eq.7. Furthermore, if p = 0, Eq.9 reduces to the g-ary channel
capacity: Cq(e) =1 —=hy(e),

which matches the general formula for the capacity in Eq.6.

Proof. For e = 0 and €q—2 = 0, the channel behaves as if no errors occur, thus reducing the
capacity expression to Cq(p,s) as in Eq.7. When p = 0, there are no UMCs, leading to the

classical g-ary channel capacity, Cq(p,s) = 1 — hq(€), as shown in Eq.6.

7.3. A generalization of Theorem 2
Theorem 3 (Generalization of Theorem 2). Let § = {0,1,...,q — 1}"* with wt((q — 1)" —
§) < u. A generalization of the capacity from Theorem 2 is given by:

Cop e er g 28)=1—p+ 2 2ps [+ 1) —log,G + Dhy(es)] — 1 —p)hy(e),  (10)
where p; denotes the probability of a cell to become unreachable at level § that has a crossover
probability &;.

Proof. The expression in Eq.10 is a generalization of the capacity from Eq.9. This means that
u cells cannot be reached at arbitrary levels 5. The probability p for Unreachable Memory Cells
(UMCs) splits into sub-probabilities according to the number of defective levels, § =
($0,51,---,5,, — 1) € {0,1,...,q — 1}". The union bound on py,p;,...,Dq— Tepresent the
probabilities at levels s =0, 0,1, ..., q — 2, respectively, with Y, ps = p

Fig. 4 shows the channel model for the generalization of Theorem 2. Since substitution errors

occur randomly and can affect any cell in the memory (both n — u and u cells), the g-ary

&
(q-1)

symmetric channel (gSC) with a crossover probability of represents the likelihood that an

n — unormal cell experiences a substitution error. The lower part illustrates the u unreachable

cells, which also experience random errors during the reading and writing operations, but with

ﬁ, corresponding to the probability ps of being not reachable in the $ state.

Theorem 4. The capacity expressions in Theorem 1, Theorem 2, and Theorem 3 are achievable.
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Proof. We begin by noting the work in (Mahdavifar and Vardy 2015), which explicitly
provides Hamming and convolutional coding schemes that achieve capacity. Additionally,
Heegard demonstrated in (Heegard 1983) that random partitioned linear codes reach capacity,
although this required solving an implicit optimization problem within the encoder. Further,
Wachter-Zeh and Yaakobi verified capacity-achieving codes for s = 1 and larger values of g
in (Wachter-Zeh and Yaakobi 2016, Figs 2 and 3). By applying Corollary 1 and Corollary 2,
our capacity expressions align with those in (Heegard and Gamal 1983; Mahdavifar and Vardy
2015; Wachter-Zeh and Yaakobi 2016). Consequently, we infer that our capacities are indeed
achievable.

8. RESULTS AND DISCUSSIONS

In Fig. 5, 6, and 7, we plot the channel capacity across different configurations, examining
various values of q,p, €, and u with § = g — 1. The plots illustrate capacities for multiple
scenarios: “No UMCs” and “No errors” (C,4(0,0) = 1) representing ideal memory, “Only
errors” as standard Shannon capacity for Discrete Memoryless Channels (DMCs) from Eq.5,
“Only UMCs” without substitution errors from Eq.7, and “UMCs and errors” under non-
overlapping and overlapping conditions, as defined by Eq.8 and Eq.9, respectively. These
figures reveal that an increase in UMCs results in greater capacity degradation, as seen in the
long-dashed curve. Additionally, the most severe case occurs when errors overlap with UMC
locations, as depicted by the dashed-dotted line, which is closest to real-world conditions. For
instance, under error-free conditions, our results match the expressions in (Wachter-Zeh and
Yaakobi 2016, Section IX), and for g = 2 and erroneous system, our formulas coincide with
those in (Heegard and Gamal 1983).Observing the sequence of these figures, we note that when
€ is low, the capacity from Eq.5 approaches optimal levels. However, as ¢ increases, the
probability of errors rises, leading to significant capacity deterioration. This is because, as the
number of u cells and substitution errors in the system increases, more redundancy is required

to compensate for these problems, resulting in lower capacity in the gDC(p) channels.

9. CONCLUSIONS

In this paper, we developed comprehensive capacity expressions for multi-level non-volatile
memory (NVM) channels, particularly those experiencing varied error types due to degraded
read channels and restricted programmability. We generalized previous channel capacity
formulations to accommodate cases with both disjoint and jointly occurring cells with
unreachable levels and substitution errors, addressing the practical needs of modern memory

storage technologies like flash memory and phase-change memory (PCM). Our derived



620 Al Kim

formulas offer a foundational reference for evaluating and comparing the rates of various coding
schemes developed for NVMs under different channel conditions. Through simulations, we
demonstrated the applicability of these capacity expressions across diverse memory conditions,
including ideal, substitution-error-only, and defective memory channels with and without
substitution error, aligning well with established capacity benchmarks.

Furthermore, we demonstrate that these capacity expressions can be achieved with appropriate
coding schemes, thus contributing a robust theoretical framework for future code designs in
error-resilient memory storage.

Future research might examine the usage of erasure coding to analyze a channel capacity with
three considerations: unreliable states, erasures, and random errors. This extension would yield
capacity formulas for a more comprehensive channel model, enhancing applicability in real-

world memory systems.

(n = u)=Normal Cells
or UMC at g — 1

With Substitution Errors

u-UMC at

§=g—2

With Substitution Errors

u-UMC at

i=1

u-UMC at c=1
s=10

r=10

Fig. 4. A Generalization of Theorem 2. The summation of the probabilities p,_, +- -+ p1 +p1 = p.
The crossover probabilities respective to each non-writable state § € {q — 2,...,1,0} are denoted by &5.
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