
Bilad Alrafidain Journal for Engineering Science and Technology 

https://dx.doi.org/10.56990/bajest/2025.040207 
ISSN: 2073-9524 

Pages:67-85 

 

67 

Advanced Deep Learning for Accelerated Drug Discovery: 

Approaches, Challenges, and Future Expectations 

Marwa Abdulkareem Dawoud1 , Jumana Waleed1  
1Department of Computer Science, College of Science, University of Diyala, Diyala, 32001, Iraq 

scicompms232405@uodiyala.edu.iq1, jumanawaleed@uodiyala.edu.iq2 

 

Abstract 

Advanced models of deep learning have been transformational tools for discovering drugs and solving 

problems related to cost, time, and complexity. Using complex network frameworks such as recurrent neural 

networks (RNNs), convolutional neural networks (CNNs), generative adversarial networks (GANs), and 

graph neural networks (GNNs), researchers have made major improvements in predicting drug-target 

interactions, performing virtual screens, and developing novel drugs. Those frameworks effectively occupy 

elaborate biochemical relations and precisely imitate complicated molecular reciprocities. Nevertheless, 

significant issues remain, like data shortages arising from restricted access to (high-quality) datasets, model 

predictions' interpretability, and the scalability to include considerable and assorted datasets. To efficiently 

address these issues, innovative strategies, including diverse techniques of data augmentation, like molecular 

graph transformations, have been applied to improve datasets. Reinforcement learning has helped improve 

molecular structures to accomplish desired characteristics, while ensemble learning, which integrates various 

model structures, has proven effective in improving prediction reliability. Incorporating multi-modal 

datasets, like pharmacophores properties, 3D molecular representations, and molecular graphs, increases the 

accuracy of prediction by occupying spatial and even functional molecular properties. Despite these 

advances, issues remain in multi-drug modeling, drug resistance management, and accurate toxicity 

prediction. Future works focus on the importance of explainable AI in strengthening model interpretability, 

with hybrid structures that incorporate machine learning and experimental feedback to simplify the 

therapeutic scheme. By addressing these challenges and adopting innovative approaches, deep learning is set 

to revolutionize drug discovery, enabling a more efficient, accurate, and reliable development pipeline for 

novel therapeutics. This study highlights how model interpretability and confidence can be enhanced by 

integrating multigene data and leveraging explainable AI techniques. By focusing on these cutting-edge 

developments, this study aims to provide practical insights for researchers and practitioners to accelerate the 

development of safe, effective, and personalized therapeutics. 
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1. Introduction 

In the past, medicinal chemists operating in labs 

were primarily responsible for drug discovery and 

development, which involved extensive testing, 

validation, and synthetic processes. This approach 

required a large amount of time and financial 

commitments to get a single medicine to clinical 

trials. Despite this, the proliferation of multi-omics 

data and advances in computational technology have 

produced a plethora of tools in cheminformatics, 

pharmacology, and bioinformatics. Drug 

development has been greatly advanced by these 

developments. The advent of Artificial Intelligence 

(AI) (including Deep and Machine Learning (DL& 

ML)) has further changed conventional drug 

development techniques. Large biological datasets 

that are spread across international databases are 

becoming useful tools for ML and DL techniques. 

The time, labor, and financial resources required for 

drug development are reduced when these 

technologies are used to expedite the process of 

finding therapeutic compounds [1]. 

     DL is shedding new light on drug discovery. 

While the reliance on the availability of large 

training datasets is still an ‘Achilles’ heel’ of DL in 

this domain, recent advancements have proven to be 

quite successful in applying neural networks to low-

data scenarios. Increasingly, such research 

demonstrates successful approaches to constructing 

DL models that perform well under data scarcity 

frameworks. Despite advancements, there are deeper 

challenges that still remain under the data. However, 

the advent of DL in drug discovery has brought 

about more accurate and insight data-driven, along 

with the lower time and cost that a drug is usually 

associated with in the development process [2]. In a 

much different fashion to traditional computational 

approaches, deep learning is able to synthesize and 

learn through large complex data sets of layer upon 

layer neural networks able to recognize patterns 

within biological data, including genomic, 

proteomic, and metabolomics data [3]. 

This ability will prove essential in drug 

discovery where DL models have depicted great 

guarantee in new target identification, predicting 

drug-target interaction, drug metabolism and 

toxicity modeling, and even de novo drug-like 

molecule engines. Convolutional and graph neural 

networks (CNNs & GNNs) enabled researchers to 

assess analytical models of the structure and 

function of the probed drug compounds with 

exceptional precision, in some cases, greatly 

surpassing traditional machine learning. DL is now 

extensively used in virtual screening, (absorption, 

distribution, metabolism, excretion, & toxicity 

(ADMET)), prognosis, protein structure modeling, 

and even designing clinical trials, contributing 

significantly at each drug discovery level, starting 

from fundamental and then going to preclinical and 

clinical phases. As DL models continue to evolve, 

their applications are anticipated to advance and 

optimize pipelines of drug discovery, providing the 

pharmaceutical industry with more effective 

pathways for evolving safe and innovative 

therapeutics [2]. The main contribution of this 

investigation:  

1. Explores the transformative role of DL in drug 

discovery, leveraging advanced architectures 

like GNNs and Generative Adversarial 

Networks (GANs), along with innovative 

Transfer Learning or Multi-Task Learning 

approaches to address the scarcity of data. 

2. It emphasizes multi-omics data integration and 

explainable AI to enhance predictive accuracy 

and model interpretability, showcasing practical 

applications in de novo drug design, toxicity 

prediction, and ADMET property assessment. 

3. The study discusses key challenges, including 

noisy data, high computational demands, and 

ethical concerns. It proposes solutions such as data 

augmentation and ethical frameworks and forecasts 

future innovations to accelerate the development of 

effective  and safe therapeutics. 

2. Deep Learning based Drug Discovery 

The availability of adequate data has effectively 

transformed AI techniques into improved machine 

learning techniques in recent decades to address 

fundamental issues. One of the greatest ways to 

address problems involving various variables and 

large amounts of data is through ML. DL 

approaches represent resilient and effective tools for 

processing the vast amounts of information 
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generated by the sheer volume of data being 

generated in various sectors, and have recently 

replaced ML techniques. A subfield of ML called 

"DL" was created to process extremely complicated 

data and make judgments based on the analysis [4]. 

