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ABSTRACT  

Convolution is a powerful operator that has applications in science, engineering, and 

mathematics. However, Convolution:-(Issues and Applications) is necessary for addressing 

many scientific and technical cases, including partial differential equations, signal processing, 

and image processing. Traditional problem resolution is complicated and has several 

drawbacks. This work presents a set of efficient algorithmic methods for both linear and circular 

computing. Depending on the duration of introduction and the treatment medium, three sloven 

methods can be applied based on the rapid table method. Convolution-based systems are very 

suitable for dealing with complex data that requires appropriate handling to achieve an ideal 

solution with increasing data length. Though the suggested techniques are geared toward fully 

parallel hardware implementation, they are contrasted with depending on length N and 

multiples, fully parallel hardware implementation using the proposed approach requires 40% to 

65% less compared to the traditional approach. Since multipliers need a lot more space on the 

chip and energy than adders, the proposed algorithms are resource and power efficient when 

implemented on hardware. 
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1. INTRODUCTION 

Convolution is a key component for many scientific and engineering problems, such as signal 

processing, partial differential equations, and image processing, added to it are the correlation  

and discrete linear correlation methods,and their applications in many fields . Numerous 

scientific and engineering applications involve discrete convolution (Krishna, 2017; Bi et al. , 

2004). Most importantly, it is essential to contemporary digital signal and image processing. It 

is basis filtering, multi resolution decomposition, and orthogonal computation optimization in 

digital signal processing transform (Wang et al. ,2018; Parhi, 2007). Convolution is a 

fundamental mechanism used in digital image processing for smoothing and noise removal. 

Blur, focus, edge detection, and so forth (Chan et al. ,1994). Discrete convolutions come in two 

flavors: linear and circular convolutions. Overarching guidelines for the creation of convolution 

algorithms (Vasilache, et al. ,2014) gives a description of them. The (Abdelkareem, 2017) 

implemented hardware considerations Based on convolution Digital Signal Processor (DSP) 

platform decryption is discussed. Specifically, the effect of code constraint length both memory 

management and clock cycles are taken into account. 

In these works, computing has been the primary focus. Although circular convolution is 

computed in many applications related to digital signal and image processing Convolutions 

must be linear. Convolution has been extremely popular in Fast Table Method (FTM) in recent 

years. most frequently employed (Pratt, 2007). Since multiple accounts account for more than 

67% of the processes in a typical implementation, linear convolutions are the easiest and most 

computationally dense processes in FTMs (Krizhevsky et al. ,2017). In a typical FTM, more 

than two thousand multiplications and additions are needed for just one convolution level. In 

the FTM, there are typically multiple of these levels. Because of this, designers of these kinds 

of networks look for effective techniques to execute linear convolution with the fewest number 

of arithmetic operations. Many algorithmic techniques have been developed to accelerate the 

computation of linear convolution. The most popular method for computing linear convolution 

efficiently involves dipping it into the space of a double-size cyclic convolution and then using 

the Fast Fourier transform (FFT) technique (Mathieu et al. , 2013; Lin et al. , 2018).  

These techniques do not compute the genuine linear convolution since they merely compute 

two inner products of neighboring vectors produced from the current data stream by a sliding 

time frame of length N. Concurrently, there are several FTMs where full-size small-length 

linear convolutions must be computed. For example, in the context of the Discrete-time Fourier 

transform (DTFT). Furthermore, the interpolation-based signal frequency estimation algorithm 

is widely used in digital systems because of its ease of use. Interpolation techniques in analysis 
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rely on the FFT due to its high-performance speed. This is to improve the accuracy of frequency 

estimation. This paper proposes a method for single-tone frequency estimation that uses DFT 

interpolation with Parzen window (Alrubei et al. , 2023). The difficulty of computing a one-

dimensional convolution using its conversion into a multidimensional convolution arises in 

many applications of digital signal processing. The resulting algorithm is modular in nature, 

with each module computing a one-dimensional convolution of a brief length (Abtahi et al. , 

2018; Lavin et al. , 2016). Sequences of lengths 3, 4, 5, 6, 7, and 8 are the most prevalent types 

of twisted sequences. Nevertheless, there is no description of resource-efficient sequences of 

unlimited length in the known papers of the authors. Linear convolution algorithms for lengths 

greater than four (Ju et al. , 2019). Conversely, the solutions offered in the literature for N = 4, 

N = 3, and N = ∞ lack full inventiveness. Regarding how the computation of linear convolution 

is organized, given that its matching sign There are no flow charts visible anywhere. 

