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Abstract

Advanced models of deep learning have been transformational tools for discovering drugs and solving
problems related to cost, time, and complexity. Using complex network frameworks such as recurrent neural
networks (RNNs), convolutional neural networks (CNNs), generative adversarial networks (GANs), and
graph neural networks (GNNs), researchers have made major improvements in predicting drug-target
interactions, performing virtual screens, and developing novel drugs. Those frameworks effectively occupy
elaborate biochemical relations and precisely imitate complicated molecular reciprocities. Nevertheless,
significant issues remain, like data shortages arising from restricted access to (high-quality) datasets, model
predictions' interpretability, and the scalability to include considerable and assorted datasets. To efficiently
address these issues, innovative strategies, including diverse techniques of data augmentation, like molecular
graph transformations, have been applied to improve datasets. Reinforcement learning has helped improve
molecular structures to accomplish desired characteristics, while ensemble learning, which integrates various
model structures, has proven effective in improving prediction reliability. Incorporating multi-modal
datasets, like pharmacophores properties, 3D molecular representations, and molecular graphs, increases the
accuracy of prediction by occupying spatial and even functional molecular properties. Despite these
advances, issues remain in multi-drug modeling, drug resistance management, and accurate toxicity
prediction. Future works focus on the importance of explainable Al in strengthening model interpretability,
with hybrid structures that incorporate machine learning and experimental feedback to simplify the
therapeutic scheme. By addressing these challenges and adopting innovative approaches, deep learning is set
to revolutionize drug discovery, enabling a more efficient, accurate, and reliable development pipeline for
novel therapeutics. This study highlights how model interpretability and confidence can be enhanced by
integrating multigene data and leveraging explainable Al techniques. By focusing on these cutting-edge
developments, this study aims to provide practical insights for researchers and practitioners to accelerate the
development of safe, effective, and personalized therapeutics.
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1. Introduction

In the past, medicinal chemists operating in labs
were primarily responsible for drug discovery and
development, which involved extensive testing,
validation, and synthetic processes. This approach
required a large amount of time and financial
commitments to get a single medicine to clinical
trials. Despite this, the proliferation of multi-omics
data and advances in computational technology have
produced a plethora of tools in cheminformatics,
pharmacology, and bioinformatics. Drug
development has been greatly advanced by these
developments. The advent of Artificial Intelligence
(AD (including Deep and Machine Learning (DL&
ML)) has further changed conventional drug
development techniques. Large biological datasets
that are spread across international databases are
becoming useful tools for ML and DL techniques.
The time, labor, and financial resources required for
drug development reduced when these
technologies are used to expedite the process of
finding therapeutic compounds [1].

arc

DL is shedding new light on drug discovery.
While the reliance on the availability of large
training datasets is still an ‘Achilles’ heel’ of DL in
this domain, recent advancements have proven to be
quite successful in applying neural networks to low-
data  scenarios. Increasingly, such research
demonstrates successful approaches to constructing
DL models that perform well under data scarcity
frameworks. Despite advancements, there are deeper
challenges that still remain under the data. However,
the advent of DL in drug discovery has brought
about more accurate and insight data-driven, along
with the lower time and cost that a drug is usually
associated with in the development process [2]. In a
much different fashion to traditional computational
approaches, deep learning is able to synthesize and
learn through large complex data sets of layer upon
layer neural networks able to recognize patterns

within  biological data, including genomic,
proteomic, and metabolomics data [3].
This ability will prove essential in drug

discovery where DL models have depicted great
guarantee in new target identification, predicting

drug-target interaction, drug metabolism and
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toxicity modeling, and even de novo drug-like
molecule engines. Convolutional and graph neural
networks (CNNs & GNNs) enabled researchers to
assess analytical models of the structure and
function of the probed drug compounds with
exceptional precision, in some cases, greatly
surpassing traditional machine learning. DL is now
extensively used in virtual screening, (absorption,
distribution, & toxicity
(ADMET)), prognosis, protein structure modeling,

and even designing clinical trials, contributing

metabolism, excretion,

significantly at each drug discovery level, starting
from fundamental and then going to preclinical and
clinical phases. As DL models continue to evolve,
their applications are anticipated to advance and
optimize pipelines of drug discovery, providing the
pharmaceutical industry with more effective
pathways for evolving safe and innovative
therapeutics [2]. The main contribution of this

investigation:

1. Explores the transformative role of DL in drug
discovery, leveraging advanced architectures
like GNNs and Generative
Networks (GANs), along with
Transfer Learning or Multi-Task Learning

Adversarial
innovative

approaches to address the scarcity of data.

2. It emphasizes multi-omics data integration and
explainable Al to enhance predictive accuracy
and model interpretability, showcasing practical
applications in de novo drug design, toxicity
prediction, and ADMET property assessment.

3. The study discusses key challenges, including
noisy data, high computational demands, and
ethical concerns. It proposes solutions such as data
augmentation and ethical frameworks and forecasts
future innovations to accelerate the development of
effective and safe therapeutics.

2. Deep Learning based Drug Discovery

The availability of adequate data has effectively
transformed Al techniques into improved machine
learning techniques in recent decades to address
fundamental issues. One of the greatest ways to
address problems involving various variables and
large amounts of data through ML. DL
approaches represent resilient and effective tools for
processing  the of

18

vast amounts information
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generated by the sheer volume of data being
generated in various sectors, and have recently
replaced ML techniques. A subfield of ML called
"DL" was created to process extremely complicated
data and make judgments based on the analysis [4].
As Fig. 1 illustrates, Al has occasionally been used
in a variety of pharmaceutical and healthcare fields
[5]- DL methods have been integrated into state-of-
the-art drug discovery to efficiently process the
large volumes of data created in this field, driving
advancements

in research and development.

Numerous models of ML and DL-based applications

Pages:67-85
have been utilized in drug discovery and
development. StackCBPred, LigGrep, LS-align,

TrixX, and DrugFinder are a few prominent ML-
based models. When compared to ML techniques,
DL models have provided superior performance. As
a result, they have lately become particularly
promising instruments in drug discovery research.
DeepDTA, WideDTA, PADME, DeepAffinity, and
DTI-CNN are a few notable DL-based models. Drug
development and discovery are greatly advanced by
these models [5].

