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1. INTRODUCTION 

The importance of reaction–diffusion systems with Robin boundary conditions can be attributed to several factors. 

Despite extensive research on reaction–diffusion systems with Dirichlet and Neumann boundary conditions, 

comparatively little work has been conducted on systems with Robin boundary conditions [21]. From an application 

perspective, the Dirichlet condition is often employed as a simple approximation to a more realistic Robin condition in 

systems of “oscillatory” reaction–diffusion equations. In this paper, we investigate a predator–prey system consisting of 

two coupled components subject to Robin boundary conditions for the reaction–diffusion equations [13]: 

(H) Find {p,q}\{p,q\}{p,q} such that  

 

 

 
𝜕𝑝

𝜕𝑡
= Δ𝑝 + 𝑓1(𝑝, 𝑞),                        in        𝜆𝑇 , (1) 

  

 
𝜕𝑞

𝜕𝑡
= Δ𝑞 + 𝑓2(𝑝, 𝑞),                        in        𝜆𝑇 , (2) 

  

 
𝜕𝑝

𝜕𝜈
+ 𝛾𝑝 = 0,              

𝜕𝑞

𝜕𝜈
+ 𝛾𝑞 = 0,                                on        𝜕𝜆𝑇 , (3) 

  

 𝑝(⋅ ,0) = 𝑝0 ,                           𝑞(⋅ ,0) = 𝑞0,                                   in       𝜆, (4) 

 

 where, 𝜌2 = 𝑝2 + 𝑞2  and 𝜆𝑇 = 𝜆 × (0, 𝑇) , 𝜆  is an open bounded convex domain in ℝ𝑑(𝑑 = 1,2,3) , with 𝜕𝜆 

sufficiently smooth, 𝜕𝜆𝑇 = 𝜕𝜆 × (0, 𝑇), 𝜈 denotes the exterior unit normal to 𝜕𝜆, moreover 𝑓1(𝑝, 𝑞) = (1 − 𝜌2)𝑝 −
(𝜔1 − 𝜔2𝜌2)𝑞 , 𝑓2(𝑝, 𝑞) = (𝜔1 − 𝜔2𝜌2)𝑝 + (1 − 𝜌2)𝑞  and 𝜔1 , 𝜔2  and 𝛾  are positive constants. Reaction–diffusion 

systems on the boundary, which are systems of nonlinear parabolic partial differential equations, have been the focus of 

active research for many years. These systems have a wide range of applications in physics, chemistry, ecology, 

biology, and other disciplines. For comprehensive reviews of the theory and applications of reaction–diffusion systems, 

see Britton [7], Murray [18], Volpert et al. [23], Hashim and Harfash [11], and Al-Juaifri and Harfash [2]. 

 

ABSTRACT: This study investigates a nonlinear predator–prey system modeled by reaction–diffusion equations in 

a convex, open domain with Robin boundary conditions. The system is discretized and solved using the Finite 

Element Method (FEM), providing an effective framework to capture the spatiotemporal dynamics of predator–prey 

interactions. An error analysis is performed to assess the accuracy of the numerical solutions relative to the exact 

continuous solution. The results demonstrate the reliability and efficiency of the proposed numerical scheme, 

highlighting its capability to handle the complexities associated with Robin boundary conditions. 
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Our assumptions throughout are as follows: 

 

 

Theorem 1.1. Suppose that 𝑝0, 𝑞0 ∈ 𝐻1(𝜆), then the system (H) possesses a unique Higher regularity solution {𝑝, 𝑞} 

satisfying 

 

 𝑝(. , 𝑡), 𝑞(. , 𝑡) ∈ 𝐿2(0, 𝑇; 𝐻2(𝜆)) ∩ 𝐿∞(0, 𝑇; 𝐿4(𝜆)) (5) 

 ∩ 𝐿∞(0, 𝑇; 𝐻1(𝜆)) ∩ 𝐿6(𝜆𝑇) ∩ 𝐶([0, 𝑇]; 𝐻1(𝜆)), 

 
𝜕𝑝(.,𝑡)

𝜕𝑡
,

𝜕𝑞(.,𝑡)

𝜕𝑡
∈ 𝐿2(𝜆𝑇), (6) 

 and the system (H) hold as equalities in 𝐿2(𝜆𝑇). Moreover, the solution Continuous dependence on the initial data in 

𝐻2(𝜆). 

