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ABSTRACT: This study investigates a nonlinear predator—prey system modeled by reaction—diffusion equations in
a convex, open domain with Robin boundary conditions. The system is discretized and solved using the Finite
Element Method (FEM), providing an effective framework to capture the spatiotemporal dynamics of predator—prey
interactions. An error analysis is performed to assess the accuracy of the numerical solutions relative to the exact
continuous solution. The results demonstrate the reliability and efficiency of the proposed numerical scheme,
highlighting its capability to handle the complexities associated with Robin boundary conditions.
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1. INTRODUCTION

The importance of reaction—diffusion systems with Robin boundary conditions can be attributed to several factors.
Despite extensive research on reaction—diffusion systems with Dirichlet and Neumann boundary conditions,
comparatively little work has been conducted on systems with Robin boundary conditions [21]. From an application
perspective, the Dirichlet condition is often employed as a simple approximation to a more realistic Robin condition in
systems of “oscillatory” reaction—diffusion equations. In this paper, we investigate a predator—prey system consisting of
two coupled components subject to Robin boundary conditions for the reaction—diffusion equations [13]:

(H) Find {p,q}\{p,q\} {p.q} such that

d .
=M+ fi(p,9), in A, 0

9q .
E = Aq + f2 (pl q)) mn AT! (2)
® ryp=0 % 4 yqg=0 A 3
5 FrP=0 5 TY4=0, on T A3)
p( '0) = Po, q( !0) = qo, in 2—; (4)

where, p? =p?+q? and 1 =1 X% (0,T), 1 is an open bounded convex domain in R%(d = 1,2,3), with 9
sufficiently smooth, dA; = d4 X (0,T), v denotes the exterior unit normal to dA, moreover f;(p,q) = (1 — p?)p —
(w1 — w209)q, f2(0,q) = (w1 — wp*)p + (1 — p?)q and w,, w, and y are positive constants. Reaction—diffusion
systems on the boundary, which are systems of nonlinear parabolic partial differential equations, have been the focus of
active research for many years. These systems have a wide range of applications in physics, chemistry, ecology,
biology, and other disciplines. For comprehensive reviews of the theory and applications of reaction—diffusion systems,
see Britton [7], Murray [18], Volpert et al. [23], Hashim and Harfash [11], and Al-Juaifri and Harfash [2].
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Our assumptions throughout are as follows:

Theorem 1.1. Suppose that py, g, € H!(1), then the system (H) possesses a unique Higher regularity solution {p, q}

satisfying
p(.,0),q(,t) € L*(0,T; H*(2)) N L°(0,T; L*(1)) %)
N L*(0,T; HY (1)) N L8(A7) N C([0, T]; H1 (1)),
LD 20 € (), (©)

and the system (H) hold as equalities in L?(A7). Moreover, the solution Continuous dependence on the initial data in
H2(A).

®0(-),q0(.)),— (P(., £ D0, q0), 4 (-, t; Do» G0))s
is continuous in H(1).

2. NUMERICAL ALGORITHM

At each time level, we first describe the following practical approach for solving the nonlinear algebraic system that
arises from the approximated problem:

Given {P™°,Q™°} € S* x S, then for k > 1 find {P™k, Q™*} € S* x S" such that for all @" € S

PP Y+ (VP V) +y [, PrEwhdA

= ((1 = (™ HHP™, @ — (W — wp(p™* HHE™ 1, a™)", (7
QM =™t pn nk g—h nk, _h

5 — @M+ (VO Vo )+v [, QW w"dA

= (w1 = wo (™ HHPM L @™ + (1 = (p™HH ™M @™, (8)

We start with P = "p°, and Q° = n"q°, and then, forn > 1, we set P*° = P* ! and Q™° = Q™!. From
(7) and (8), a linear system, for 2 X (J + 1)%,d = 1,2,3 linear equations, can be found by testing (7) and (8) by 0, j =
0,...,J. Using the Gauss-Seidel iteration method, The above linear system was solved using the Gauss—Seidel iteration
method. Although we were unable to theoretically prove the convergence of the Gauss—Seidel method for this system,
numerical results indicate that, at each time level, convergence is typically achieved within a few iterative steps. To
ensure the reliability of the iterative solution, we adopt the following stopping criteria:

max({ [Pk — PR QM — QPR ) < = 1077, ©)
when the above condition is met, it will be set P* = Pk, Q™ = Q™.