Deep Learning (DL) used in
healthcare

Computer is research resource

in medicine In endoscopy

1950 1975 2007

Computer-Aided Design used

Successful Al trails in
healthcare

OpenAl-ChatGPT
in healthcare

2023

2017 2020

1971 2000

manitors
Turing testis
developed DeepQA technology first used

n healthcare

Medicine and Artificial Intelligence
First workshop by NIH

2015

Telemedicine, automated health

2018 2022

Personalized digital wellbeing

Chatbots (Cranberry, Impulso Gov, iWill,

Koko) released for healthcare sectors
Cloud based DL application (FDA

approved) first introduced

Fig. 1 The turning point of Al-related accomplishments in the healthcare and pharmaceutical areas [5].

2.1 Virtual Screening

Another method in  drug

development is virtual screening, which looks for

computer-based

basic libraries of small compounds to identify hits
that have the best chance of attaching to a drug
destination. The chemical compound's biological,
topological, physical, and chemical characteristics
and targets are used in virtual screening. The
techniques of virtual screening can be categorized
into two structures. The first is structure-based,
which models and conceptualizes interactions using
the three-dimensional structure of chemical and
targets compounds.

The three-dimensional structure can be obtained
via nuclear magnetic resonance or crystallography
(X-ray). Docking could be utilized to specify how a
molecule interacts with a particular target once the
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three-dimensional structural data has been put
together. The second category is nanostructure-
based and can be further classified into two groups:
modeling of protein-chemical, which
integrating non-structural headlines with targets (at

involves

the input-level), and ligand-based virtual screening,
which models and analyzes interactions with targets
using the molecular properties of compounds [6].
Numerous surveys have demonstrated that DL
outperformed other ML models in terms of virtual
screening, particularly owing to their significant
implementation in de novo molecular design, which
utilizes data sequence to generate molecules of
desired properties. DL-based tools that are utilized
in virtual screening [7].

2.2 De Novo Drug Design

The process of De novo drug design works on
creating drug-like molecules using computational
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methods, starting from scratch and not depending on
a predefined structure. The rise in artificial
intelligence techniques has accelerated drug
discovery and opened up new possibilities for novel
drug schemes, such as the formation of new
molecular structures from atomic building blocks
without prior relationships. But, there are some
significant variations between de novo drug design
and traditional one. In traditional drug design, a
structure-based procedure was considered, which
relies on the properties of the protein binding site of
the biological target. Al is a growing field that has
affected drug discovery.

Thus, AI has also had an impact on the
innovative medication design strategy. It uses
knowledge to generate new chemical entities, such
as ligands and receptors. The biological targets in
this case are referred to as receptors or their active
ligands, respectively. Modeling the receptor's active
site or ligand pharmacophore is essential to creating
a molecule in de novo drug creation. For the design
of innovative drugs, a number of models based on
ML and DL models have been proposed. Different
DL-based models have been created on occasion
over the years to help in the development of novel
medications.

Another recently noted model for novel drug
molecule design is druGAN. A deep generative
autoencoder (AAE) model has been implemented to
develop new molecules with anticancer properties.
In the same manner, incorporating reinforcement
learning with a hybrid VAE resulted in creating a
novel drug design model known as PaccMannRL.
This model uses genomic transcription data to
efficiently design anticancer molecules. More
recently, a new drug design model that utilizes
GNNs was introduced. This Model is able to
effectively create indispensable novel quinolone
compounds, assess their accessibility, toxicity, and
pharmacokinetics, and their potential as drugs. This
illustrates the capacity and depth of impact ML/DL
algorithms can have with respect to drug designing
[5]. From time to time, more recent models to drug
design have creatively incorporated evolutionary
algorithms:
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A. Using generative models for creating new
molecular structures offers a novel approach due
to their ability to utilize synthetic heuristics or
priors, effectively replacing the search-through
molecular space paradigm with simply
validating promising results. These models do
especially well when learning from existing
datasets of molecules and creating new

The

molecules produced through these methods

could then be filtered by a number of criteria,

molecules that share the same traits.

such as ease of synthesis, affinity towards
selected proteins, biological activity, and other
relevant physicochemical parameters. In recent
years, several generative models have been
proposed for drug design employing various
representations of molecules, including, but not
limited to, SMILES strings, 2D or 3D molecular
graphs, Morgan fingerprints, and even images of
the molecules themselves. Moreover, whether
they do or do not identify protein targets makes
available a rich collection of models and
methodologies intended for various data formats
and conditions. Many of these approaches draw
inspiration  from language models and
generative  pre-trained (which

known with GPT), further enhancing their

transformers

ability to generate novel drug-like compounds
efficiently [8].

Reinforcement learning for drug optimization: It
is a sub-section of ML that combines ANNs
with the architectures of reinforcement learning.
This combination has been effectively utilized
to produce new drug design methods utilizing
various Neural Networks, encompassing RNNs,
CNNs, competitive generative networks, and
auto-encoders [9].

2.3 Toxicity Prediction

Drug toxicity refers to the prediction of unwanted or
harmful properties in drug-like molecules, a critical
factor contributing to the high costs of drug
development. Since toxicity is directly linked to
drug safety, accurately predicting side effects and
assessing safety are essential components of the
drug development process. However, conducting

laboratory-based toxicity studies during drug
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development is time-consuming and resource-
intensive. To address this challenge, computational
models have been developed to reduce both the time
and cost associated with toxicity prediction.
Recently, a model called DeepTox, based on a three-
layer deep neural network (DNN), has been
introduced to predict the toxicity of drug-like
molecules or compounds. This model utilizes
molecular descriptors ranging from 0D to 3D as
input for DNNs. Additionally, a deep learning-based
toxicity prediction model named Deep-PK has been
developed to evaluate the and
pharmacokinetics of small molecules. These
developments emphasize the ultimate importance of

ML/DL models in the drug toxicity prediction

toxicity

process, making it more efficient and cost-effective

[5].