As Fig. 1 illustrates, AI has occasionally been used 

in a variety of pharmaceutical and healthcare fields 

[5]. DL methods have been integrated into state-of-

the-art drug discovery to efficiently process the 

large volumes of data created in this field, driving 

advancements in research and development. 

Numerous models of ML and DL-based applications 

have been utilized in drug discovery and 

development. StackCBPred, LigGrep, LS-align, 

TrixX, and DrugFinder are a few prominent ML-

based models. When compared to ML techniques, 

DL models have provided superior performance. As 

a result, they have lately become particularly 

promising instruments in drug discovery research. 

DeepDTA, WideDTA, PADME, DeepAffinity, and 

DTI-CNN are a few notable DL-based models. Drug 

development and discovery are greatly advanced by 

these models [5]. 

 

 

Fig. 1 The turning point of AI-related accomplishments in the healthcare and pharmaceutical areas [5]. 

2.1 Virtual Screening 

Another computer-based method in drug 

development is virtual screening, which looks for 

basic libraries of small compounds to identify hits 

that have the best chance of attaching to a drug 

destination. The chemical compound's biological, 

topological, physical, and chemical characteristics 

and targets are used in virtual screening. The 

techniques of virtual screening can be categorized 

into two structures. The first is structure-based, 

which models and conceptualizes interactions using 

the three-dimensional structure of chemical and 

targets compounds.  

The three-dimensional structure can be obtained 

via nuclear magnetic resonance or crystallography 

(X-ray). Docking could be utilized to specify how a 

molecule interacts with a particular target once the 

three-dimensional structural data has been put 

together. The second category is nanostructure-

based and can be further classified into two groups: 

modeling of protein-chemical, which involves 

integrating non-structural headlines with targets (at 

the input-level), and ligand-based virtual screening, 

which models and analyzes interactions with targets 

using the molecular properties of compounds [6]. 

Numerous surveys have demonstrated that DL 

outperformed other ML models in terms of virtual 

screening, particularly owing to their significant 

implementation in de novo molecular design, which 

utilizes data sequence to generate molecules of 

desired properties. DL-based tools that are utilized 

in virtual screening [7]. 

2.2 De Novo Drug Design 

The process of De novo drug design works on 

creating drug-like molecules using computational 
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methods, starting from scratch and not depending on 

a predefined structure. The rise in artificial 

intelligence techniques has accelerated drug 

discovery and opened up new possibilities for novel 

drug schemes, such as the formation of new 

molecular structures from atomic building blocks 

without prior relationships. But, there are some 

significant variations between de novo drug design 

and traditional one. In traditional drug design, a 

structure-based procedure was considered, which 

relies on the properties of the protein binding site of 

the biological target. AI is a growing field that has 

affected drug discovery. 

Thus, AI has also had an impact on the 

innovative medication design strategy. It uses 

knowledge to generate new chemical entities, such 

as ligands and receptors. The biological targets in 

this case are referred to as receptors or their active 

ligands, respectively. Modeling the receptor's active 

site or ligand pharmacophore is essential to creating 

a molecule in de novo drug creation. For the design 

of innovative drugs, a number of models based on 

ML and DL models have been proposed. Different 

DL-based models have been created on occasion 

over the years to help in the development of novel 

medications.  

Another recently noted model for novel drug 

molecule design is druGAN. A deep generative 

autoencoder (AAE) model has been implemented to 

develop new molecules with anticancer properties. 

In the same manner, incorporating reinforcement 

learning with a hybrid VAE resulted in creating a 

novel drug design model known as PaccMannRL. 

This model uses genomic transcription data to 

efficiently design anticancer molecules. More 

recently, a new drug design model that utilizes 

GNNs was introduced. This Model is able to 

effectively create indispensable novel quinolone 

compounds, assess their accessibility, toxicity, and 

pharmacokinetics, and their potential as drugs. This 

illustrates the capacity and depth of impact ML/DL 

algorithms can have with respect to drug designing 

[5].  From time to time, more recent models to drug 

design have creatively incorporated evolutionary 

algorithms: 

A. Using generative models for creating new 

molecular structures offers a novel approach due 

to their ability to utilize synthetic heuristics or 

priors, effectively replacing the search-through 

molecular space paradigm with simply 

validating promising results. These models do 

especially well when learning from existing 

datasets of molecules and creating new 

molecules that share the same traits. The 

molecules produced through these methods 

could then be filtered by a number of criteria, 

such as ease of synthesis, affinity towards 

selected proteins, biological activity, and other 

relevant physicochemical parameters. In recent 

years, several generative models have been 

proposed for drug design employing various 

representations of molecules, including, but not 

limited to, SMILES strings, 2D or 3D molecular 

graphs, Morgan fingerprints, and even images of 

the molecules themselves. Moreover, whether 

they do or do not identify protein targets makes 

available a rich collection of models and 

methodologies intended for various data formats 

and conditions. Many of these approaches draw 

inspiration from language models and 

generative pre-trained transformers (which 

known with GPT), further enhancing their 

ability to generate novel drug-like compounds 

efficiently [8]. 

B. Reinforcement learning for drug optimization: It 

is a sub-section of ML that combines ANNs 

with the architectures of reinforcement learning. 

This combination has been effectively utilized 

to produce new drug design methods utilizing 

various Neural Networks, encompassing RNNs, 

CNNs, competitive generative networks, and 

auto-encoders  [9]. 

2.3 Toxicity Prediction 

Drug toxicity refers to the prediction of unwanted or 

harmful properties in drug-like molecules, a critical 

factor contributing to the high costs of drug 

development. Since toxicity is directly linked to 

drug safety, accurately predicting side effects and 

assessing safety are essential components of the 

drug development process. However, conducting 

laboratory-based toxicity studies during drug 
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development is time-consuming and resource-

intensive. To address this challenge, computational 

models have been developed to reduce both the time 

and cost associated with toxicity prediction. 

Recently, a model called DeepTox, based on a three-

layer deep neural network (DNN), has been 

introduced to predict the toxicity of drug-like 

molecules or compounds. This model utilizes 

molecular descriptors ranging from 0D to 3D as 

input for DNNs. Additionally, a deep learning-based 

toxicity prediction model named Deep-PK has been 

developed to evaluate the toxicity and 

pharmacokinetics of small molecules. These 

developments emphasize the ultimate importance of 

ML/DL models in the drug toxicity prediction 

process, making it more efficient and cost-effective 

[5]. 