Using the FTM by convolution multiplication is a method that is actually used (Hsu, 2011; 

Heba, et al., 2024). Whereas, a set of cases will be established in this work that have not been 

used previously. Moreover, only this method is used with specified inputs x,h lengths in a 

simplified manner. In this work, innovative FM method, comprehensive mathematical 

relationships, and very fast results will be achieved. Thus, this work achieves a new, unused 

method, using FTM for entries of infinite lengths, creating fast results and simplified 

calculations that lead to the greatest benefit achieved.  

Image encryption, which uses logistical chaotic maps to satisfy the requirement for encrypted 

data communications during image acquisition, is one of the most significant applications of 

the computational approach suggested in the study. The suggested picture encryption technique 

is a safe and efficient way to encrypt and transfer photos, according to recent sources. The 

process of digital image encryption, which entails transforming source images into a format 

that is challenging to decode, has been studied using logistic chaotic maps (Roberts, 2012). In 

future research, cases and algorithms can be realized using FPGA, which is the latest class and 

takes its place in DSP applications have been implemented and demonstrated the ability to 

handle such tasks it supports the critical needs of scalability, speed, scale, cost and efficiency 

(mahmoud et al. , 2006; Naghmash et al. , 2016). 

2. THEORY 

Convolution is a mathematical operation on two functions (x and h) that results in a third 

function (y) that expresses how the form of one is changed by the shape of the other (Lavin et 

al. , 2016). The classic linear convolution equation:   
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𝑦[𝑛] = ∑ 𝑥[𝑘] ∗ ℎ[𝑛 − 𝑘]𝑛
𝑘=0                                         (1) 

  Where, 𝑥(𝑛), ℎ(𝑛);  the input and the impulse response respectively. 

  Then, n= 1, 2, 3, ………, Nx+Nh-1. 

This infinite sum says that a single value of n, call it y[n] may be found by performing the sum 

of all the multiplications of x[k] and ℎ[n − k] at every value of k (mahmoud et al. , 2006; 

Naghmash et al. , 2016). Two DFTs (finite-length sequences, often of length N) cannot simply 

be multiplied together as in the convolution formula above, which is also known as linear 

convolution. Since the DFTs are periodic, their multiplication by n will also be nonzero for n ≥ 

N. This is because the DFTs have nonzero values for n≥N. A new kind of convolution operation 

must be defined in order for our convolved signal to be zero outside of the interval  

n = 0 , 1 , …, N−1.  Using MATLAB y = conv (x, h) (Ghasemi et al. , 2017). 

 Periodic convolution, or the convolution of two periodic functions with the same period, is a 

special instance of circular convolution, also referred to as cyclic convolution. There is periodic 

convolution.  Specifically, the periodic convolution of the TFTs of the separate sequences is 

the DTFT of the product of two discrete sequences. Additionally, every DTFT is a continuous 

Fourier transform function's periodic summation. While DTFTs are often continuous functions 

of frequency, discontinuous sequences of data can also directly benefit from the notions of 

periodic and circular convolution (Grinshpan,2017). Circular convolution is crucial in that 

situation for optimizing the effectiveness of a particular type of typical filtering operation. It 

was developed as a result of this concept. 

Then; the circular convolution  

𝑦𝑐[𝑛] = ∑ ∑ 𝑥[𝑘] ∗ ℎ[𝑛 − 𝑘]𝑁ℎ
𝑛=0

𝑁𝑥
𝑘=0      (2) 

Where the length Ny: of the circler is the Maximum length between lengths Nx and Nh. 