A. Deep learning Models to Predict ADMET-
properties: The ADME Toxicity (ADMET)
issues the drug- discovery and development
process are faced with have been vaguely
referred to as the absorption, distribution,
metabolism, excretion and adverse toxicity
properties which are major known causes of
failure that leads several molecules dissolution
from the drug development pipeline and
subsequently initiates an increase in wastage of
valuable time and resource. This surging interest
has changed the focus to earlier stages of
prediction of ADMET properties of candidates,
aiming to increase the probability of success for
the compounds proceeding to the further stages
of the drug development process. Al technology
has successfully been used to create models and
tools for the prediction of ADMET, resulting in
the simplification of the evaluation of drug-like

molecules prior to rigorous testing. Also,
companies which take up clinical studies have
witnessed enhanced success rates with

refinement of their research approaches using
the strategies which are Al based. The changes
have resulted in the improvement of the
preclinical and clinical studies, which proves the
use of Al in drug development and discovery to
be promising and benchmarking. This is why Al
is advocated in the field of modern medicine [1].
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B. Case Studies
Assessments: Drug-induced toxicity poses a
major issue to late-stage drug attrition. The
safety profile of a potential drug candidate must

on Toxicity and Safety

be closely monitored to neglect troubled drug
interactions. Most pharmaceutical corporations
and regulatory bodies in numerous countries (as
of 2020) have relied on in vivo and vitro testing.
While this approach supplies scientific
researchers with significant data, it has some
drawbacks. Some toxicity patterns remain
undiscovered at the preclinical level owing to
metabolic and physiological discrepancies
between people and others, and synergistic
effects. Sitaxentan is an instance of a drug that
is not hepatotoxic in animal studies but causes
significant liver injury in humans

2.4 Protein-Ligand Interaction Prediction

Conformational changes in target proteins triggered
by ligand binding influence various biological
processes. Modern medicine has significantly
advanced by leveraging the capability of modifying
the structure and function of proteins throughout the
use of small molecules as therapeutic agents for
Although
interactions (PLI) are important in medicine and
biology, and insight into the multiple factors

treating  diseases. protein-ligand

governing ligand recognition, involving
hydrophobicity, hydrogen bonding, and p-
interactions, developing and validating accurate
predictive PLI models for drug discovery continues
to be a complex challenge.

Relying solely on experimental methods to
identify and confirm protein-ligand interactions can
be time-consuming and costly. On the other hand,
computational approaches offer a more efficient
alternative by screening vast libraries of compounds
and narrowing them down to a smaller selection of
ligands with a higher likelihood of binding to the
target protein. By doing so, accurate PLI prediction
algorithms can significantly speed up the discovery
of new therapeutics, help eliminate potentially toxic
drug candidates, and provide valuable guidance in
medicinal chemistry [10].
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2.5 Drug Repurposing

Due to the rate of high attrition, the impediments of
large costs, a slow march of drug discovery and
development, the fact that repurposing of the “old”
drugs becomes more and more popular the treatment
of not only usual but also very rare diseases, since it
comprises the application of lower-risk compounds,
with possibly lesser development costs, and shorter
development periods, it is definitely worthwhile one.
Several data-driven experimental approaches have
been proposed to identify reusable drug candidates;
however, there are also significant technological and
regulatory challenges that need to be addressed [11].

Drug repurposing offers a cost-effective strategy
for finding new medical applications for already
approved drugs. Advances in Al have enabled the
systematic identification of potential repurposing
opportunities by leveraging large-scale datasets,
accelerating drug development, and minimizing
risks through computational analysis. This study
focuses on supervised machine learning (ML)
approaches that utilize publicly available databases
and existing knowledge resources. While most
applications have been in anticancer drug therapies,
the methodologies explored are broadly applicable
to other conditions, including COVID-19 treatment.

A key focus is placed on comprehensive target
activity profiles, which facilitate systematic drug
repurposing by expanding the known target
spectrum to include potent off-target effects with
therapeutic potential for new indications. However,
the limited availability of clinical patient data and
the prevailing emphasis on genetic aberrations as
primary drug targets may restrict the effectiveness
of anticancer drug repurposing strategies that rely
solely on genomic-based insights. Functional testing
of cancer patient cells exposed to various targeted
therapies and drug combinations offers an additional
layer of valuable, real-world data that can enhance
Al-driven,  tissue-specific  drug
approaches [12].

repurposing
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3. Datasets in DL-based Drug Discovery

Drug discovery faces significant challenges related
to data limitations and quality. The small and often
noisy datasets used in this domain can restrict model
performance due to insufficient diversity and
compounded by inadequate negative
examples (inactive molecules). The studies of
Maharana et al. [13], Bhati et al. [14] and Lavecchia

[15], suggest introducing bias and hindering reliable

volume,

learning. Integrating data from diverse sources, such

as high-throughput screenings, literature, and
databases, further complicates pre-processing due to
inconsistencies and heterogeneity in data types and
formats [15]. Techniques like QSAR (Quantitative
Structure-Activity Relationship) models frequently

contend with sparse and highly correlated feature

sets, necessitating careful handling to avoid
misleading predictions [16] and [17].
Additionally, representing molecules and

proteins in computer-readable formats such as
SMILES strings or molecular graphs often results in
the loss of critical 3D conformational and dynamic
properties [17]. Encoding biological data effectively
for deep learning models remains a significant
technical challenge, as does the extensive effort
required in pre-processing steps like molecular
structure  standardization,

deduplication, and

inconsistency correction. Pre-processing is an
important procedure because it can have a positive
effect on the results of the experiments and the
reliability of the data [18]. It is also a known fact
that selection bias is common in the dataset aeration
process, and this error in the data may lead to
overfitting, which may seem like the models are
working well with he given data, but in reality, they
do not perform well on the unseen data. Bias control
and data balancing model construction (that may be
used to fight and eliminate these factors) are both
important parts in the process of developing
effective and reliable drug discovering systems [19],
[20]. Table 1 illustrates the datasets utilized for drug

discovery.
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Table 1: Datasets used (Public & Proprietary).