A. Deep learning Models to Predict ADMET- 

properties: The ADME Toxicity (ADMET) 

issues the drug- discovery and development 

process are faced with have been vaguely 

referred to as the absorption, distribution, 

metabolism, excretion and adverse toxicity  

properties which are major known causes of 

failure that leads several molecules dissolution 

from the drug development pipeline and 

subsequently initiates an increase in wastage of 

valuable time and resource. This surging interest 

has changed the focus to earlier stages of 

prediction of ADMET properties of candidates, 

aiming to increase the probability of success for 

the compounds proceeding to the further stages 

of the drug development process. AI technology 

has successfully been used to create models and 

tools for the prediction of ADMET, resulting in 

the simplification of the evaluation of drug-like 

molecules prior to rigorous testing. Also, 

companies which take up clinical studies have 

witnessed enhanced success rates with 

refinement of their research approaches using 

the strategies which are AI based. The changes 

have resulted in the improvement of the 

preclinical and clinical studies, which proves the 

use of AI in drug development and discovery to 

be promising and benchmarking. This is why AI 

is advocated in the field of modern medicine [1]. 

B. Case Studies on Toxicity and Safety 

Assessments: Drug-induced toxicity poses a 

major issue to late-stage drug attrition. The 

safety profile of a potential drug candidate must 

be closely monitored to neglect troubled drug 

interactions. Most pharmaceutical corporations 

and regulatory bodies in numerous countries (as 

of 2020) have relied on in vivo and vitro testing. 

While this approach supplies scientific 

researchers with significant data, it has some 

drawbacks. Some toxicity patterns remain 

undiscovered at the preclinical level owing to 

metabolic and physiological discrepancies 

between people and others, and synergistic 

effects. Sitaxentan is an instance of a drug that 

is not hepatotoxic in animal studies but causes 

significant liver injury in humans 

2.4 Protein-Ligand Interaction Prediction 

Conformational changes in target proteins triggered 

by ligand binding influence various biological 

processes. Modern medicine has significantly 

advanced by leveraging the capability of modifying 

the structure and function of proteins throughout the 

use of small molecules as therapeutic agents for 

treating diseases. Although protein-ligand 

interactions (PLI) are important in medicine and 

biology, and insight into the multiple factors 

governing ligand recognition, involving 

hydrophobicity, hydrogen bonding, and p-

interactions, developing and validating accurate 

predictive PLI models for drug discovery continues 

to be a complex challenge.  

Relying solely on experimental methods to 

identify and confirm protein-ligand interactions can 

be time-consuming and costly. On the other hand, 

computational approaches offer a more efficient 

alternative by screening vast libraries of compounds 

and narrowing them down to a smaller selection of 

ligands with a higher likelihood of binding to the 

target protein. By doing so, accurate PLI prediction 

algorithms can significantly speed up the discovery 

of new therapeutics, help eliminate potentially toxic 

drug candidates, and provide valuable guidance in 

medicinal chemistry [10]. 
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2.5 Drug Repurposing 

Due to the rate of high attrition, the impediments of 

large costs, a slow march of drug discovery and 

development, the fact that repurposing of the “old” 

drugs becomes more and more popular the treatment 

of not only usual but also very rare diseases, since it 

comprises the application of lower-risk compounds, 

with possibly lesser development costs, and shorter 

development periods, it is definitely worthwhile one. 

Several data-driven experimental approaches have 

been proposed to identify reusable drug candidates; 

however, there are also significant technological and 

regulatory challenges that need to be addressed [11]. 

Drug repurposing offers a cost-effective strategy 

for finding new medical applications for already 

approved drugs. Advances in AI have enabled the 

systematic identification of potential repurposing 

opportunities by leveraging large-scale datasets, 

accelerating drug development, and minimizing 

risks through computational analysis. This study 

focuses on supervised machine learning (ML) 

approaches that utilize publicly available databases 

and existing knowledge resources. While most 

applications have been in anticancer drug therapies, 

the methodologies explored are broadly applicable 

to other conditions, including COVID-19 treatment.  

A key focus is placed on comprehensive target 

activity profiles, which facilitate systematic drug 

repurposing by expanding the known target 

spectrum to include potent off-target effects with 

therapeutic potential for new indications. However, 

the limited availability of clinical patient data and 

the prevailing emphasis on genetic aberrations as 

primary drug targets may restrict the effectiveness 

of anticancer drug repurposing strategies that rely 

solely on genomic-based insights. Functional testing 

of cancer patient cells exposed to various targeted 

therapies and drug combinations offers an additional 

layer of valuable, real-world data that can enhance 

AI-driven, tissue-specific drug repurposing 

approaches [12]. 

3. Datasets in DL-based Drug Discovery 

Drug discovery faces significant challenges related 

to data limitations and quality. The small and often 

noisy datasets used in this domain can restrict model 

performance due to insufficient diversity and 

volume, compounded by inadequate negative 

examples (inactive molecules). The studies of 

Maharana et al. [13], Bhati et al. [14] and Lavecchia 

[15], suggest introducing bias and hindering reliable 

learning. Integrating data from diverse sources, such 

as high-throughput screenings, literature, and 

databases, further complicates pre-processing due to 

inconsistencies and heterogeneity in data types and 

formats [15]. Techniques like QSAR (Quantitative 

Structure-Activity Relationship) models frequently 

contend with sparse and highly correlated feature 

sets, necessitating careful handling to avoid 

misleading predictions [16] and [17].  

Additionally, representing molecules and 

proteins in computer-readable formats such as 

SMILES strings or molecular graphs often results in 

the loss of critical 3D conformational and dynamic 

properties [17]. Encoding biological data effectively 

for deep learning models remains a significant 

technical challenge, as does the extensive effort 

required in pre-processing steps like molecular 

structure standardization, deduplication, and 

inconsistency correction. Pre-processing is an 

important procedure because it can have a positive 

effect on the results of the experiments and the 

reliability of the data [18]. It is also a known fact 

that selection bias is common in the dataset aeration 

process, and this error in the data may lead to 

overfitting, which may seem like the models are 

working well with he given data, but in reality, they 

do not perform well on the unseen data. Bias control 

and data balancing model construction (that may be 

used to fight and eliminate these factors) are both 

important parts in the process of developing 

effective and reliable drug discovering systems [19], 

[20]. Table 1 illustrates the datasets utilized for drug 

discovery. 
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Table 1: Datasets used (Public & Proprietary). 