3. NUMERICAL CALCULATION FOR FTM 

The current structures rely heavily on Eq.1 and 2, and they can be referred to through references, 

which are traditional methods, such as the complex and long mathematical method, which must 

be solved using the two equations mentioned, and the method of graphics and linear projection 

onto the drawing (Krishna, 2017; Bi et al. , 2004; Wang et al. ,2018; Parhi, 2007). While, the 

matrix method uses multiplication and shift. All of these methods mentioned, the graphics, 

matrices and the equation method, do not deal with infinite lengths. In these methods, you need 

a specific length because they are specific equations or matrix, Therefore it is not compatible 

with parallel processing. 

A reasonably recent method converts an optimal algorithm directly using index mapping. FTM 

then completes the brief convolutions along each dimension. There are no mathematical savings 
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from the index mapping alone, in contrast to the DFT example. Effective short algorithms are 

responsible for all of the savings. The multiplications need to be nested together in the 

algorithm's core, just like in the case of index mapping with convolution. Convolution has no 

analogue for the Table structure. As the DFT was computed using row and column DFTs 

(Cariowa, 2020), the multidimensional convolution cannot be computed using row and column 

DFTs. Distributed arithmetic is an approach appealing for special purpose hardware. This 

method creates a system that performs convolution without the need for multiplications by 

using a table lookup of precomputed partial products (25Alkadhim, 2020). 

Convolution is also calculated using number theoretic transforms, which calls for specialized 

hardware. These transformations are defined modulo exceptional numbers in arithmetic over 

finite fields or rings. Although these transforms are not very flexible, they are quite effective 

when applied. 

Review the basic principles and steps followed for the FTM: 

1- Distributing the entries on the first column and row. It makes no difference whether x is on 

the first row and h is on the first column, or vice versa, the row is for h and the first column is 

for x. 

2- Multiply all opposite numbers and put the resulting number in the square Intersecting. 

3- Taking an inclined path at an angle of 450, starting from the first square of the table to the 

end of the table, and collecting all the numbers that pass in each path to produce the output 

elements Y, as show in Fig.1. 

4- If the chain starts from negative n to positive, passing through zero, it is possible to define 

n = 0 with a circle, and the path that passes through it will be n = 0 for output y, as in Fig.1.  

5- To obtain circular convolution, it can be found in a simple and quick way that is easier than 

the well-known circle method ( Li, et al., 2020) by finding the circular length of the output, 

which is the largest of the two input lengths, x, h, and then adding the number next to the length 

with the first number, and the number after it with the second, and so on, as appearance in Fig.2. 

Fig. 1. Table convolution method 

y[n] = [(x−1h0). . . (x0h0 + x−1h−1). . . (x1h0 + x0h1 + x−1h2+. . . )]  (3) 
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Or y[n] = [ y-1   y0    y1    y2     y3    y4   y5  . . . ] if length of input x (Nx) equal 4 and length of 

impulse response Nh equal 3,  can find the output length:  

Ny = Nx + Nh − 1                      (4) 

Then, length of convulsion output Ny = 6  

Fast Discrete Circular convolution based on the results of the linear convolution,  

whereNy: themaximumlengthbetweenNx, Nh based an example Ny = 4, as appearance in 

Fig.2 ana results for Fast Discrete Circular convolution in Eq.5. 

𝑦𝑐[𝑛] = [(𝑦−1 + 𝑦4)(𝑦0 + 𝑦5)𝑦1𝑦2𝑦3]               (5) 

Fig. 2: Circular convolution yc[n] using output linear convolution 

4. CASES AND RESULTS 

In general, convolution problems are in three cases, depending on the length of the input Nx or 

the length of the impulse response Nh,  where it is possible for each of the two inputs to be in 

the discrete state, either with a specific length and signal of a specific length, or to be infinite 

in length. Therefore, each case in details with an example of the algorithm are reviewed here. 

4.1. First case 

when the sequence for x[n] and h[n] are finite length. 

The input sequence 𝑥[𝑛] and an impulse response ℎ[𝑛] for a Linear Time Invariant (LTI) system 

as shown below:                                                                                                                 

𝑥[𝑛] = 2−𝑛(𝑢[𝑛 + 2] − 𝑢[𝑛 − 3])   ;ℎ[𝑛] = (−1𝑛(𝑥[1 − 𝑛]))             (6) 

Determine the (a) Linear Correlation; (b) Circular Correlation     

First step finds x[n], that u[n+2] - u[n-3] this means the length for x[n] is finite length because 

n = -2 ,-1 , 0, 1, 2,  as show in Fig.3. 