 

 (𝑝0(. ), 𝑞0(. )), ⟼ (𝑝(. , 𝑡; 𝑝0, 𝑞0), 𝑞(. , 𝑡; 𝑝0, 𝑞0)), 
is continuous in 𝐻1(𝜆).  

2. NUMERICAL ALGORITHM 

    At each time level, we first describe the following practical approach for solving the nonlinear algebraic system that 

arises from the approximated problem: 

 

 

Given {𝑃𝑛,0, 𝑄𝑛,0} ∈ 𝑆ℎ × 𝑆ℎ, then for 𝑘 ≥ 1 find {𝑃𝑛,𝑘, 𝑄𝑛,𝑘} ∈ 𝑆ℎ × 𝑆ℎ such that for all 𝜛ℎ ∈ 𝑆ℎ  

 (
𝑃𝑛,𝑘−𝑃𝑛−1

Δ𝑡
, 𝜛ℎ)ℎ + (∇𝑃𝑛,𝑘 , ∇𝜛ℎ) + 𝛾 ∫

𝜕𝜆
𝑃𝑛,𝑘𝜛ℎ𝑑𝐴 

 = ((1 − (𝜌𝑛,𝑘−1)2)𝑃𝑛,𝑘, 𝜛ℎ)ℎ − ((𝑤1 − 𝑤2(𝜌𝑛,𝑘−1)2)𝑄𝑛,𝑘−1, 𝜛ℎ)ℎ, (7) 

  

 (
𝑄𝑛,𝑘−𝑄𝑛−1

Δ𝑡
, 𝜛ℎ)ℎ + (∇𝑄𝑛,𝑘, ∇𝜛ℎ) + 𝛾 ∫

𝜕𝜆
𝑄𝑛,𝑘𝜛ℎ𝑑𝐴 

 = ((𝑤1 − 𝑤2(𝜌𝑛,𝑘−1)2)𝑃𝑛,𝑘−1, 𝜛ℎ)ℎ + ((1 − (𝜌𝑛,𝑘−1)2)𝑄𝑛,𝑘−1, 𝜛ℎ)ℎ . (8) 

 

We start with 𝑃0 ≡ 𝜋ℎ𝑝0, and 𝑄0 ≡ 𝜋ℎ𝑞0, and then, for 𝑛 ≥ 1, we set 𝑃𝑛,0 ≡ 𝑃𝑛−1 and 𝑄𝑛,0 ≡ 𝑄𝑛−1. From 

(7) and (8), a linear system, for 2 × (𝐽 + 1)𝑑 , 𝑑 = 1,2,3 linear equations, can be found by testing (7) and (8) by 𝜑𝑗 , 𝑗 =

0, . . . , 𝐽. Using the Gauss-Seidel iteration method, The above linear system was solved using the Gauss–Seidel iteration 

method. Although we were unable to theoretically prove the convergence of the Gauss–Seidel method for this system, 

numerical results indicate that, at each time level, convergence is typically achieved within a few iterative steps. To 

ensure the reliability of the iterative solution, we adopt the following stopping criteria: 

 

 

 max{|𝑃𝑛,𝑘 − 𝑃𝑛,𝑘−1|0,∞, |𝑄𝑛,𝑘 − 𝑄𝑛,𝑘−1|0,∞} < 𝜚 = 10−8, (9) 

 when the above condition is met, it will be set 𝑃𝑛 ≡ 𝑃𝑛,𝑘, 𝑄𝑛 ≡ 𝑄𝑛,𝑘. 