Datasets  |Link to the dataset Description Source/Features Last
Update
A publicly .acc.eSSIble l?b.rary of Contains  curated  binding
measured binding affinities that )
) o . . affinity data for over 20,000
o https://www.bindin | focuses on interactions between . .
Binding DB X . . proteins and drug-like | 2023-08-01
gdb.org/bind/ tiny, drug-like compounds and )
. .| compounds; supports drug
proteins thought to be therapeutic | .
discovery research
targets
European Bioinformatics | Includes data on bioactive
https://www.ebi.ac Institute, known as EBI, supports | compounds, their targets, and
ChEMBL I | a hand-selected chemical | associated activities; useful for | 2023-07-15
uk/chembl/ . ) . .
database of bioactive compounds | cheminformatics and
with drug-like characteristics. pharmacology
Y |https:/archive.ics.u supplying information on the ’ grating & | 2023-06-20
Datasets from - . . . throughput screening results;
ci.edu/ biological activities of small A o
PubChem supports predictive modeling in
molecules .
drug discovery
A thorough resource that blends | Offers information on approved
DrucBank https://go.drugbank | comprehensive medication target | drugs, investigational drugs, | 2023-08-25
& .com/ knowledge with detailed drug | and their interactions with
data biological targets
. . Includes crowd-sourced
Drug Target drugtargetcommons A cqmmumty—drlve'm platform for annotations, enabling | 2023-07-30
Commons sharing and analyzing drug-target . .
fimm.fi . . systematic analysis of drug-
(DTC) interaction data . :
target relationships
Broad These datasets are often available | Features a wide variety of
Bioimage  |https://bbbe.broadin| through specific research | imaging datasets, including | 2023-08-10
Benchmark stitute.org/ institutions  or  collaborative | Cell Painting assay data, from
Collection projects collaborative projects
thrljlllgllll- ut HTS data can be accessed | Provides data on millions of 2023-06-05
Scre egniig - through platforms like PubChem | compounds tested  against
(HTS) BioAssay. various targets
Databases like the Antibiotype Includes preclinical testing and
Preclinical |http://i.uestc.edu.cn| provide information on | ki datior? results for Viious 2023-07-01
Antibody Data /DOTAD/ antibodies, including preclinical o
antibodies
data
Accessible chemistry .datgbase Integrates chemical structure,
supported by NCBI, which is the | , . .
) . bioactivity, and assay data for
https://pubchem.nc | National Center for -
PubChem . ; . . over 200 million compounds; | 2023-09-01
bi.nlm.nih.gov/ | Biotechnology Information; . .
. . o supports cheminformatics
biological activities of small
research
molecules

4. Challenges and Limitations

4.1 Scarcity and Quality of Data

Another vital point is that drug discovery data are
available in the highest amount, however, the
quality of the data is still a lot lower compared to
other ML areas. That said it also goes with the
territory that health data are very sensitive and often
not of the best quality. Furthermore, developments
made in hardware have prompted DL revolution, but
the field of drug discovery is still not sufficiently

developed to the point of machine learning field
where training a model requires a lot of computing
resources.

Drug discovery is a very challenging process
where the one is tasked with predicting the
interactions of the molecular structures and
understanding their characteristics. A model is
supposed to be able to handle various sizes of
molecular structures but it has to adapt to different
datasets and make sure that the findings are largely
applicable. The models can be used to generate
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novel molecular structures, however, they can also
fail to solve the chemical validity, novelty, and
synthesis problem. Furthermore, the models might
just be useless and the new molecules need to be
taken with caution. The same applies to the
evaluation of these models as there is no specific
benchmark that can be used to compare their
performance.

Current datasets could be split or with
prejudices in them, so it is quite difficult to exactly
compare various approaches and test if the model
performs well [16]. One of the problems with the
use of DL in drug discovery is the existence of
several obstacles and the issue of understanding the
data. The concept of data scarcity concerns that the
type of data needed is not enough, is one of the key
problems. The lack of a larger number of data points
to choose from can result in the misuse and poor
generality of the training datasets, which will bring
biases and worsen generalization. Furthermore, very
often comprehending the decisions of such models
is a tough job, as these models work as "black
boxes." Despite these limitations, approaches like
data augmentation, transfer learning, and self-
supervised learning are utilized that enhance the
model performance [13]. Another example is where
the interpretability of SHAP, LIME, and attention
mechanisms is a tool for clarification, while the
models that are hybrids and encompass different
features merge for the production of accurate

models [18].

The essential noise in chemical and biological
datasets is one of the toughest problems to deal with
for ML models because it is always present and
adversely affects the reliability of ML models. This
noise is frequently attributable to other factors , for
instance, the high complexity of biochemical assays
or variation in conditions when experiments were
conducted. Also, the lack of negative samples or
inactive compounds makes model training a harder
task since publication bias is common. It means that
the studies are likely to show only a positive or a
successful result. That results in datasets where there
is no representation of the true distribution of active
and inactive compounds. Imbalanced data can, as a
result, make it difficult for models to generalize
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effectively, as these might show good results only
on the training data and fail on new and unseen data.
Consequently, noisy and skewed datasets can cause
models to overfit or develop biases toward specific
patterns, affecting their ability to make accurate
predictions for diverse drug candidates [16].

4.2 DL Model Interpretability

The field of drug development faces several
challenges; The main difficulty is the attainability of
high-quality datasets fit for training AI models.
Although the availability of chemical and biological
data is expanding, data quality often remains
suboptimal, making effective data processing
essential. Accordingly, retrieving data from
databases can be costly, adding to the overall
expenses of drug development. That said, high-
quality datasets do exist within pharmacology, and
fostering collaboration between technology and
pharmaceutical companies could accelerate drug
discovery and development as displayed in Fig. 2.
Such datasets can help in training and testing Al
models, which may solve the problem of data
availability. Another major challenge is the ability to
interpret and understand Al model predictions. Deep
learning models involve a large number of complex
parameters and layers, making it difficult for non-
experts to understand the decision-making processes
in the context of drug discovery and development.
As a result, improving the interpretability of deep
learning models is essential for advancing drug
research, but achieving this remains a significant
hurdle. [5].