The result of x[n] = [ 4  2  1  0.5  0.25 ], where  n = -2, -1 ,0, 1, 2: Nx = 5 (Finite length) 

Then ℎ[𝑛] = (−1𝑛(𝑥[1 − 𝑛]))    the results h(n) when n starting by n = -2 to n = 3 ,  

equal  x(3) = 0, x(2) = -0.25, x(1) =  +0.5,  x(0) = -1,  x(-1) = +2,  x(-2) = -4,  x(-3) = 0 

h[n] = [ -0.25   0.5  -1   2  -4], where  n = -1, 0, 1, 2, 3:  Nh = 5 (Finite length)  
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Using Discrete convolution by Fast Table Method explain in Fig. 4 to Determine the y[n] after 

sum of product. 

Fig. 3: An example for the finite length 

 

 

 

 

 

Fig. 4.  Discrete convolution by fast table method 

y[n] = [  -1    1.5     -3.25      6.375    -12.8125    -6.375   -3.25   -1.5  -1]     (7) 

When n = -3, -2, -1, 0, 1, 2, 3, 4, 5.   As well, Ny = Nx + Nh – 1 = 5+5 – 1 = 9; As show in 

Fig.5. 

Fig. 5: The convolution output y[n] 

Then, the Discrete circular convolution is computed by simple and fast method Nyc = Max 

         x[n] 

h[n] 
4 2 1 0.5 0.25 

-0.25 -1 -0.5 -0.25 -0.125 -0.0625 

-0.5 2 1 0.5 0.25 0.125 

-1 -4 -2 -1 -0.5 -0.25 

2 8 4 2 1 0.5 

-4 -16 -8 -4 -2 -1 

-2  -1   0   1   2   3   4   5   
6                               

u[n+2] 

n 

u[n-3] 

n 
3  4   5   6   7   8   

9                                   u[n+2] - u[n-3] 

n 
-2  -1   0    1   

2                                  

1 

1 

1 
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between Nx and Nh while the length of x,and h;  Nyc equal 5 as show in Fig. 6, to obtain the 

yc[n] in Eq.8. 

Fig. 6. Discrete circular convolution by Fast Table Method 

yc[n] = [ -7.375   -1.75   -4.75     5.375    -12.8125 ]       (8) 

Then, more  example  in same case let  x[n] = [ 1  2  3  4 ] and h[n] = [ 5  0  10 ] where the  

Nx = 4, Nh = 3. 

Ny = 4 + 3 – 1 = 6; Nyc = Max {3,4} = 4 to computing in Fig.7 and Eq.9. The discrete linear 

correlation can be calculated in the same way as proposed, only the inverse sequence of one of 

the two inputs x or h  as shown in Fig.8.  Fig. 9 gives the same results from the second method, 

calculating the linear correlation Rxh in Eq.10. Furthermore,  Discrete circular convolution by 

simple and fast as show in Fig.10, and Eq.11. 

 

 

 

 

Fig. 7:  Discrete linear convolution Nx = 4, Nh = 3, by FTM 

 

 

 

Fig. 8:  Discrete linear correlation Nx = 4 , Nh = 3, by FTM 

 

 

 

 

Fig. 9:  Discrete linear correlation another methods, by FTM 

 

         x[n] 

h[n] 

1 2 3 4 

5 5 10 15 20 

0 0 0 0 0 

10 10 20 30 40 

         x[n] 

h[n] 
4 3 2 1 

5 20 15 10 5 

0 0 0 0 0 

10 40 30 20 10 

         x[n] 

h[n] 
1 2 3 4 

5 5 10 15 20 

0 0 0 0 0 

10 10 20 30 40 
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Fig. 10:  Discrete circular convolution or correlation Nx = 4 , Nh = 3, by FTM 

y[n] = [ 5   10   25   40   30   40]           (9) 

Rxh = [20  15  50  35  20  10]                   (10) 

yc[n] = [35  50  25  40]                         (11) 

4.2. Second case 

 when the sequence for x[n] or h[n] are finite Length and anther sequacious infinite length 

• Find the Linear convolution y[n],  with 

• Input sequence:    x[n] =
1

n
(u[n − 1] − u[n − 5])    &            

• Impulse response:                h(n) = (
1

2
)
n

u(n). 