3. NUMERICAL RESULTS   

3.1. ONE-DIMENSIONAL SIMULATION 

The numerical simulation was conducted in one dimension with 𝜆 = [0, 𝐿], for 0 ≤ 𝑡 ≤ 𝑇 with mesh points 𝑥𝑗 = 𝑗ℎ,

𝑗 = 0, . . . , 𝐽 where ℎ = 𝐿/𝐽. The solution to the differential equation was calculated in the interval 𝜆 = [0, 𝐿] = [0,1] 
with ℎ = 0.5, as well as the adoption of 𝐽 = 10, if 𝛾 = 0, then the system with Neumann boundary conditions, and if 

𝛾 = 1, then the system with Robin boundary conditions. Here, we adopt the following examples:  

  

Example 3.1. We will investigate the numerical solutions of (7) and (8) with the following:  

 𝑝(𝑥, 0) = 1 + 0.5𝑥,                    𝑞(𝑥, 0) = 0.5. (10)  

 For 𝑤1 = −5, 𝑤2 = 1, and Δ𝑡 = 0.0001, the numerical solution was calculated. Figures 1 and 2 show the numerical 

solution for the time level 𝑇 = 10. These figures show that the solutions have a positive property and do not produce 

any negative values. It was established in [22] that the system is attracted to the equilibrium point (𝑞∗, 𝑝∗). If 𝛾 = 0, 

then we have Neumann boundary conditions; however, if 𝛾 = 1, then we have Robin boundary conditions. 

The solutions maintain positive and converge to the system’s equilibrium point. 
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(a) Mesh graph of 𝑝.                                  (b) Mesh graph of 𝑞. 

 

(c) Combined plot of 𝑝 and 𝑞, of Example 3.1, when 𝑥 = 1.         

FIGURE 1. - Graphs for 𝒑 and 𝒒 at 𝒘𝟏 = −𝟓, 𝒘𝟐 = 𝟏, 𝜸 = 𝟎, and 𝚫𝒕 = 𝟎. 𝟎𝟎𝟎𝟏.  

 
(a) Mesh graph of 𝑝.                                  (b) Mesh graph of 𝑞. 

  

(c) Combined plot of 𝑝 and 𝑞, of Example 3.1, when 𝑥 = 1.         

FIGURE 2. - Graphs for 𝒑 and 𝒒 at 𝒘𝟏 = −𝟓, 𝒘𝟐 = 𝟏, 𝜸 = 𝟏, and 𝚫𝒕 = 𝟎. 𝟎𝟎𝟎𝟏. 

Example 3.2. The second example adopted the following:  

 𝑝(𝑥, 0) = 0.01,                    𝑞(𝑥, 0) = 0. (11) 

 The constants used in the calculation of the numerical solutions are as follows: 𝑤1 = 3, 𝑤2 = 2, and Δ𝑡 = 0.0001. 

Figures 3 and 4 present the numerical solution for this example at the specified time level. 𝑇 = 10. It has been proven 

in [22] that the system’s equilibrium point (𝑞∗, 𝑝∗) is stable 
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(a) Mesh graph of 𝑝.                                  (b) Mesh graph of 𝑞. 

 

(c) Combined plot of 𝑝 and 𝑞, of Example 3.2, when 𝑥 = 1.         

FIGURE 3. - Graphs for 𝒑 and 𝒒 at 𝒘𝟏 = 𝟑, 𝒘𝟐 = 𝟐, 𝜸 = 𝟎, and 𝚫𝒕 = 𝟎. 𝟎𝟎𝟎𝟏. 

 
(a) Mesh graph of 𝑝.                                  (b) Mesh graph of 𝑞. 

  

(c) Combined plot of 𝑝 and 𝑞, of Example 3.2, when 𝑥 = 1.         

FIGURE 4. - Graphs for 𝒑 and 𝒒 at 𝒘𝟏 = 𝟑, 𝒘𝟐 = 𝟐, 𝜸 = 𝟏, and 𝚫𝒕 = 𝟎. 𝟎𝟎𝟎𝟏. 

