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Abstract 

Effective prediction of electric power consumption is vital for accurate energy management systems, 

particularly in growing urban regions. Conventional statistical techniques usually fail to capture the 

complicated patterns and non-linear tendencies in time-series energy data. The development of deep learning 

models has demonstrated encouraging findings in a variety of prediction tasks. Therefore, this paper 

concentrates on the application of diverse deep learning models, comprising One-dimensional Convolutional 

Neural Network (CNN), Long Short-Term Memory (LSTM), Bidirectional LSTM, and a hybrid model for 

power consumption prediction based on a dataset gathered from January 1, 2017, until January 1, 2018, in 

Tetouan, Morocco. These applied models were assessed utilizing diverse robust assessment metrics, and the 

findings demonstrated that the hybrid model (One-dimensional CNN with LSTM) reached superior 

performance with a Mean Squared Error (MSE) of 0.42548, Root-MSE of 0.65228, Mean Absolute Error 

(MAE) of 0.54395, and Median-AE of 0.51401, surpassing the other standalone and relevant models. The 

attained findings emphasize the merits of incorporating recurrent and convolutional structures to obtain more 

effective and accurate predictions of energy consumption time series. 
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1. Introduction 

Electricity represents an essential component of the 

basic energy sources needed in various sectors to 

promote social evolution and maintain economic 

growth models. It has many benefits encompassing 

enhanced health, productivity, and mobility [1]. The 

dynamics of global electric consumption growth have 

remained stable over thirty years, and there are no 

preconditions for lowering electric consumption in 

the future. At the current stage of human evolution, 

electricity represents an essential resource, without 
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which human professional and domestic activities are 

impossible [2].  

Accurately predicting power consumption 

represents a vital task to ensure that electric power 

systems operate effectively and reliably. With the 

increasing reliance on electric power for industrial, 

commercial, and residential purposes, accurate 

consumption prediction is becoming progressively 

essential for diverse stakeholders. Enhanced 

electricity demand prediction enables effective 

resource allocation, power trading, and grid stability. 

It can also assist in integrating renewable energy 

production (such as solar, tidal, hydro, or wind) into 
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the grid, which may often not be accessible when 

energy is required [3], [4]. 

With the increasing availability of historical 

consumption data, there is a growing need for 

advanced modeling techniques capable of learning 

complicated patterns and improving prediction 

accuracy [5]. Many have predicted that artificial 

neural networks, inherently prepared to address non-

linear datasets and diverse input sources, will form 

the basis for developing machine and deep learning 

models. Nowadays, the extensive deployment of 

smart sensors and meters across the grid creates a 

favorable environment for improving these models 

[6], and [7]. 

In recent decades, many feasible works have 

been presented for predicting electric power 

consumption, which can be principally incorporated 

into data-driven approaches that in turn include 

various models of machine learning and deep 

learning. Machine learning algorithms work on 

predicting power consumption using data analysis, 

which has the merit of being speedy and simple to 

perform. Nevertheless, algorithms' limitations and 

data complexity make it tough to mine large amounts 

of complex data in deep. Thus, it is not possible to 

achieve a highly accurate prediction of power 

consumption [8]. Deep learning algorithms have the 

ability to solve the deficiencies of simple machine 

learning algorithms and attain more effective and 

accurate prediction findings over deeper data mining 

[9]. 

This work handles the issue of elevating short-

term electric power consumption prediction via 

investigating the effectiveness of diverse deep 

learning models. The essential contributions of this 

deep learning-based power consumption prediction 

system are as follows: 

1. Implementing four deep learning models (One-

dimensional CNN, Long Short-Term Memory 

(LSTM), Bidirectional LSTM, and Hybrid 

model) for electric power consumption 

prediction utilizing a real dataset from Titouna. 

2. Incorporating a one-dimensional CNN with 

LSTM to yield a hybrid model for extracting 

spatial features and modeling temporal 

sequences, reaching superior prediction 

performance compared to other applied models.  

3. Providing a practicable reference for energy 

suppliers and researchers seeking to implement 

deep learning models to reach more accurate 

predictions. 

2. Related Works 

Diverse researchers have concentrated on 

determining the most effective approaches to predict 

electric power consumption for many years.  