4.3 Balancing ML and DL in Drug Discovery

Machine learning (ML) is used in drug discovery
when limited data is available, as it relies on manual
feature extraction and offers ease of interpretation
and efficiency with small datasets. On the flip side,
deep learning (DL) is very good in analyzing large
and complex datasets like molecules, but it needs
high computation power and often is like a "black
box." DL is the first choice when a great accuracy is
required with big data sets, and ML is chosen for
jobs that need to explainability. The most effective
way to keep the balance performance and the
explanation is to use both these methods in the same
models. It is undeniable that the future of research is
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centred around growing integrated ML and the DL

track to raise the drug discovery efficiency bar [15].

MCRRUK

(Pfizer

SANOFI . »

Collaborated with
Collaborated with Exscientia owkin for ML
Al-driven drug development based clinical
trial platform and
drug discovery

and development

Collaborated with
IBM Watson to
faster Immuno-
oncology based
drug discovery
and development,

Collaborated with
Exscientia Al-driven
drug development
for the treatment of
oncological and
cardiovascular
disease

Fig. 2 Collaboration between pharmaceutical and technology companies to develop and discover Al-based
drugs [5].

4.4 Domain-Specific Integration

Integration of multiple types of data, such as
molecular structures, protein—protein interactions
and biological pathways, has enabled building DL
models able to discern the  complex
dependencies/relationships that are important for
potentiation of the action of a drug [9], [21]. The use
of sophisticated DL models has led to multi-
dimensional data being used, such as 3D Molecular
representations, and graph-based models can bring
high-level biological and chemical properties
together for predictions [21], [22]. DL models, such
as RNNs and CNN, are generalized to incorporate
pharmacological knowledge [23], [24]. Yet, with
advancement, the challenges persist, such as there
not currently being a best quality solution or the
insufficiency of even the most complete data-sets
and similarly, how to model even more complex
biological processes without over-generalization.
This scheme we developed will help the DL models
more compliance with the biological truth and have
more reliable and accurate predictions during drug
discovery [24].

4.5 Computational Complexity

The techniques of DL, including RNNs, CNNs,
GANSs, and AEs, have proven to be highly effective
in drug discovery. However, these models are
computationally expensive, leading to difficulties in
with limited access to high-
performance computing resources [9].

environments

Training complex neural networks (especially
neural networks on graphs) requires more resources
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of computations. This is because of the size of the
parameters involved and also the iterative process of
training the models. Graph convolutional and
attention networks are complex to work with and
can handle large datasets, but are expensive in terms
of CPU and memory. In addition, the performance
of these models is often reliant on the scale of the
datasets. As datasets scale up, maintaining a model
without a dramatic increase in computation time can
be challenging. Hybrid models (from molecular
graphs with augmented fingerprint features) can
improve predictive abilities but also increase
computational costs. However, optimizing such
hybrid models requires careful tuning of hyper
parameters to balance computational feasibility and

model performance [25].

4.6 Ethical and Legal Considerations in Al-based
Drug Discovery

Al in pharma manufacturing needs to be responsible
and transparent. Bias must be mitigated to promote
fair treatment, but, importantly, also to comply with
data protection legislation such as the GDPR and
HIPAA. Moreover, obtaining regulation approval
from agencies such as the U.S. Food and Drug
Administration (FDA) and the European Medicines
Agency (EMA) is essential for creating clear legal
responsibility when medical accidents occur.
Intellectual property rights also raise concerns

regarding ownership of Al-generated inventions.

The promise of Al in revolutionizing the drug
discovery and improving predictive accuracy can
only be fulfiled but for its safe and equitable use,
robust ethical and legal frameworks have to be put
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in place. This includes the definition of clear
guidelines for Al model training, the enablement of
transparency in Al-driven decisions, safeguards
protecting patient data and definitions about those
who are legally liable in the case that _ orexcursus
[58] These could manifest themselves as legal
standpoint.

5. Recent Innovations and Emerging Trends

5.1 Advances in Molecular Representation Using
GNNs

Graph Neural Networks (GNNs) have exhibited
remarkable potential in drug discovery, in particular
for data represented by relational graphs, such as
chemical compound  structures, drug-target
interactions (DTIs), protein-protein interactions
(PPIs), and patient-disease associations. The
flagship types of GNNs are Graph Convolution
Networks (GCNs) that employ convolutions as well
as Graph Attention Networks (GATs) using
attention mechanisms to achieve more localised
learning. GNNs have been utilized in a wide variety
of applications: Predicting the chemical and
biological properties of compounds by modeling the
molecular graph structural relationships, predicting
the drug-target interaction, and designing de novo
drugs. to facilitate the generation and optimization
of novel chemical structures based on learn
adaptation model.The ability of GNNs to perform
structured learning has further promoted their
application across various fields [22].

GNNs have the attractive property of capturing
complex graph structures and their relationships,
effectively enabling better learning of more
informative representations, leading to improved
prediction performance for drug discovery. Some
differences with these networks reside in the
robustness and training complexity. However, they
still present computational complexity and face
high
requirement; or difficulty the training large/complex
graphed problems; generalization
compatibility with other systems [22].

some challenges, such as computing

issues;
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5.2 Drug Design and Virtual Screening Using
GANs

In drug research, Generative Adversarial Networks
(GANSs) have shown great potential, particularly in
enhancing virtual screening and developing drug
discovery. By learning from existing data, GANs
can generate high-quality chemical structures with
certain desired properties, including biological
activity against a target. These models help identify
promising therapeutic leads and streamline the drug
development process by generating candidate
molecules that meet predefined criteria [9], [14]. In
addition, GANs have the potential to improve virtual
screening by constructing molecular architectures
that are more likely to bind to the desired target
proteins, thereby accelerating drug discovery
through faster identification of potential drug
candidates [26]. GANs enable the
exploration of enormous chemical spaces by
creating novel compounds that may not exist in
traditional databases, improving the diversity of
drug candidates and improving the candidate drugs
[27]. GANs were used in the DeepCancerMap
platform to evaluate the effectiveness of anticancer

Moreover,

drugs, streamlining high-volume virtual screening
and drug repurposing [28].