3.2.  TWO-DIMENSIONAL SIMULATION 

     We used 𝜆 = [0, 𝐿] × [0, 𝐿] and a square uniform mesh with vertices (𝑥𝑖 , 𝑦𝑗) = (𝑖ℎ, 𝑗ℎ), where 𝑖, 𝑗 = 0, . . . , 𝐽. Note 

ℎ = 𝐿/𝐽, The same spatial step was used in both the xxx and yyy directions. A “right-angled” triangulation was 

employed, in which each square is divided by a diagonal running from the top-right corner to the bottom-left corner. 

The nodes were ordered in the “natural” manner: numbering from left to right, starting with the bottom row. 

 

Example 3.3. In this example, the parameters are chosen such that 𝑇 = 5, 𝑤1 = −5, 𝑤2 = 1, 𝛾 = 1 , and the problem 

is solved over the domain 𝜆 = [0,1] × [0,1] with ℎ = 0.05, Δ𝑡 = 0.001 and 𝐽 = 100. The initial conditions considered 

are:  

 𝑝(𝑥, 𝑦, 0) = 1 + 0.5𝑥,        𝑞(𝑥, 𝑦, 0) = 0.5. (12) 

The numerical solutions of 𝑝 and 𝑞, for the time level 𝑇 = 5, are shown in Figures 5 and 6. 
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(a) solution of 𝑝 at 𝑇 = 1                            (b) solution of 𝑞 at 𝑇 = 1 

 

                                                       (c) solution of 𝑝 at 𝑇 = 3                           (d) solution of 𝑞 at 𝑇 = 3 

 

                                                                 (e) solution of 𝑝 at 𝑇 = 5                           (f) solution of 𝑞 at 𝑇 = 5 

 

(g)solution of 𝑝 at 𝑥 = 0.3, 𝑦 = 0.3              (h)solution of 𝑞 at 𝑥 = 0.3, 𝑦 = 0.3 

 

 

FIGURE 5. - Numerical solution of 𝒑 , of Example 3.3, at 𝒘𝟏 = −𝟓, 𝒘𝟐 = 𝟏, 𝜸 = 𝟎. 

 
(a) solution of 𝑝 at 𝑇 = 1                            (b) solution of 𝑞 at 𝑇 = 1 

 

                                                       (c) solution of 𝑝 at 𝑇 = 3                           (d) solution of 𝑞 at 𝑇 = 3 
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(e) solution of 𝑝 at 𝑇 = 5                                                                                            

(f) solution of 𝑞 at 𝑇 = 5 

 

 

 

 

 

 

(g)solution of 𝑝 at 𝑥 = 0.3, 𝑦 = 0.3              (h)solution of 𝑞 at 𝑥 = 0.3, 𝑦 = 0.3 

FIGURE 6. - Numerical solution of 𝒒 , of Example 3.3, at 𝒘𝟏 = −𝟓, 𝒘𝟐 = 𝟏, 𝜸 = 𝟏. 

 

 
(a) solution of 𝑝 at 𝑇 = 1                            (b) solution of 𝑞 at 𝑇 = 1 

 

                                                       (c) solution of 𝑝 at 𝑇 = 3                           (d) solution of 𝑞 at 𝑇 = 3 

 

                                                                 (e) solution of 𝑝 at 𝑇 = 5                           (f) solution of 𝑞 at 𝑇 = 5 

 

 

 

                                                         (g)solution of 𝑝 at 𝑥 = 0.3, 𝑦 = 0.3              (h)solution of 𝑞 at 𝑥 = 0.3, 𝑦 = 0.3 

FIGURE 7. - Numerical solution of 𝒑 , of Example 3.4, at 𝒘𝟏 = 𝒘𝟐 = 𝟏, 𝜸 = 𝟎. 
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(a) solution of 𝑝 at 𝑇 = 1                            (b) solution of 𝑞 at 𝑇 = 1 

 

(c) solution of 𝑝 at 𝑇 = 3                           (d) solution of 𝑞 at 𝑇 = 3 

  

                                                                   (e) solution of 𝑝 at 𝑇 = 5                           (f) solution of 𝑞 at 𝑇 = 5 

 

 

 

 

 

 

                                                 (g)solution of 𝑝 at 𝑥 = 0.3, 𝑦 = 0.3              (h)solution of 𝑞 at 𝑥 = 0.3, 𝑦 = 0.3 

FIGURE 8. - Numerical solution of 𝒒 , of Example 3.4, at 𝒘𝟏 = 𝒘𝟐 = 𝟏, 𝜸 = 𝟏. 