Kesornsit and Sirisathitkul [10], the authors 

proposed a hybrid system in which several 

dimensional diminution and feature selection 

methods (Random Forest, Stepwise Regression, and 

Principal Component Analysis) were incorporated 

with a backpropagation-NN for predicting power 

consumption. This system was trained and validated 

utilizing a real-world geospatial dataset gathered 

from 2018 to 2019 in Thailand. Among the 

implemented models, the incorporation of Random 

Forest and backpropagation-NN surpassed the other 

models with the lowest error (0.0416 of Root-MSE) 

in predicting electricity consumption. 

Gonçalves et al. [11] proposed a one-dimensional 

convolution-LSTM model with a two-dimensional 

convolution-attention mechanism and roll padding to 

predict the power consumption. The French 

household power consumption dataset (gathered 

from 2006 to 2010) was utilized in this work. This 

dataset encompasses time-stamped measurements 

(reactive/active power, present intensity, voltage, and 

submetering) in one-minute intervals. The proposed 

model outperformed alternative models (like LSTM 

with standard attention mechanism, Auto-regressive 

Integrated Moving Average (ARIMA), and a 

temporal convolution network) in predicting irregular 

tendencies in electrical consumption. The findings of 

the proposed model recorded minimal prediction 

error (0.0140 of MSE, and 0.0875 of Root-MSE). 

However, the complexity of this model may inhibit 

deployment in resource-limited settings. 

Kim et al. [12] implemented an LSTM model 

utilizing monthly data of electric power consumption 

(gathered from 2011 to 2020) with additional features 

(throughput, details of terminal operation, alternative 

power, and other weather circumstances) to predict 

the future consumption of the largest container port 

in South Korea (Busan). This model outperformed 

the baseline models like deep neural network and 



Bilad Alrafidain Journal for Engineering Science and Technology 

https://doi.org/10.56990/bajest/2025.040203 
ISSN: 2073-9524 

Pages: 28-35 

 

30 

seasonal ARIMA, with root-MSE of 1.0711, but it 

did not take into account sudden disruptions (such as 

policy changes and epidemics). 

Zhou et al. [13] the authors combined 

TrAdaBoost as a transfer learning with LSTM to 

predict daily electricity consumption. This 

incorporation is applied on the data (gathered from 

May-November 2021) of a primary school in China, 

including several features (average and maximum 

temperatures, humidity, solar radiation, and some 

weather parameters). This data was combined with 

auxiliary data (gathered from 2016 to 2023). The 

presented model exceeded several baseline models, 

with 7.8% of MAPE, 1.8077 of Root-MSE, and 

0.2747 of MAE. However, this system needs frequent 

weight updates and fine-tuning for hyper-parameters, 

and mismatched source buildings lead to negative 

transmission. 

Islam et al. [14] utilized a Tetouan City’s power 

consumption dataset out of the Smir, Boussafou, and 

Quads zones, which encompasses power 

consumption proportions documented every ten 

minutes, as well as environmental features like wind 

speed, humidity, temperature, and diffusion and 

general diffusion flows. In the pre-processing phase, 

the average power consumption of these zones is first 

calculated to produce a composite target variable for 

prediction. The environmental features are then 

converted to hourly time intervals by utilizing the 

highest consumption and average environmental data 

values. Two machine learning models were utilized 

for prediction; the first model (FB-Prophet), which is 

a tool evolved via Facebook for predicting time 

series, and the second model (Neural Prophet) 

represents an expansion of FB-Prophet, which 

integrates neural network abilities to strengthen 

prediction performance. This presented system 

provided a 23.33% lowering in Root-MSE for ten 

minutes and an 88% lowering for hourly time 

intervals compared to other relevant works. 

However, the utilized models might need 

considerable computation resources to be applied 

effectively. 

Tona et al. [15] presented an encoder-decoder 

LSTM-based future electricity demand prediction 

system for individual households, which has been 

extended to include different combinations of future 

and past exogenous variables. The French household 

power consumption dataset was utilized, and the 

presented model was compared with several models, 

causing a decrease in the MAE up to 8%. 

Palaniyappan and Ramu [16] presented a fine-

tuned LSTM-based system to predict short-term 

power consumption in a dedicated electrical 

distribution substation. In other words, the presented 

system worked on selecting the optimal hyper-

parameters to enhance the prediction accuracy. This 

system enables customers to effectively regulate 

loads and charging sessions of electric vehicles based 

on pricing by incorporating predicted power 

consumption into the dynamic electricity pricing for 

the next day. The utilized dataset holds present and 

previous information for electric meters, renewable 

power generation, and weather circumstances. The 

attained findings were 0.3224 for MAE, 0.1984 for 

MSE, and 0.4454 for Root-MSE, highlighting the 

usefulness of using the fine-tuned LSTM model in 

power consumption prediction. 