5.3 Multi-task and Few-shot Learning in Drug
Discovery

Sharing the knowledge between different tasks can
lead to information crossing between different tasks
to enhance the performance. In drug discovery, tasks
include predicting multiple

often bioassays,

predicting biochemical activities of associated

compounds, countless other multifarious
molecular properties [27]. In scenarios where there
is limited data, as shared information between tasks

can lead to reduced overfitting, MTL aids in

or

information retention. MTL aids in drug discovery
bioassays where MTL bioassay outcome predictors
outperform single-task models [17]. MTL aids in the
modeling of structure-activity relationships (SAR)
to Dbiological targets, which improves the
generalizability of the models predicting the acute
biological activities of multiple molecular
properties, such as efficacy, safety, and solubility

[29].The advantages of MTL include leveraging
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data from related tasks to improve performance on
individual tasks, reducing
requirements by training a unified model, and

effectively addressing data sparsity by sharing

computational

information across tasks [17].

Few-shot Learning (FSL) trains models to
perform well with minimal data, making it crucial in
drug discovery where data for rare diseases or novel
compounds is limited [27] [29]. Applications in drug
discovery include predicting activity on rare targets
with scarce experimental data by leveraging prior
knowledge from similar tasks or datasets,
identifying potential drug candidates with limited

screening data using techniques like meta-learning,

augmentation  techniques, including synthetic
molecule generation via generative models like
GANs [29]. The advantages of FSL

reducing dependency on large datasets, making it

include

ideal for exploring niche chemical spaces or orphan
targets and facilitating rapid hypothesis generation
for experimental validation [30].

5.4 Recent Works

Overcoming challenges in drug discovery through
deep learning requires a multifaceted approach that
addresses key obstacles while leveraging emerging
opportunities. Several works utilized DL for drug
discovery and tried to overcome most challenges, as
demonstrated in Table 2.