 

Example 3.5. In this example, the parameters are chosen such that 𝑇 = 5, 𝑤1 = 1, 𝑤2 = 2, 𝛾 = 1 , and the problem 

is solved over the domain 𝜆 = [0,1] × [0,1] with ℎ = 0.01, Δ𝑡 = 0.001 and 𝐽 = 100. The initial conditions considered 

are:  

 𝑝(𝑥, 𝑦, 0) = 𝑒𝑥𝑝(1 + 0.2𝑥),        𝑞(𝑥, 𝑦, 0) = 𝑒𝑥𝑝(2 + 0.5𝑦). (14) 

  The numerical solutions of 𝑝 and 𝑞, for the time level 𝑇 = 5, are shown in Figure 9. 

 

 

 
(a) solution of 𝑝 at 𝑇 = 1                            (b) solution of 𝑞 at 𝑇 = 1 
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                                                       (c) solution of 𝑝 at 𝑇 = 3                           (d) solution of 𝑞 at 𝑇 = 3 

 
   (e) solution of 𝑝 at 𝑇 = 5                           (f) solution of 𝑞 at 𝑇 = 5 

 
        (g)solution of 𝑝 at 𝑥 = 0.3, 𝑦 = 0.3              (h)solution of 𝑞 at 𝑥 = 0.3, 𝑦 = 0.3 

FIGURE 9. - Numerical solution of 𝒑 , of Example 3.5, at 𝒘𝟏 = 𝟏, 𝒘𝟐 = 𝟐, 𝜸 = 𝟏. 

 

4. ERROR COMPUTATIONS 

    To evaluate the error, we make a simple modification to problem (H) by incorporating the source terms: 𝑔
1
(𝐱, 𝑡) and 

  𝑔2(𝐱, 𝑡), thus the systems (1)-(4) can be written in the form: 

(H̃) Find {𝑝, 𝑞} such that  

 
𝜕𝑝

𝜕𝑡
= Δ𝑝 + (1 − 𝜌2)𝑝 − (𝜔1 − 𝜔2𝜌2)𝑞 + 𝑔

1
(𝐱, 𝑡),                        in        𝜆𝑇, (15) 

  

 
𝜕𝑞

𝜕𝑡
= Δ𝑞 + (𝜔1 − 𝜔2𝜌2)𝑝 + (1 − 𝜌2)𝑞 + 𝑔

2
(𝐱, 𝑡),                in        𝜆𝑇, (16) 

As a result, we consider the following modified approximation of the problem: 

 Find {𝑃𝑛 , 𝑄𝑛} ∈ 𝑆ℎ × 𝑆ℎ, such that for all 𝜛ℎ ∈ 𝑆ℎ  

(
𝑃𝑛,𝑘 − 𝑃𝑛−1

Δ𝑡
, 𝜛ℎ)ℎ + (∇𝑃𝑛,𝑘 , ∇𝜛ℎ) + 𝛾 ∫

𝜕𝜆

𝑃𝑛,𝑘𝜛ℎ𝑑𝐴 

= ((1 − (𝜌𝑛,𝑘−1)2)𝑃𝑛,𝑘, 𝜛ℎ)ℎ − ((𝑤1 − 𝑤2(𝜌𝑛,𝑘−1)2)𝑄𝑛,𝑘−1, 𝜛ℎ)ℎ + (𝑔1(𝐱, 𝑡), 𝜛ℎ)ℎ, 
  (17) 

 