Datasets Link to the dataset Description Source/Features 
Last 

Update 

Binding DB 
https://www.bindin

gdb.org/bind/ 

A publicly accessible library of 

measured binding affinities that 

focuses on interactions between 

tiny, drug-like compounds and 

proteins thought to be therapeutic 

targets 

Contains curated binding 

affinity data for over 20,000 

proteins and drug-like 

compounds; supports drug 

discovery research 

2023-08-01 

ChEMBL 
https://www.ebi.ac.

uk/chembl/ 

European Bioinformatics 

Institute, known as EBI, supports 

a hand-selected chemical 

database of bioactive compounds 

with drug-like characteristics. 

Includes data on bioactive 

compounds, their targets, and 

associated activities; useful for 

cheminformatics and 

pharmacology 

2023-07-15 

Bioassay 

Datasets from 

PubChem 

https://archive.ics.u

ci.edu/ 

A repository of bioassay data, 

supplying information on the 

biological activities of small 

molecules 

Comprises millions of bioassay 

records, integrating high-

throughput screening results; 

supports predictive modeling in 

drug discovery 

2023-06-20 

 

DrugBank 
https://go.drugbank

.com/ 

A thorough resource that blends 

comprehensive medication target 

knowledge with detailed drug 

data 

Offers information on approved 

drugs, investigational drugs, 

and their interactions with 

biological targets 

2023-08-25 

 

Drug Target 

Commons 

(DTC) 

drugtargetcommons

.fimm.fi 

A community-driven platform for 

sharing and analyzing drug-target 

interaction data 

Includes crowd-sourced 

annotations, enabling 

systematic analysis of drug-

target relationships 

2023-07-30 

 

Broad 

Bioimage 

Benchmark 

Collection 

https://bbbc.broadin

stitute.org/ 

These datasets are often available 

through specific research 

institutions or collaborative 

projects 

Features a wide variety of 

imaging datasets, including 

Cell Painting assay data, from 

collaborative projects 

2023-08-10 

 

High-

throughput 

Screening 

(HTS) 

- 

HTS data can be accessed 

through platforms like PubChem 

BioAssay. 

Provides data on millions of 

compounds tested against 

various targets 

2023-06-05 

 

Preclinical 

Antibody Data 

http://i.uestc.edu.cn

/DOTAD/ 

Databases like the Antibiotype 

provide information on 

antibodies, including preclinical 

data 

Includes preclinical testing and 

validation results for various 

antibodies 

2023-07-01 

 

PubChem 
https://pubchem.nc

bi.nlm.nih.gov/ 

Accessible chemistry database 

supported by NCBI, which is the 

National Center for 

Biotechnology Information; 

biological activities of small 

molecules 

Integrates chemical structure, 

bioactivity, and assay data for 

over 200 million compounds; 

supports cheminformatics 

research 

2023-09-01 

4. Challenges and Limitations 

4.1 Scarcity and Quality of Data 

Another vital point is that drug discovery data are 

available in the highest amount, however, the 

quality of the data is still a lot lower compared to 

other ML areas. That said it also goes with the 

territory that health data are very sensitive and often 

not of the best quality. Furthermore, developments 

made in hardware have prompted DL revolution, but 

the field of drug discovery is still not sufficiently 

developed to the point of machine learning field 

where training a model requires a lot of computing 

resources.  

Drug discovery is a very challenging process 

where the one is tasked with predicting the 

interactions of the molecular structures and 

understanding their characteristics. A model is 

supposed to be able to handle various sizes of 

molecular structures but it has to adapt to different 

datasets and make sure that the findings are largely 

applicable. The models can be used to generate 
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novel molecular structures, however, they can also 

fail to solve the chemical validity, novelty, and 

synthesis problem. Furthermore, the models might 

just be useless and the new molecules need to be 

taken with caution. The same applies to the 

evaluation of these models as there is no specific 

benchmark that can be used to compare their 

performance.  

Current datasets could be split or with 

prejudices in them, so it is quite difficult to exactly 

compare various approaches and test if the model 

performs well [16]. One of the problems with the 

use of DL in drug discovery is the existence of 

several obstacles and the issue of understanding the 

data. The concept of data scarcity concerns that the 

type of data needed is not enough, is one of the key 

problems. The lack of a larger number of data points 

to choose from can result in the misuse and poor 

generality of the training datasets, which will bring 

biases and worsen generalization. Furthermore, very 

often comprehending the decisions of such models 

is a tough job, as these models work as "black 

boxes." Despite these limitations, approaches like 

data augmentation, transfer learning, and self-

supervised learning are utilized that enhance the 

model performance [13]. Another example is where 

the interpretability of SHAP, LIME, and attention 

mechanisms is a tool for clarification, while the 

models that are hybrids and encompass different 

features merge for the production of accurate 

models [18]. 

The essential noise in chemical and biological 

datasets is one of the toughest problems to deal with 

for ML models because it is always present and 

adversely affects the reliability of ML models. This 

noise is frequently attributable to other factors , for 

instance, the high complexity of biochemical assays 

or variation in conditions when experiments were 

conducted. Also, the lack of negative samples or 

inactive compounds makes model training a harder 

task since publication bias is common. It means that 

the studies are likely to show only a positive or a 

successful result. That results in datasets where there 

is no representation of the true distribution of active 

and inactive compounds. Imbalanced data can, as a 

result, make it difficult for models to generalize 

effectively, as these might show good results only 

on the training data and fail on new and unseen data. 

Consequently, noisy and skewed datasets can cause 

models to overfit or develop biases toward specific 

patterns, affecting their ability to make accurate 

predictions for diverse drug candidates [16]. 

4.2 DL Model Interpretability 

The field of drug development faces several 

challenges; The main difficulty is the attainability of 

high-quality datasets fit for training AI models. 

Although the availability of chemical and biological 

data is expanding, data quality often remains 

suboptimal, making effective data processing 

essential. Accordingly, retrieving data from 

databases can be costly, adding to the overall 

expenses of drug development. That said, high-

quality datasets do exist within pharmacology, and 

fostering collaboration between technology and 

pharmaceutical companies could accelerate drug 

discovery and development as displayed in Fig. 2. 