and enhancing FSL models through data
Table 2: Developed works in drug discovery.
References Techniques Datasets Advantage Disadvantage
. . Requires large and well-
CNNSs, RNN, ChEMBL, Significant reduction in drug
. . curated datasets;
Chakraborty et Transformers, PubChem, discovery time and cost; computationall
. . u
al. GNNEs; DrugBank, SIDER, improved accuracy in target . erilsi e for l};r e-scale
. o . X v -
[5] Reinforcement ChemDB, DTC, identification, DTI, and implementat'ons &
. . ions.
Learning STITCH ADMET predictions. P
CNN, RNN, DUD-E, MUV, Enhanced prediction . Co.mputatl(?nally.
GNN, o accuracy for drug-target intensive; requires high-
BindingDB, . X . .
Wu et al. Transformer, . interactions and binding quality labeled datasets;
. DrugBank, Davis, . . ..
[6] Attention . affinity; improved interpretability
. KIBA, PDBBInd, . o . .
Mechanisms, Pre- ) interpretability with attention | challenges for some deep
. UniProt, PubChem .
trained Models mechanisms. models.
- Expl broad . -
*P qres roacer - Synthetic accessibility of
chemical space; .
. . designed compounds
mnovative . o .
Deep . . - Synthetic accessibility of Complex algorithms
. generative design L
) reinforcement molecules require significant
Mouchlis et al. . methods . .
learning, RNNs, . - Advances drug discovery computational power;
[9] - Various de novo .
CNNs, GANS, . process; enhances novel models may overfit with
drug design datasets ..
Auto-encoders . . . molecular structure limited data
involving chemical . .
generation; utilizes Al to
structures and . .
. . . streamline design
biological activity
Data pre-
prO(.:essn?g, Various machine Improves data quality for . .
classification, . . . Potential for overfitting;
Maharana et al. . learning datasets machine learning; enhances . . . .
clustering, data risk of distorting original
[13] . from real-world model accuracy by . .
augmentation o . data during augmentation
. applications augmenting data
techniques
(flipping, rotating)
Kwon et al. Ensemble learning | 19 bioassay datasets Improved prediction Limited generalizability
[17] (random forest with bioactivity and accuracy by combining beyond specific bioassay
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(RF), meta- chemical properties | diversified models; enhanced datasets; increased
learning) reliability complexity in meta-
learning approach
. Requires large annotated
. I d effi d .
DL, CNNs, Observed Antibody H;I;Z?:;Zc einlzclftlil‘tf(})] dan datasets, high
Zhou et al. RNNs, GNNs, Space (OAS), Sab . Y . Y computational costs, and
encoding, discovery, .
[18] Transformers, Dab, custom optimization. and careful preprocessing for
VAEs, GANs datasets P . specific antibody
humanization.
features.
Deep  Attention
Networks Improved prediction | High computational cost;
Lavecchia. A (Transformers, ChEMBL, accuracy in molecular | limited by data
[19] ’ GATs, BERT, | PubChem, BBBC | property prediction, drug- | availability and quality;
GPT, BART), | datasets target interactions, and de | challenges in  model
Generative novo drug design. interpretability.
Models
. .| High lexity in dat
Drug-target Reduces time and cost in '8 comp exity 1 a.a
. DNN:g, DTI | . . . - representation; still
Kim et al. .. interaction and de | drug discovery; predictive for . .
prediction, de . evolving techniques,
[22] ) novo drug design | complex drug-target ..
novo drug design . . requiring better model
benchmark datasets | interactions o
generalization
Enabled efficient virtual | Computationally
Elbadawi et al. MIT, DL, | ChEMBL, screening, drug repurpos?ng, inten.sive; requires.hi.gh-
23] Reinforcement DrugBank, and de novo drug design; | quality datasets; limited
Learning, NLP PubChem, ZINC improved prediction accuracy | interpretability of some
for drug interactions deep learning models.
RF, Boost, Graph-
’ ’ - ChEMBL .
based DL Models Database - Improved prediction
(GCN, GAT, PubChem accuracy with FP-GNN and | - Imbalanced datasets
. - ul . L
. MPNN, Attentive HiGNN challenge generalization
Lin et al. Database . .
FP), Co- -  Broad coverage of |- High computational
[25] . - MMV St. Jude . .
representations Dataset Plasmodium life cycle stages | demands for graph-based
DL (FP-GNN, . - multi-stage  prediction | models on large datasets
. - Harvard Liver e
HiGNN, FG- Stage Dataset capabilities
BERT) g
DL (FP-GNN ngh accuracy .1n. predicting Compu.tatlonally
. ChEMBL Database, | anticancer activity (AUC | expensive; dependent on
Wu et al. architecture), . .
(28] GNN. Fineerorint NCI-60 Panel, | values > 0.9); robust for both | high-quality  annotated
’ £etp Cancer Cell Lines target-based and cell-based | datasets; less effective
Networks .
predictions. for rare or novel targets.
Relational Binding DB | Publicly accessible, supports | Limited to biomolecular
Chen and database (biomolecular various query methods, | binding data, dependent
Gilson [31] management, binding affinity | promotes direct deposition of | on data deposition by
XML integration | data) binding data experimentalists
Relational
Tiqing Liu Database for Bindine DB Public  access, supports | Limited to proteins with
2006 [32] Protein-Ligand £ diverse queries available structural data
Binding
. . . L t blic HTS dat . .
Yanli Wang HTS, BioAssay | PubChem BioAssay rearfseisto pu lri)motes o aei Inconsistent data quality
[33] Curation Database aclzess v P P across studies
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DNNs QSAR Superior predictive Requires extensive data
: 9 ) u X Vv
Lenselink [34] ChEMBL Dataset performance, scalable q .
PCM . preprocessing
modeling
S DL model ire large,
- Ability to Handle Complex | _ . o e.s reduire faree
high-quality, annotated
Datasets .
. datasets to  achieve
. - Deep learning models can .
Chen et al Variation - Auto- analyze large-scale datasets optimal performance,
351 ” | encoders (VAEs), | ChEMBL Dataset (e.g.},] ZIN ng ChEMBL) with which can be challlengir%g
CNNs . to obtain, especially in
millions of compounds, . .
. niche areas like rare
enabling faster and more | ..
. . diseases
comprehensive screening
Zhavoronkov et Generative Limited to  specific
v \4 . . .
Tensorial DDR1 kinase | Accelerates drug discovery, . P .
al. . e . . protein targets, requires
Reinforcement inhibition assay data | identifies novel compounds . .
[36] . domain-specific dataset
Learning
The methods rely heavily
on known drug-drug
Artificial Neural . . interaction . (DDD)
Shtar et al. High accuracy in DDI | networks, which may not
Networks, Graph | DrugBank Dataset L
[37] o prediction, scalable be helpful for new drugs
Similarity . .
or Interactions not yet
documented in databases
like DrugBank
Mendez et al., | Direct Bi.ogssay ChEMBL Database Streémlines bioassay data | Dependent on depositor's
[38] Data Deposition sharing, reduces errors accuracy
Bioactivi d I d tral  dat
Kim et al., loactivity - an rierease spectra . 1 potential for outdated
Spectral Data | PubChem Database | coverage, supports diverse
[39] . . records
Integration studies
J d and . . . -
acquemard an ML, Virtual Reduces Dbiases, facilitates | Limited to curated target
Rognan . LIT-PCBA Dataset . .
[40] Screening rigorous benchmarking sets
Bento et al. RDKi't-based ' ChEMBL Database Automates star?da?(?ization, Depe.ndent on predefined
[41] chemical curation improves data reliability curation rules
. Data Integration . Requires frequent
Kim et al. E ded dataset d .
fmeta and Web Interface | PubChem Database xpan. e' . ataset, lmprove updates to  maintain
[42] accessibility
Enhancements accuracy
Unsup ervised . No need for labeled data,
learning,  multi- Accuracy depends on
Janssens et al. handles batch effects, .
[43] scale neural | BBBCO021 dataset discovers novel modes of clustering and
network, UMM . normalization methods
. action
Discovery

Relies on the availability

Accelerat tibioti . ..
ChEMBL, di(s:zf) e;a e b a:;(;iclgnlc and quality of training
\4 .
Marcelo etal. | ML, DL, RNNs, | DrugBank, antimic:(}),bial yactipit di datasets; computational
vity,
[45] GANs, VAEs PubChem, ZINC, . Y costs of complex models;
.. novo molecular design, and | .. . . .
Binding DB dentifvine drue-likeness limited interpretability of
iden -likeness.
ying crug DL methods.
Lin et al. Re.pu.rposmg COVID-19  clinical Repurposing speeds up drug Lmyted effect1v§ness
existing drugs, development  as safety | against new variants;
[46] .. . data . . .
Clinical Trials profiles are already known; | requires high-quality
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lowers the cost and time of
development.

preclinical data to show
efficacy against SARS-
CoV-2.