(
𝑄𝑛,𝑘 − 𝑄𝑛−1

Δ𝑡
, 𝜛ℎ)ℎ + (∇𝑄𝑛,𝑘, ∇𝜛ℎ) + 𝛾 ∫

𝜕𝜆

𝑄𝑛,𝑘𝜛ℎ𝑑𝐴 = 

((𝑤1 − 𝑤2(𝜌𝑛,𝑘−1)2)𝑃𝑛,𝑘−1, 𝜛ℎ)ℎ + ((1 − (𝜌𝑛,𝑘−1)2)𝑄𝑛,𝑘−1, 𝜛ℎ)ℎ + (𝑔2(𝐱, 𝑡), 𝜛ℎ)ℎ . 
  (18) 

 

4.1 ONE-DIMENSIONAL ERROR 

   Three numerical examples, which are solutions to the systems (15) and (16), are introduced. The first example 

satisfies Neumann boundary conditions 𝛾 = 0. In the other examples, we have introduced Robin boundary conditions 
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𝛾 = 1. For simplification, we used 𝑤1 = 𝑤2 = 1, 𝜆 = [0,1], and 𝑇 = 1 in all examples. From the associated exact 

solutions of each case, the source terms 𝑔1(𝑥, 𝑡), 𝑔2(𝑥, 𝑡) and can be derived. We divide the domain 𝜆 = [0,1] into 𝑁 

uniform intervals and set the mesh size for each element to ℎ = 1/𝑁 . The exact solution are as follows: 

    (i)   

 𝑝 = exp(𝑡 + 3𝑥), 
 

 𝑞 = exp(2𝑡 + 2𝑥), 
 

    (ii)   

 𝑝 = 1 + exp(2𝑡)𝑐𝑜𝑠(2𝜋𝑥), 
 

 𝑞 = 1 + exp(−3𝑡)cos(𝜋𝑥), 
 

    (iii)   

 𝑝 = 2 + exp(−6𝑡)𝑠𝑖𝑛(4𝜋𝑦), 
 

 𝑞 = 2 + exp(−4𝑡)𝑠𝑖𝑛(2𝜋𝑦), 
 

 The associated 𝐿2, 𝐿∞-Norms errors for a group of simulations are presented in Tables 1-3. The numerical 

results of the error demonstrate that as 𝐽  increases, i.e, as the value of ℎ  decreases, the error’s value reduces. 

Additionally, the error for Δ𝑡 = 0.00001 is the same as for Δ𝑡 = 0.000001, indicating that our numerical technique 

produces extremely accurate results for a variety of Δ𝑡 values.  

Table 1. - Discrete  𝑳𝟐, 𝑳∞-norms error for one-dimensional problem with homogeneous Neumann boundary 
condition of the Case (i). 

    

  

 ℎ  

 Δ𝑡 = 0.00001  Δ𝑡 = 0.000001   

 ∥ 𝑝 − 𝑃 ∥   ∥ 𝑞 − 𝑄 ∥  ∥ 𝑝 − 𝑃 ∥ ∥ 𝑞 − 𝑄 ∥ 

 𝐿2   𝐿∞   𝐿2   𝐿∞   𝐿2      𝐿∞   𝐿2   𝐿∞  

 0.1   4.55E-04   4.20E-06  1.41E-04   1.18E-06   1.44E-04   4.20E-07   4.47E-05   1.18E-07  

0.05   5.64E-04   6.67E-06   1.27E-04   1.15E-06   1.10E-04   4.18E-07   4.00E-05   1.15E-07  

0.04   5.05E-04   5.47E-06   1.15E-04   1.15E-06   1.03E-04   3.48E-07   3.26E-05   1.11E-07  

0.025   3.63E-04   9.68E-07   1.00E-04   1.05E-06   8.42E-05   3.21E-07   2.38E-05   1.05E-07  

0.02   1.83E-04   1.01E-06   1.93E-05   4.59E-07   4.49E-05   1.00E-07   1.09E-05   1.00E-07  

 

Table 2. - Discrete  𝑳𝟐, 𝑳∞-norms error for one-dimensional problem with homogenous Robin boundary 
condition of the Case (ii). 