Such datasets can help in training and testing AI 

models, which may solve the problem of data 

availability. Another major challenge is the ability to 

interpret and understand AI model predictions. Deep 

learning models involve a large number of complex 

parameters and layers, making it difficult for non-

experts to understand the decision-making processes 

in the context of drug discovery and development. 

As a result, improving the interpretability of deep 

learning models is essential for advancing drug 

research, but achieving this remains a significant 

hurdle. [5]. 

4.3 Balancing ML and DL in Drug Discovery 

Machine learning (ML) is used in drug discovery 

when limited data is available, as it relies on manual 

feature extraction and offers ease of interpretation 

and efficiency with small datasets. On the flip side, 

deep learning (DL) is very good in analyzing large 

and complex datasets like molecules, but it needs 

high computation power and often is like a "black 

box." DL is the first choice when a great accuracy is 

required with big data sets, and ML is chosen for 

jobs that need to explainability. The most effective 

way to keep the balance performance and the 

explanation is to use both these methods in the same 

models. It is undeniable that the future of research is 
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centred around growing integrated ML and the DL track to raise the drug discovery efficiency bar [15].

  

Fig. 2 Collaboration between pharmaceutical and technology companies to develop and discover AI-based 

drugs [5].

4.4 Domain-Specific Integration 

   Integration of multiple types of data, such as 

molecular structures, protein–protein interactions 

and biological pathways, has enabled building DL 

models able to discern the complex 

dependencies/relationships that are important for 

potentiation of the action of a drug [9], [21]. The use 

of sophisticated DL models has led to multi-

dimensional data being used, such as 3D Molecular 

representations, and graph-based models can bring 

high-level biological and chemical properties 

together for predictions [21], [22]. DL models, such 

as RNNs and CNN, are generalized to incorporate 

pharmacological knowledge [23], [24]. Yet, with 

advancement, the challenges persist, such as there 

not currently being a best quality solution or the 

insufficiency of even the most complete data-sets 

and similarly, how to model even more complex 

biological processes without over-generalization. 

This scheme we developed will help the DL models 

more compliance with the biological truth and have 

more reliable and accurate predictions during drug 

discovery [24]. 

4.5 Computational Complexity 

The techniques of DL, including RNNs, CNNs, 

GANs, and AEs, have proven to be highly effective 

in drug discovery. However, these models are 

computationally expensive, leading to difficulties in 

environments with limited access to high-

performance computing resources [9]. 

Training complex neural networks (especially 

neural networks on graphs) requires more resources 

of computations. This is because of the size of the 

parameters involved and also the iterative process of 

training the models. Graph convolutional and 

attention networks are complex to work with and 

can handle large datasets, but are expensive in terms 

of CPU and memory. In addition, the performance 

of these models is often reliant on the scale of the 

datasets. As datasets scale up, maintaining a model 

without a dramatic increase in computation time can 

be challenging.  Hybrid models (from molecular 

graphs with augmented fingerprint features) can 

improve predictive abilities but also increase 

computational costs. However, optimizing such 

hybrid models requires careful tuning of hyper 

parameters to balance computational feasibility and 

model performance [25].  

4.6 Ethical and Legal Considerations in AI-based 

Drug Discovery 

AI in pharma manufacturing needs to be responsible 

and transparent. Bias must be mitigated to promote 

fair treatment, but, importantly, also to comply with 

data protection legislation such as the GDPR and 

HIPAA. Moreover, obtaining regulation approval 

from agencies such as the U.S. Food and Drug 

Administration (FDA) and the European Medicines 

Agency (EMA) is essential for creating clear legal 

responsibility when medical accidents occur. 

Intellectual property rights also raise concerns 

regarding ownership of AI-generated inventions.  

The promise of AI in revolutionizing the drug 

discovery and improving predictive accuracy can 

only be fulfiled but for its safe and equitable use, 

robust ethical and legal frameworks have to be put 



Bilad Alrafidain Journal for Engineering Science and Technology 

https://dx.doi.org/10.56990/bajest/2025.040207 
ISSN: 2073-9524 

Pages:67-85 

 

76 

in place. This includes the definition of clear 

guidelines for AI model training, the enablement of 

transparency in AI-driven decisions, safeguards 

protecting patient data and definitions about those 

who are legally liable in the case that _ orexcursus 

[58] These could manifest themselves as legal 

standpoint.  

5. Recent Innovations and Emerging Trends 

5.1 Advances in Molecular Representation Using 

GNNs 

Graph Neural Networks (GNNs) have exhibited 

remarkable potential in drug discovery, in particular 

for data represented by relational graphs, such as 

chemical compound structures, drug-target 

interactions (DTIs), protein-protein interactions 

(PPIs), and patient-disease associations. The 

flagship types of GNNs are Graph Convolution 

Networks (GCNs) that employ convolutions as well 

as Graph Attention Networks (GATs) using 

attention mechanisms to achieve more localised 

learning. GNNs have been utilized in a wide variety 

of applications: Predicting the chemical and 

biological properties of compounds by modeling the 

molecular graph structural relationships, predicting 

the drug-target interaction, and designing de novo 

drugs. to facilitate the generation and optimization 

of novel chemical structures based on learn 

adaptation model.The ability of GNNs to perform 

structured learning has further promoted their 

application across various fields [22]. 

GNNs have the attractive property of capturing 

complex graph structures and their relationships, 

effectively enabling better learning of more 

informative representations, leading to improved 

prediction performance for drug discovery. Some 

differences with these networks reside in the 

robustness and training complexity. However, they 

still present computational complexity and face 

some challenges, such as high computing 

requirement; or difficulty the training large/complex 

graphed problems; generalization issues; 

compatibility with other systems [22]. 