• x[n] = [ 1   ½    1/3     ¼]    ;  Nx = 4                   (finite length) 

• h[n] = [ 1   ½    ¼    1/8    1/16   1/32  . . . ]        (infinite length) 

Ny also infinite length;  we can the same Fast table methods but teacake 3 to 6 foe first sequence 

for h as shown the Fig.11. 

 

 

 

 

 

 

 Fig. 11.  Discrete linear convolution Nx = 4, Nh = ∞ , by FTM 

The first sequacious for output y are correct  

y[n] = [ 1   1   5/6   4/6   2/6   1/6   0.5/6    . . . ] 

therefore, it can be written  y[n]: 

         x[n] 

h[n] 
1 1/2 1/3 1/4 

1 1 1/2 1/3 1/4 

1/2 1/2 1/4 1/6 1/8 

1/4 1/4 1/8 1/12 1/16 

1/8 1/8 1/16 1/24 1/32 

1/16 1/16 1/32 1/48 1/64 

1/32 1/32 1/64 1/96 1/128 

…
 

…
 

…
 

…
 

…
 

1/2n 1*1/2n 1/2*1/2n 1/3*1/2n 1/4*1/2n 
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𝑦[𝑛] = 𝛿[𝑛] + 𝛿[𝑛 − 1] + 5 6⁄ 𝛿[𝑛 − 2] +
25−𝑛

6
𝑢[𝑛 − 3]            (12) 

A radical of notes must be mentioned here. The important thing is, firstly, a quick and easy way 

to find the linear convolution, which cannot be found in this case by law or by any other method. 

Secondly, the output y[n] depends significantly on the impulse response  h[n] of infinite length, 

but what is more important is that the output y[n] will be sequential with a direct mathematical 

relationship depending on the length of the input x[n], which is determined by length n = 4 

minus 1.  

That is, it will have a length of n = 3 sums with a relationship that is from y = 3 to infinity, as 

shown in Equation 13. The next example will be more clear; where x[n] = 2n u[n] and 

h[n] = [ 1  2  3 ] using Fast Table Methods in Fig.12: 

x[n] = [ 1  2  4  8  16  32  64  128     . . . ]                             (13a) 

h[n] = [ 1  2  3 ]                                                                    (13b) 

 

 

 

 

 

 

 

 Fig. 12:  Discrete linear convolution Nx = ∞, Nh = 3, by FTM 

y[n] = [ 1  4   11  22  44  88  176   352     . . .  ] = 

𝑦[𝑛] = 𝛿[𝑛] + 4𝛿[𝑛 − 1] + 11 ∗ 2𝑛−2𝑢[𝑛 − 2].       . . .  (14) 

First of all, changing the inputs does not affect the output and the results will be the same. It 

will be also found in  y[n] that after 1 and 4 there will be a mathematical equation (14) is 11 ∗

2𝑛−2𝑢[𝑛 − 2] ,that connects the numbers from n = 3 - 1 = 2 to the end of the infinite series. 

Essentially, it is feasible to swiftly and simply identify a mathematical equation for each 

situation. 

4.3. Third case when the sequence for x[n] and h[n] are infinite length 

• Find the Linear convolution y[n], with input sequence: x[n] = 3n u[n]; therefore  

x[n] = [ 1    3    9    81   . . . ]        (infinite length); and 

• Impulse response: ℎ[𝑛] = (
1

2
)
𝑛

𝑢[𝑛]; h[n] = [ 1  ½  ¼  1/8  1/16  1/32   . . . ]   (infinite 

length). 

         x[n] 

h[n] 
1 2 3 

1 1 2 3 

2 2 4 6 

4 4 8 12 

8 8 16 24 

16 16 32 48 

32 32 64 96 

64 64 128 192 

…
 

…
 

…
 

…
 

2n 1*2n 2*2n 3*2n 
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• The result in this example can used Eq.1 only whit geometric series to find the discrete 

convolution.  