 

    

  

ℎ 

 Δ𝑡 = 0.00001  Δ𝑡 = 0.000001   

 ∥ 𝑝 − 𝑃 ∥   ∥ 𝑞 − 𝑄 ∥  ∥ 𝑝 − 𝑃 ∥ ∥ 𝑞 − 𝑄 ∥ 

 𝐿2   𝐿∞   𝐿2   𝐿∞   𝐿2      𝐿∞   𝐿2   𝐿∞  

 0.1   6.05E-02   3.95E-04   7.99E-02   4.43E-04   1.91E-02   3.95E-05   2.53E-02   4.43E-05  

0.05   5.42E-02   3.61E-04   7.22E-02   4.40E-04   2.03E-02   4.61E-05   2.60E-02   4.90E-05  

0.04   4.49E-02   3.15E-04   6.27E-02   4.00E-04   2.05E-02   4.75E-05   2.61E-02   5.00E-05  

0.025   1.60E-02   2.98E-04   6.14E-02   3.16E-04   2.09E-02   4.98E-05   2.64E-02   5.15E-05  

0.02   6.64E-03   1.06E-04   6.06E-02   1.21E-04   2.10E-02   5.06E-05   2.64E-02   5.21E-05  

Table 3. - Discrete  𝑳𝟐, 𝑳∞-norms error for one-dimensional problem with homogenous Robin boundary 
condition of the Case (iii). 

    

  

ℎ 

 Δ𝑡 = 0.00001  Δ𝑡 = 0.000001   

 ∥ 𝑝 − 𝑃 ∥   ∥ 𝑞 − 𝑄 ∥  ∥ 𝑝 − 𝑃 ∥ ∥ 𝑞 − 𝑄 ∥ 

 𝐿2   𝐿∞   𝐿2   𝐿∞   𝐿2      𝐿∞   𝐿2   𝐿∞  

 0.1   8.57E-04   5.08E-06   3.64E-04   1.99E-06   2.71E-04   5.08E-07   1.15E-04   1.99E-07  

0.05   8.48E-04   4.27E-06   2.60E-04   1.59E-06   2.00E-04   4.27E-07   1.14E-04   1.99E-07  

0.04   7.65E-04   4.13E-06   2.59E-04   1.40E-06   1.05E-04   3.53E-07   1.04E-04   1.50E-07  

0.025   5.90E-04   3.92E-06   1.59E-04   1.20E-06   7.13E-05   3.22E-07   6.13E-05   1.40E-07  

0.02   2.98E-04   2.06E-06   3.58E-05   1.10E-06   3.16E-05   2.06E-07   4.13E-05   9.99E-08  
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4.2 TWO- DIMENSIONAL ERROR 

         In this section, we explore two numerical examples corresponding to systems (15) and (16), similar to the 

approach used in the one-dimensional case. In the first example, Neumann boundary conditions are applied. The second 

example also satisfies Neumann boundary conditions, which correspond to Robin boundary conditions with 

γ=1\gamma = 1γ=1. The fourth example satisfies the Robin boundary conditions. For all cases, we used 𝑤1 = 𝑤2 = 1, 

𝜆 = [0,1] × [0,1], and 𝑇 = 1. The initial and boundary conditions, as well as the source terms 𝑔1(𝑥, 𝑦, 𝑡), 𝑔2(𝑥, 𝑦, 𝑡), 

can be deduced from the exact solution of each case. The Exact solutions are in the following forms: 

 

 

    (i)   

 𝑝 = 2 + 𝑒𝑥𝑝(−2𝑡)𝑐𝑜𝑠(3𝜋𝑥))𝑐𝑜𝑠(3𝜋(𝑥 + 𝑦)). 
 

 𝑞 = 2 + 𝑒𝑥𝑝(−2𝑡)𝑐𝑜𝑠(2𝜋𝑥)𝑐𝑜𝑠(2𝜋(𝑥 + 𝑦)), 
 

    (ii)   

 𝑝 = 𝑒𝑥𝑝(0.5𝑡 + 𝑥 + 𝑦), 
 

 𝑞 = 𝑒𝑥𝑝(0.5𝑡 + 𝑥2 + 𝑦2). 
 