 

5.2 Drug Design and Virtual Screening Using 

GANs 

In drug research, Generative Adversarial Networks 

(GANs) have shown great potential, particularly in 

enhancing virtual screening and developing drug 

discovery. By learning from existing data, GANs 

can generate high-quality chemical structures with 

certain desired properties, including biological 

activity against a target. These models help identify 

promising therapeutic leads and streamline the drug 

development process by generating candidate 

molecules that meet predefined criteria [9], [14]. In 

addition, GANs have the potential to improve virtual 

screening by constructing molecular architectures 

that are more likely to bind to the desired target 

proteins, thereby accelerating drug discovery 

through faster identification of potential drug 

candidates [26]. Moreover, GANs enable the 

exploration of enormous chemical spaces by 

creating novel compounds that may not exist in 

traditional databases, improving the diversity of 

drug candidates and improving the candidate drugs 

[27]. GANs were used in the DeepCancerMap 

platform to evaluate the effectiveness of anticancer 

drugs, streamlining high-volume virtual screening 

and drug repurposing [28]. 

5.3 Multi-task and Few-shot Learning in Drug 

Discovery 

Sharing the knowledge between different tasks can 

lead to information crossing between different tasks 

to enhance the performance. In drug discovery, tasks 

often include predicting multiple bioassays, 

predicting biochemical activities of associated 

compounds, or countless other multifarious 

molecular properties [27]. In scenarios where there 

is limited data, as shared information between tasks 

can lead to reduced overfitting, MTL aids in 

information retention. MTL aids in drug discovery 

bioassays where MTL bioassay outcome predictors 

outperform single-task models [17]. MTL aids in the 

modeling of structure-activity relationships (SAR) 

to biological targets, which improves the 

generalizability of the models predicting the acute 

biological activities of multiple molecular 

properties, such as efficacy, safety, and solubility 

[29].The advantages of MTL include leveraging 
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data from related tasks to improve performance on 

individual tasks, reducing computational 

requirements by training a unified model, and 

effectively addressing data sparsity by sharing 

information across tasks [17]. 

Few-shot Learning (FSL) trains models to 

perform well with minimal data, making it crucial in 

drug discovery where data for rare diseases or novel 

compounds is limited [27] [29]. Applications in drug 

discovery include predicting activity on rare targets 

with scarce experimental data by leveraging prior 

knowledge from similar tasks or datasets, 

identifying potential drug candidates with limited 

screening data using techniques like meta-learning, 

and enhancing FSL models through data 

augmentation techniques, including synthetic 

molecule generation via generative models like 

GANs [29]. The advantages of FSL include 

reducing dependency on large datasets, making it 

ideal for exploring niche chemical spaces or orphan 

targets and facilitating rapid hypothesis generation 

for experimental validation [30]. 

5.4 Recent Works 

Overcoming challenges in drug discovery through 

deep learning requires a multifaceted approach that 

addresses key obstacles while leveraging emerging 

opportunities. Several works utilized DL for drug 

discovery and tried to overcome most challenges, as 

demonstrated in Table 2. 

Table 2: Developed works in drug discovery. 

References Techniques Datasets  Advantage Disadvantage 

Chakraborty et 

al. 

[5] 

CNNs, RNNs, 

Transformers, 

GNNs; 

Reinforcement 

Learning 

ChEMBL, 

PubChem, 

DrugBank, SIDER, 

ChemDB, DTC, 

STITCH 

Significant reduction in drug 

discovery time and cost; 

improved accuracy in target 

identification, DTI, and 

ADMET predictions. 

Requires large and well-

curated datasets; 

computationally 

expensive for large-scale 

implementations. 

 

Wu et al. 

[6] 

CNN, RNN, 

GNN, 

Transformer, 

Attention 

Mechanisms, Pre-

trained Models 

DUD-E, MUV, 

BindingDB, 

DrugBank, Davis, 

KIBA, PDBBind, 

UniProt, PubChem 

Enhanced prediction 

accuracy for drug-target 

interactions and binding 

affinity; improved 

interpretability with attention 

mechanisms. 

Computationally 

intensive; requires high-

quality labeled datasets; 

interpretability 

challenges for some deep 

models. 

Mouchlis et al. 

[9] 

Deep 

reinforcement 

learning, RNNs, 

CNNs, GANs, 

Auto-encoders 

- Explores broader 

chemical space; 

innovative 

generative design 

methods 

- Various de novo 

drug design datasets 

involving chemical 

structures and 

biological activity 

- Synthetic accessibility of 

designed compounds 

-  Synthetic accessibility of 

molecules 

- Advances drug discovery 

process; enhances novel 

molecular structure 

generation; utilizes AI to 

streamline design 

Complex algorithms 

require significant 

computational power; 

models may overfit with 

limited data 

Maharana et al. 

[13] 

Data pre-

processing, 

classification, 

clustering, data 

augmentation 

techniques 

(flipping, rotating) 

Various machine 

learning datasets 

from real-world 

applications 

Improves data quality for 

machine learning; enhances 

model accuracy by 

augmenting data 

Potential for overfitting; 

risk of distorting original 

data during augmentation 

Kwon et al. 

[17] 

Ensemble learning 

(random forest 

19 bioassay datasets 

with bioactivity and 

Improved prediction 

accuracy by combining 

Limited generalizability 

beyond specific bioassay 
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 (RF), meta-

learning) 

chemical properties diversified models; enhanced 

reliability 

datasets; increased 

complexity in meta-

learning approach 

Zhou et al. 

[18] 

DL, CNNs, 

RNNs, GNNs, 

Transformers, 

VAEs, GANs 

Observed Antibody 

Space (OAS), Sab 

Dab, custom 

datasets 

Improved efficiency and 

accuracy in antibody 

encoding, discovery, 

optimization, and 

humanization. 

Requires large annotated 

datasets, high 

computational costs, and 

careful preprocessing for 

specific antibody 

features. 

Lavecchia, A. 

[19] 

Deep Attention 

Networks 

(Transformers, 

GATs, BERT, 

GPT, BART), 

Generative 

Models 

ChEMBL, 

PubChem, BBBC 

datasets 

Improved prediction 

accuracy in molecular 

property prediction, drug-

target interactions, and de 

novo drug design. 

High computational cost; 

limited by data 

availability and quality; 

challenges in model 

interpretability. 

Kim et al. 

[22] 

DNNs, DTI 

prediction, de 

novo drug design 

Drug-target 

interaction and de 

novo drug design 

benchmark datasets 

Reduces time and cost in 

drug discovery; predictive for 

complex drug-target 

interactions 

High complexity in data 

representation; still 

evolving techniques, 

requiring better model 

generalization 

Elbadawi et al. 