ML, DL, Natural

Enhances speed and accuracy

Requires  high-quality,

ChEMBL, . . . .
. Language of virtual screening, reduces | diverse datasets; limited
Kasaraneni ; DrugBank, . .
Processing (NLP), costs, and enables | interpretability of
[47] L PubChem, ZINC, | . . "
Predictive . identification of novel drug- | predictions; challenges
. Omics Data . .. . .
Modeling disease associations. with data heterogeneity.
High computational
. Enabled molecular property g. P
Geometric DL, cediction.  bindin ose requirements;
3D Graph Neural P RN 5 P dependency on high-
Isert et al. ChEMBL Database, | estimation, and de novo drug .
Networks, SE (3)- . . . quality 3D molecular
[48] . PDBBind Dataset design; improved .
Equivariant interpretability and prediction datasets; limited
Neural Networks P Y P generalizability in small
accuracy.
datasets.
High-content Enabled accurate mode-of- . .
. . . o Requires large, high-
cellular imaging | action (MoA) prediction, .
DL, CNNe, . | quality annotated
Krentzel et al. Multiscale CNN's datasets (e.g., | robust phenotypic datasets: combutationall
[49] % | BBBC021,  Cell | classification,  and hit > comp Y
Transfer Learning .. . . . . expensive; challenges in
Painting  datasets, | identification from image- . o
model interpretability.
ImageNet) based assays.
Class-Guided Achieved high-quali .
o - g quality Computationally
Diffusion Models, fluorescent microscopy . .
. JUMP-CP Cell | . . expensive, requiring over
. Adaptive  Group .. image  generation  from
Zamir ski et al. . Painting  Dataset, . . 500 GPU hours per plate;
Normalization .. brightfield images, | . .
[50] AWS Cell Painting | . . . . high dependency on
(AdaGN), improving biological feature .
. Gallery . . o metadata quality and
Classifier quality and interpretability labeling consistenc
Guidance (CG) for drug discovery tasks. 8 y
Knowledge Graph The  complexity  of
Embeddings Improved DDI prediction | knowledge raph
Farrugia et al. & DrugBank  version P P . . 8 & .p
[51] (ComplEx, 518 accuracy, handles multiple | creation, and embedding
LSTM),  Graph drug properties, scalable dimensionality  affects
Autoencoders performance
. Computationall
BBBC, RxRx, | Enhanced morphological | . p. . y
DL, CNN:ss, . . intensive; limited by
JUMP-CP, profiling for drug discovery, . .
Tang et al. Transfer . - dataset quality and size;
. CPJUMPI, improved MOA prediction, .. .
[52] Learning, GAN:s, challenges in integrating
CytolmageNet and reduced manual feature .
VAEs . . multimodal data  for
datasets engineering efforts. o
comprehensive insights.
DL  (Interaction High prediction accuracy
Protein-peptide . ’ | Computationall
Ge et al. Transformer Net, | . .p P combines  structural and P . y
interaction datasets . . . expensive, reliance on
[53] ITN), template- sequence information, aids
. (e.g., SH3, MHC I) . accurate structural data
based modeling peptide drug development
Mechanistic . . o High computational
Various bioprocess | Improved scalability, process & . .p.
. Models, Data- . . complexity; limited by
Ramin et al. . modeling datasets, | understanding, and regulatory o .
Driven  Models, . . the availability of high-
[54] . Inno4Vac  project | compliance; reduced .
Hybrid  Models, . quality and
- . datasets development time and costs. .
Digital Twin representative datasets.
Obaido et al Supervised ChEMBL, Enhanced accuracy in | High computational
[55] Machine Learning | molecular molecular property | demands; requires high-
(e.g., RF, SVM, | descriptors, SARS- | prediction; accelerated drug | quality, labeled datasets;
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GNNs) CoV-2 datasets discovery pipelines; robust | challenges with
predictive  capabilities in | interpretability in
various applications. complex models.
Achieved high R? (0.917) and
Multimodal Dee . Computationall
P GDSC  (Genomics | low ~ RMSE  (0.312); pu Y
Neural Networks e . - expensive; dependency
) of Drug Sensitivity | facilitated  prediction  of . .
Karampuri et al. | (MM-DNN), . . . . on high-quality datasets;
. in Cancer), Cell | effective RTK signaling . ; .
[56] QSAR modeling, potential biases in
Model  Passports, | drugs for breast cancer; .
Autoencoders, K- . multimodal data
. PubChem streamlined molecular | . .
means clustering . . integration.
profiling integration.
.. . CytolmageNet )
Pretraining  with vt & . Computationally
(890,737 Improved transfer learning | . . .
CytolmageNet Microsco imaces | for microsco imace intensive pretraining;
(EfficientNetB0), by 8 . . Py g lower generalization
Hua et al. [57] from 40 datasets, | classification; closer domain
Transfer . . . . performance compared to
. including  BBBC, | match for biological tasks
Learning, k-NN . ImageNet on some tasks.
i . IDR, Recursion, and | compared to ImageNet.
classification
Kaggle datasets)

6. Conclusion

Several future directions in DL for drug discovery
focus on leveraging technology to enhance
efficiency, accuracy, and personalization. Digital
Twinning (DT) enables the simulation of biological
systems and more accurate predictions of drug
effects, streamlining drug development. Integration
of Explainable Al (XAI) addresses the "black-box"
nature of DL by creating interpretable models,
thereby increasing trust and usability in clinical and
regulatory contexts. Advanced Data Integration
incorporates multi-omics data, such as genomics,
transcriptomics, and  proteomics, to  build
comprehensive models for predicting drug
sensitivity, side effects, and efficacy.

Additionally, Novel deep-learning architectures
are specifically designed for drug discovery
applications. Collaboration across sectors—bringing
together pharmaceutical companies, Al firms, and
academic institutions—will play a vital role in
driving innovation and overcoming technological
challenges. Together, these advancements present
groundbreaking opportunities to revolutionize drug
discovery. Deep learning is revolutionizing drug
discovery by introducing advanced methodologies
like Graph Neural Networks (GNNs) and Generative
Adversarial Networks (GANs). These approaches
are energetic key applications, including virtual
screening, de novo drug design, protein-ligand
interaction prediction, toxicity assessment, and drug
repurposing. While challenges such as example data

scarcity, noise, and model interpretability remain,
strategies like explainable Al (XAI) and multi-task
learning are helping to overcome these obstacles.
Future advancements, such as integrating multi-
omics data and utilizing few-shot learning, hold
great promise for further enhancing drug discovery.
By enabling more precise predictions, personalized
medicine, and efficient molecular exploration, deep
learning is transforming pharmaceutical research,
optimizing drug development pipelines, and paving
the way for groundbreaking new treatments.
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