 The associated 𝐿2, 𝐿∞-norms error for a collection of simulations is provided in Tables 4 and 5. In the two-dimensional 

situation, the error behavior is identical to that of the one-dimensional case. 

 

Table 4. - Discrete  𝑳𝟐, 𝑳∞-norms error for a two-dimensional problem with homogeneous Neumann 

boundary conditions of Case (i). 

    

 

ℎ 

 Δ𝑡 = 0.00001  Δ𝑡 = 0.000001   

 ∥ 𝑝 − 𝑃 ∥   ∥ 𝑞 − 𝑄 ∥  ∥ 𝑝 − 𝑃 ∥ ∥ 𝑞 − 𝑄 ∥ 

 𝐿2   𝐿∞   𝐿2   𝐿∞   𝐿2      𝐿∞   𝐿2   𝐿∞  

 0.1   4.11E-07   1.23E-05   3.75E-07   1.09E-05   4.11E-08   1.23E-06   3.75E-08   1.09E-06  

0.05   2.80E-07   1.86E-05   2.45E-07   1.59E-05   2.80E-08   1.16E-06   2.45E-08   1.06E-06  

0.04   2.36E-07   1.79E-05   2.03E-07   1.67E-05   2.36E-08   1.09E-06   2.03E-08   1.06E-06  

0.025   1.57E-07   1.27E-05   1.33E-07   1.77E-05   1.57E-08   1.01E-06   1.33E-08   7.73E-07  

0.02   1.28E-07   1.21E-05   1.07E-07   1.51E-05   1.28E-08   1.01E-06   1.07E-08   6.10E-07  

 

Table 5. - Discrete  𝑳𝟐, 𝑳∞-norms error for a two-dimensional problem with a homogeneous Robin boundary 
condition of Case (ii). 

    

 

ℎ 

 Δ𝑡 = 0.00001  Δ𝑡 = 0.000001   

 ∥ 𝑝 − 𝑃 ∥   ∥ 𝑞 − 𝑄 ∥  ∥ 𝑝 − 𝑃 ∥ ∥ 𝑞 − 𝑄 ∥ 

 𝐿2   𝐿∞   𝐿2   𝐿∞   𝐿2      𝐿∞   𝐿2   𝐿∞  

 0.1   4.61E-06   1.34E-04   5.03E-06   1.33E-04   4.61E-07   1.34E-05   5.03E-07   1.33E-05  

0.05   2.71E-06   1.76E-04   2.51E-06   1.43E-04   2.71E-07   1.76E-05   2.51E-07   1.43E-05  

0.04   2.24E-06   1.75E-04   2.00E-06   1.43E-04   2.24E-07   1.85E-05   2.00E-07   1.44E-05  

0.025   1.46E-06   1.40E-04   1.24E-06   1.43E-04   1.46E-07   2.00E-05   1.24E-07   1.45E-05  

0.02   1.19E-06   1.21E-04   9.92E-07   1.05E-04   1.19E-07   2.01E-05   9.92E-08   1.45E-05  

 

5. CONCLUSIONS 

           In this paper, we derived numerical solutions for a nonlinear predator–prey system using the finite element 

method. Our primary objective was to analyze the system’s dynamics while quantifying the error between the 

numerical and continuous solutions. The finite element method effectively captured the intricate behaviors of predator–

prey interactions, producing numerical solutions that exhibited positive characteristics and indicated system stability. 

The results showed that decreasing the mesh size led to faster convergence of the numerical solutions toward the true 

solution. 

To assess the accuracy of our approach, we conducted a thorough error analysis, providing estimates by comparing the 

numerical solutions with the continuous solutions. The findings revealed a significant reduction in error with increased 

mesh refinement, confirming the efficiency of the employed method. Tables illustrating errors across various test cases 

enabled a comprehensive evaluation of the method’s performance. 
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Overall, our results reinforce the reliability of the numerical solutions and highlight the potential of this framework for 

more complex ecological models. This research contributes to a deeper understanding of predator–prey dynamics and 

establishes a foundation for developing effective computational strategies to study such intricate biological interactions. 
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