[23] 

ML, DL, 

Reinforcement 

Learning, NLP 

ChEMBL, 

DrugBank, 

PubChem, ZINC 

Enabled efficient virtual 

screening, drug repurposing, 

and de novo drug design; 

improved prediction accuracy 

for drug interactions 

Computationally 

intensive; requires high-

quality datasets; limited 

interpretability of some 

deep learning models. 

Lin et al. 

[25] 

RF, Boost, Graph-

based DL Models 

(GCN, GAT, 

MPNN, Attentive 

FP), Co-

representations 

DL (FP-GNN, 

HiGNN, FG-

BERT) 

- ChEMBL 

Database 

- PubChem 

Database 

- MMV St. Jude 

Dataset 

- Harvard Liver 

Stage Dataset 

- Improved prediction 

accuracy with FP-GNN and 

HiGNN  

- Broad coverage of 

Plasmodium life cycle stages  

- multi-stage prediction 

capabilities 

- Imbalanced datasets 

challenge generalization  

- High computational 

demands for graph-based 

models on large datasets 

Wu et al. 

[28] 

DL (FP-GNN 

architecture), 

GNN, Fingerprint 

Networks 

ChEMBL Database, 

NCI-60 Panel, 

Cancer Cell Lines 

High accuracy in predicting 

anticancer activity (AUC 

values > 0.9); robust for both 

target-based and cell-based 

predictions. 

Computationally 

expensive; dependent on 

high-quality annotated 

datasets; less effective 

for rare or novel targets. 

Chen and  

Gilson  [31] 

Relational 

database 

management, 

XML integration 

Binding DB 

(biomolecular 

binding affinity 

data) 

Publicly accessible, supports 

various query methods, 

promotes direct deposition of 

binding data 

Limited to biomolecular 

binding data, dependent 

on data deposition by 

experimentalists 

Tiqing Liu 

2006 [32] 

Relational 

Database for 

Protein-Ligand 

Binding 

Binding DB 
Public access, supports 

diverse queries 

Limited to proteins with 

available structural data 

Yanli Wang 

[33] 

HTS, BioAssay 

Curation 

PubChem BioAssay 

Database 

Largest public HTS data 

repository, promotes open 

access 

Inconsistent data quality 

across studies 
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Lenselink [34] 
DNNs, QSAR, 

PCM 
ChEMBL Dataset 

Superior predictive 

performance, scalable 

modeling 

Requires extensive data 

preprocessing 

Chen  et  al.,  

[35]  

Variation Auto-

encoders (VAEs), 

CNNs 

ChEMBL Dataset 

- Ability to Handle Complex 

Datasets 

- Deep learning models can 

analyze large-scale datasets 

(e.g., ZINC, ChEMBL) with 

millions of compounds, 

enabling faster and more 

comprehensive screening 

DL models require large, 

high-quality, annotated 

datasets to achieve 

optimal performance, 

which can be challenging 

to obtain, especially in 

niche areas like rare 

diseases 

 

Zhavoronkov et 

al.  

 [36] 

Generative 

Tensorial 

Reinforcement 

Learning 

DDR1 kinase 

inhibition assay data 

Accelerates drug discovery, 

identifies novel compounds 

Limited to specific 

protein targets, requires 

domain-specific dataset 

Shtar et al.  

[37] 

Artificial Neural 

Networks, Graph 

Similarity 

DrugBank Dataset 
High accuracy in DDI 

prediction, scalable 

The methods rely heavily 

on known drug-drug 

interaction (DDI) 

networks, which may not 

be helpful for new drugs 

or interactions not yet 

documented in databases 

like DrugBank 

Mendez et al.,  

[38] 

Direct Bioassay 

Data Deposition 
ChEMBL Database 

Streamlines bioassay data 

sharing, reduces errors 

Dependent on depositor's 

accuracy 

Kim et al.,  

[39] 

Bioactivity and 

Spectral Data 

Integration 

PubChem Database 

Increased spectral data 

coverage, supports diverse 

studies 

Potential for outdated 

records 

Jacquemard and 

Rognan 

[40] 

ML, Virtual 

Screening 
LIT-PCBA Dataset 

Reduces biases, facilitates 

rigorous benchmarking 

Limited to curated target 

sets 

Bento et al. 

[41] 

RDKit-based 

chemical curation 
ChEMBL Database 

Automates standardization, 

improves data reliability 

Dependent on predefined 

curation rules 

Kim et al. 

[42] 

Data Integration 

and Web Interface 

Enhancements 

PubChem Database 
Expanded dataset, improved 

accessibility 

Requires frequent 

updates to maintain 

accuracy 

Janssens et al. 

[43] 

Unsupervised 

learning, multi-

scale neural 

network, UMM 

Discovery 

BBBC021 dataset 

No need for labeled data, 

handles batch effects, 

discovers novel modes of 

action 

Accuracy depends on 

clustering and 

normalization methods 

Marcelo et al. 

[45] 

ML, DL, RNNs, 

GANs, VAEs 

ChEMBL, 

DrugBank, 

PubChem, ZINC, 

Binding DB 

Accelerates antibiotic 

discovery by predicting 

antimicrobial activity, de 

novo molecular design, and 

identifying drug-likeness. 

Relies on the availability 

and quality of training 

datasets; computational 

costs of complex models; 

limited interpretability of 

DL methods. 

Lin et al.  

[46] 

Repurposing 

existing drugs, 

Clinical Trials 

COVID-19 clinical 

data 

Repurposing speeds up drug 

development as safety 

profiles are already known; 

Limited effectiveness 

against new variants; 

requires high-quality 
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lowers the cost and time of 

development. 

preclinical data to show 

efficacy against SARS-

CoV-2. 

Kasaraneni  

[47] 

ML, DL, Natural 

Language 

Processing (NLP), 

Predictive 

Modeling 

ChEMBL, 

DrugBank, 

PubChem, ZINC, 

Omics Data 

Enhances speed and accuracy 

of virtual screening, reduces 

costs, and enables 

identification of novel drug-

disease associations. 

Requires high-quality, 

diverse datasets; limited 

interpretability of 

predictions; challenges 

with data heterogeneity. 

Isert et al.  

[48] 

Geometric DL, 

3D Graph Neural 

Networks, SE (3)-

Equivariant 

Neural Networks 

ChEMBL Database, 

PDBBind Dataset 

Enabled molecular property 

prediction, binding pose 

estimation, and de novo drug 

design; improved 

interpretability and prediction 

accuracy. 