3. Proposed Power Prediction System 

This section involves several phases, starting from 

the dataset preparation, preprocessing, and finally 

prediction, as illustrated in Figure 1. 

 

 

Fig. 1 Diagram of the proposed consumption prediction system
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 3.1 Dataset Preparation 

The dataset utilized in this proposed power 

consumption system was historical data gathered 

every ten minutes for the interval from January 1, 

2017, to January 1, 2018 [17]. This dataset contains 

no missing data and includes date, time, and 

consumption for three zones (Boussafou, Smir, and 

Quads distribution networks). Additionally, further 

data (humidity, temperature, wind speed, and diffuse 

& general diffuse flows) were gathered every five 

minutes and resampled to correspond to the intervals 

of ten minutes [18]. Fig. 2 illustrates the graph of the 

power consumption time series concerning the zones.  

To increase the value of data analysis, further 

features are generated from time stamps (season, 

quarter, week of the year, day of the year, minute, 

day, month, and year). These features are utilized to 

achieve a more complicated data perspective and are 

essential feature variables for applying deep learning 

models.

  

a)  Zone 1 b) Zone 2 

 

c) Zone 3 

Fig. 2 Power consumption time-series graph 

After that, the target variables are generated by 

moving the consumption of the next point to the 

present date and time. Deep learning models utilize 

present consumption as the feature variable and the 

consumption of the succeeding point as the target 

variable in the phase of model training. Therefore, 

utilizing this training variable generation process, the 

next point (the subsequent ten minutes) is obtained as 

the production value (output) at a specific moment. 

3.2 Dataset Preprocessing 

In the pre-processing phase, the average power 

consumption of the three zones 𝑃𝑐𝐴𝑣𝑔 is calculated to 

produce a composite target variable for prediction. 

The mathematical formulation can be given as 

follows: 

𝑃𝑐𝐴𝑣𝑔(𝑡) = 𝑃𝑐1(𝑡) + 𝑃𝑐2(𝑡) + 𝑃𝑐3(𝑡) 3⁄         (1) 
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Where 𝑃𝑐1(𝑡), 𝑃𝑐2(𝑡), and 𝑃𝑐3(𝑡) denote the power 

consumption in the first, second, and third zones at 

"t" time, respectively. 

Additionally, in this phase, the dataset is split into 

train/test sets and is not subject to random shuffling. 

Here, time (chronological) splits are used to avoid 

data leakage during time series preprocessing, which 

appears when future information inadvertently 

affects the process of training. This data splitting 

process involves separating datasets into train/test 

sets, which strictly relies on chronological order. The 

train set involved data from earlier periods, while the 

test set involved data from later periods. 

3.3 Deep Learning Models 

In this proposed power consumption system, four 

models are implemented, having the following hyper-

parameters: 50 epochs, 256 batches, 0.0001 learning 

rate, and Adam optimizer. The utilization of a fixed 

number of epochs (50 epochs) across various 

implemented models works on offering a consistent 

basis for performance assessment, simplifying the 

training process, fairly controlling training effort, and 

assisting in comprehending comparative learning 

behavior. Counts of parameters for each model are 

illustrated in Table 1. 

Table 1: Counts of parameters per model 

Models Total Trainable 
Non-

Trainable 

One-Dimensional 

CNN 
98,947 98,947 0 

LSTM 10,553 10,553 0 

Bidirectional 

LSTM 
21,103 21,103 0 

Hybrid Model 60,913 60,913 0 

 

• The first model implemented is a “one-

dimensional CNN" that encompasses many 

layers: first, a one-dimensional convolution (128 

kernels and 384 parameters) with ReLU; second, 

a one-dimensional max pooling (without 

parameters); third, a one-dimensional flattening 

(without parameters), followed by two densest 

(fully connected layers), the first is dense with 64 

units and 98,368 parameters, and the second is 

dense with 3 units and 195 parameters. 

• The second model implemented is an “LSTM" 

that takes sequential input, handles it over an 

LSTM (with 50 units) to learn temporal patterns, 

and makes predictions using one dense layer 

(with 3 units). 