𝑦[𝑛] = ∑ 𝑥[𝑘] ∗ ℎ[𝑛 − 𝑘]𝑛
𝑘=0 = ∑ 3(𝑘) ∗ 2(−𝑛+𝑘)𝑛

𝑘=0   

                        = 2-n ∑ 6(𝑘)𝑛
𝑘=0  = (

1

2
)
𝑛

. (
1−6𝑛

1−6
).  = 0.2 (3n - 2-n)               (15) 

But in a case other than the above, which is a number raised to the power of n, Equation 1 

cannot be solved, and we use our FTM. It will satisfy the purpose and be general for a set of 

different, infinite entries, as in the following case in equation (16).  

              x[n] = n u[n] = [ 0  1  2  3  4  5  6    . . .  ]                              (16a) 

and         h[n] = 2n u[n];  h[n] = [ 1  2  4  8  16  32    . . .  ]                 (16b) 

Focusing on the case that the table will be infinited in length or width as Fig.13, and also that 

the output will be corrected at its beginning, progressing, and finding the missing sequence in 

Eq.17.  

y(n) = [ 0  1  4   11  26   57  120    . . . ]  , 

When y[0] = 0 ; then  y[n+1] =  y[n] + (2n+1 - 1)                 (17) 

Fig. 13: FTM to found the discrete linear convolution Nx, Nh and Ny = ∞. 

5. DISCUSSION AND IMPLEMENTATION COMPLEXITY 

The first case is measured by speed and lack of complexity for both linear and circular discrete 

convolution, and it is possible to find the percentage of speed and smoothness relative to the 

traditional method at more than 70% as show in Fig.14. Through the second case, which can 

only be solved by the proposed Fast Table method, and noted that it concerns linear because 

the length is infinite and is equivalent between linear and circular. In addition, the method is 

fast, comprehensive, and reduces complexity. It is clear from this that the specified input 

length,n-1, is followed by a comprehensive mathematical equation  in y used for any length, 

such as 10, 100, etc., as explain in Fig.10 and 11 and Eq.12 and 14 and achieves flexibility and 

high accuracy. 

         x[n] 

h[n] 

1 2 3 4 5 6 7 . . . n 

0 0 0 0 0 0 0 . . . 0 

1 1 2 3 4 5 6 7 . . . n*1 

2 2 4 6 8 10 12 14 . . . n*2 

4 4 8 12 16 20 24 28 . . . n*4 

8 8 16 24 32 40 48 56 . . . n*8 

16 16 32 48 64 80 96 112 . . . n*16 

32 32 64 96 128 160 192 224 . . . n*32 

64 64 128 192 256 320 384 448 . . . n*64 
…

 

…
 

…
 

…
 

…
 

…
 

…
 

…
  

…
 

2n 1*2n 2*2n 3*2n 4*2n 5*2n 6*2n 7*2n . . . n*2n 
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The third case does not differ much from the previous one, although any other traditional 

method will not be able to calculate the output as the table method calculates it, and with any 

different, non-standard input signal, Equation No. 1 may be able to solve it. The facilitation 

provided by our method is shown in Fig.12 and Eq.16. It is shown how it is possible to write a 

simplified mathematical relationship for this case, with different input signals, and achieve great 

flow. 

Fig. 14. Percentage reduction in complexity and time for the FTM relative to the traditional  

6. CONCLUSIONS 

In this paper, the potential was examined for lowering the exponential complexity of computing 

linear and circular convolution of small-length input sequences and developing a workable 

solution for large- and infinite-length input sequences. Also, it was assembled three cases to 

carry out these operations for N = 3, 4, 5, and infinite (∞). By using these algorithms, the 

hardware implementation of linear convolution is reduced in terms of computational 

complexity. The suggested algorithms have a pronounced parallel modular structure, which 

simplifies mapping algorithms and lowers complexity as well. As a result, computations are 

accelerated. This can also be accomplished during the execution of these algorithms because of 

parallelism in mathematical calculations. 
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