High computational 

requirements; 

dependency on high-

quality 3D molecular 

datasets; limited 

generalizability in small 

datasets. 

Krentzel et al. 

[49] 

DL, CNNs, 

Multiscale CNNs, 

Transfer Learning 

High-content 

cellular imaging 

datasets (e.g., 

BBBC021, Cell 

Painting datasets, 

ImageNet) 

Enabled accurate mode-of-

action (MoA) prediction, 

robust phenotypic 

classification, and hit 

identification from image-

based assays. 

Requires large, high-

quality annotated 

datasets; computationally 

expensive; challenges in 

model interpretability. 

Zamir ski et al. 

[50] 

Class-Guided 

Diffusion Models, 

Adaptive Group 

Normalization 

(AdaGN), 

Classifier 

Guidance (CG) 

JUMP-CP Cell 

Painting Dataset, 

AWS Cell Painting 

Gallery 

Achieved high-quality 

fluorescent microscopy 

image generation from 

brightfield images, 

improving biological feature 

quality and interpretability 

for drug discovery tasks. 

Computationally 

expensive, requiring over 

500 GPU hours per plate; 

high dependency on 

metadata quality and 

labeling consistency. 

Farrugia et al. 

[51] 

Knowledge Graph 

Embeddings 

(ComplEx, 

LSTM), Graph 

Autoencoders 

DrugBank version 

5.1.8 

Improved DDI prediction 

accuracy, handles multiple 

drug properties, scalable 

The complexity of 

knowledge graph 

creation, and embedding 

dimensionality affects 

performance 

Tang et al. 

[52] 

DL, CNNs, 

Transfer 

Learning, GANs, 

VAEs 

BBBC, RxRx, 

JUMP-CP, 

CPJUMP1, 

CytoImageNet 

datasets 

Enhanced morphological 

profiling for drug discovery, 

improved MOA prediction, 

and reduced manual feature 

engineering efforts. 

Computationally 

intensive; limited by 

dataset quality and size; 

challenges in integrating 

multimodal data for 

comprehensive insights. 

Ge et al. 

[53] 

DL (Interaction 

Transformer Net, 

ITN), template-

based modeling 

Protein-peptide 

interaction datasets 

(e.g., SH3, MHC I) 

High prediction accuracy, 

combines structural and 

sequence information, aids 

peptide drug development 

Computationally 

expensive, reliance on 

accurate structural data 

Ramin et al. 

[54] 

Mechanistic 

Models, Data-

Driven Models, 

Hybrid Models, 

Digital Twin 

Various bioprocess 

modeling datasets, 

Inno4Vac project 

datasets 

Improved scalability, process 

understanding, and regulatory 

compliance; reduced 

development time and costs. 

High computational 

complexity; limited by 

the availability of high-

quality and 

representative datasets. 

Obaido et al. 

[55] 

Supervised 

Machine Learning 

(e.g., RF, SVM, 

ChEMBL, 

molecular 

descriptors, SARS-

Enhanced accuracy in 

molecular property 

prediction; accelerated drug 

High computational 

demands; requires high-

quality, labeled datasets; 
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GNNs) CoV-2 datasets discovery pipelines; robust 

predictive capabilities in 

various applications. 

challenges with 

interpretability in 

complex models. 

Karampuri et al. 

[56] 

Multimodal Deep 

Neural Networks 

(MM-DNN), 

QSAR modeling, 

Autoencoders, K-

means clustering 

GDSC (Genomics 

of Drug Sensitivity 

in Cancer), Cell 

Model Passports, 

PubChem 

Achieved high R² (0.917) and 

low RMSE (0.312); 

facilitated prediction of 

effective RTK signaling 

drugs for breast cancer; 

streamlined molecular 

profiling integration. 

Computationally 

expensive; dependency 

on high-quality datasets; 

potential biases in 

multimodal data 

integration. 

Hua et al. [57] 

Pretraining with 

CytoImageNet 

(EfficientNetB0), 

Transfer 

Learning, k-NN 

classification 

CytoImageNet 

(890,737 

microscopy images 

from 40 datasets, 

including BBBC, 

IDR, Recursion, and 

Kaggle datasets) 

Improved transfer learning 

for microscopy image 

classification; closer domain 

match for biological tasks 

compared to ImageNet. 

Computationally 

intensive pretraining; 

lower generalization 

performance compared to 

ImageNet on some tasks. 

 

 

6. Conclusion  

Several future directions in DL for drug discovery 

focus on leveraging technology to enhance 

efficiency, accuracy, and personalization. Digital 

Twinning (DT) enables the simulation of biological 

systems and more accurate predictions of drug 

effects, streamlining drug development. Integration 

of Explainable AI (XAI) addresses the "black-box" 

nature of DL by creating interpretable models, 

thereby increasing trust and usability in clinical and 

regulatory contexts. Advanced Data Integration 

incorporates multi-omics data, such as genomics, 

transcriptomics, and proteomics, to build 

comprehensive models for predicting drug 

sensitivity, side effects, and efficacy.  

Additionally, Novel deep-learning architectures 

are specifically designed for drug discovery 

applications. Collaboration across sectors—bringing 

together pharmaceutical companies, AI firms, and 

academic institutions—will play a vital role in 

driving innovation and overcoming technological 

challenges. Together, these advancements present 

groundbreaking opportunities to revolutionize drug 

discovery. Deep learning is revolutionizing drug 

discovery by introducing advanced methodologies 

like Graph Neural Networks (GNNs) and Generative 

Adversarial Networks (GANs). These approaches 

are energetic key applications, including virtual 

screening, de novo drug design, protein-ligand 

interaction prediction, toxicity assessment, and drug 

repurposing . While challenges such as example data 

scarcity, noise, and model interpretability remain, 

strategies like explainable AI (XAI) and multi-task 

learning are helping to overcome these obstacles. 

Future advancements, such as integrating multi-

omics data and utilizing few-shot learning, hold 

great promise for further enhancing drug discovery . 

By enabling more precise predictions, personalized 

medicine, and efficient molecular exploration, deep 

learning is transforming pharmaceutical research, 

optimizing drug development pipelines, and paving 

the way for groundbreaking new treatments.  
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