• The third model implemented is a “Bidirectional 

LSTM" in which the Bidirectional layer acquires 

patterns from forward and backward sequential 

input, and makes output using one dense layer 

(with 3 units). 

• The fourth model implemented is a “Hybrid 

model" in which the one-dimensional CNN is 

combined with LSTM to take out local features 

from the entry time series and learn temporal 

addictions and tendencies in electric power 

consumption, accompanied by a one dense 

output layer to produce the last prediction, as 

illustrated in Figure 3. 

 

Fig. 3 Architecture of the proposed hybrid model. 

4. Results and Discussion 
The applied models are assessed utilizing diverse 

robust assessment metrics (Mean Square Error 
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(MSE), Root-MSE, Mean Absolute Error (MAE), 

and Median-AE) and supplying a quantitative 

comparison of predictions. The obtained findings 

were (MSE: 1.35255 and MAE: 0.90154) for one-

dimensional CNN, MSE: 1.29964 and MAE: 0.91223 

for LSTM, MSE: 0.51879 and MAE: 0.56311 for 

Bidirectional LSTM, and MSE: 0.42548 and MAE: 

0.54395 for the proposed hybrid model. It is noted 

from these results that the hybrid model achieved 

superior prediction performance compared to other 

applied models. Figure 4 illustrates the training and 

validation losses for each Epoch for (A) One-

dimensional CNN, (B) LSTM, (C) Bidirectional 

LSTM, and (D) the proposed hybrid model. 

  

a) One-dimensional CNN b) LSTM 

  
c) Bidirectional LSTM                                         d) Proposed hybrid model 

Fig. 4 Losses of training and validation for each Epoch

The Bidirectional LSTM model reached minimal 

MSE and MAE compared to the one-dimensional 

CNN model and the LSTM model. It works on 

capturing dependencies (forward and backward) in 

the sequence, and gives a deeper comprehension of 

the temporal context.  

The LSTM model performed superior to the one-

dimensional CNN model on the MSE metric, but 

somewhat worse on the MAE metric. Although the 

one-dimensional CNN model is trained faster than 

the LSTM, it misses the long-term sequence memory 

provided by the LSTM model. The whole set of 

findings for each implemented model are illustrated 

in Table 2.  

Table 2: Comparison between implemented models 

Metrics One-dimensional CNN LSTM Bidirectional LSTM Hybrid Model 

MSE 1.35255 1.29964 0.51879 0.42548 

Root-MSE 1.16299 1.14001 0.72027 0.65228 
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MAE 0.90154 0.91223 0.56311 0.54395 

Median-AE 0.87238 0.85647 0.52151 0.51401 

The hybrid model achieved Root-MSE of 

0.65228, demonstrating competitive performance 

compared to the rescaled findings from FB-Prophet 

and Neural Prophet models [14]. The attained RMSE 

for the hybrid model is lower than the rescaled FB-

Prophet Root-MSE (0.7304) and Neural Prophet 

Root-MSE (0.7696). This indicates that the hybrid 

model is able to make a more accurate prediction of 

the composite power consumption, emphasizing its 

efficacy in capturing the complicated temporal 

dependencies in the Tetouan energy demand data. 

5. Conclusion 

Accurately predicting power consumption is a crucial 

problem for energy suppliers and urban architects, 

specifically in regions experiencing speedy growth 

and dynamic desire patterns. In this paper, the 

implementation of diverse deep learning models was 

explored to predict electric power consumption 

utilizing a dataset gathered in Tetouan, Morocco. 

These deep learning models are assessed, and the 

findings demonstrate that the hybrid model (one-

dimensional CNN with LSTM) exceeded the other 

models, reaching the minimal MSE (0.42548) and 

MAE (0.54395), signifying its outstanding capability 

of capturing local features and temporal addictions in 

the historical data. Consequently, the integration of 

recurrent and convolutional layers could 

considerably improve prediction accuracy in energy-

relevant time series issues.  

In the future, it is possible to utilize other datasets 

of various regions to evaluate generalizability and 

incorporate external variables like holidays, weather 

circumstances, and social and economic indices to 

enhance the robustness of power consumption 

prediction. Additionally, utilizing recent 

optimization algorithms, transformer-based 

approaches, or attention mechanisms can be 

leveraged to further improve the performance of deep 

learning models. Furthermore, these models can be 

extended to include long-term prediction (weeks or 

even months) to produce deeper perceptions into 

strategic energy plans. 
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