3. NUMERICAL RESULTS

3.1. ONE-DIMENSIONAL SIMULATION

The numerical simulation was conducted in one dimension with A = [0, L], for 0 < ¢t < T with mesh points x; = jh,
j=0,...,J] where h = L/J]. The solution to the differential equation was calculated in the interval 1 = [0, L] = [0,1]
with h = 0.5, as well as the adoption of ] = 10, if y = 0, then the system with Neumann boundary conditions, and if
y = 1, then the system with Robin boundary conditions. Here, we adopt the following examples:

Example 3.1. We will investigate the numerical solutions of (7) and (8) with the following:

p(x,0) =1+ 0.5x, q(x,0) = 0.5. (10)
For w; = =5,w, = 1, and At = 0.0001, the numerical solution was calculated. Figures 1 and 2 show the numerical
solution for the time level T = 10. These figures show that the solutions have a positive property and do not produce
any negative values. It was established in [22] that the system is attracted to the equilibrium point (g*,p*). Ify = 0,
then we have Neumann boundary conditions; however, if y = 1, then we have Robin boundary conditions.
The solutions maintain positive and converge to the system’s equilibrium point.
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(a) Mesh graph of p. (b) Mesh graph of q.
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(c) Combined plot of p and q, of Example 3.1, when x = 1.
FIGURE 1. - Graphs for p and q at w; = —5,w, =1,y = 0, and At = 0.0001.
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(c) Combined plot of p and q, of Example 3.1, when x = 1.
FIGURE 2. - Graphs for p and q at w; = —5,w, =1,y = 1, and At = 0.0001.

Example 3.2. The second example adopted the following:

p(x,0) = 0.01, q(x,0) = 0. (11)
The constants used in the calculation of the numerical solutions are as follows: w; = 3,w, = 2, and At = 0.0001.
Figures 3 and 4 present the numerical solution for this example at the specified time level. T = 10. It has been proven
in [22] that the system’s equilibrium point (q*, p*) is stable
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(a) Mesh graph of p. (b) Mesh graph of q.
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(c) Combined plot of p and q, of Example 3.2, when x = 1.
FIGURE 3. - Graphs for p and g atw; = 3,w, = 2,y = 0, and At = 0.0001.
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(c) Combined plot of p and q, of Example 3.2, when x = 1.
FIGURE 4. - Graphs for p and g atw; = 3,w, =2,y =1, and At = 0.0001.

3.2. TWO-DIMENSIONAL SIMULATION

We used A = [0, L] X [0, L] and a square uniform mesh with vertices (x;, yj) = (ih, jh), where i,j = 0,...,]. Note
h = L/], The same spatial step was used in both the xxx and yyy directions. A “right-angled” triangulation was
employed, in which each square is divided by a diagonal running from the top-right corner to the bottom-left corner.
The nodes were ordered in the “natural” manner: numbering from left to right, starting with the bottom row.

Example 3.3. In this example, the parameters are chosen such that T = 5,w; = —=5,w, = 1,y = 1, and the problem
is solved over the domain A = [0,1] X [0,1] with h = 0.05,At = 0.001 and /] = 100. The initial conditions considered
are:

p(x,y,0) =1+ 0.5x, q(x,y,0) = 0.5. (12)
The numerical solutions of p and g, for the time level T = 5, are shown in Figures 5 and 6.
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(a) solutionofpatT =1 (b) solution of g atT =1

(c)solutionofp atT = 3 (d) solution of g at T = 3

(e) solutionofpatT =5 (f) solutionof g at T = 5

(g)solution of p at x = 0.3,y = 0.3 (h)solution of g at x = 0.3,y = 0.3

FIGURE 5. - Numerical solution of p , of Example 3.3, atw; = —5,w, =1,y = 0.

- 2 T, -
(a) solutionofpatT =1 (b) solution of g atT =1
- N
(c)solutionofp atT = 3 (d) solution of g at T = 3



Ghassan et al., Wasit Journal for Pure Science Vol. 4 No. 3 (2025) p. 1-12

(f) solutionof g atT =5

(e) solutionof patT =5

FIETES

(g)solution of p at x = 0.3,y = 0.3

(h)solution of g at x = 0.3,y = 0.3
FIGURE 6. - Numerical solution of q , of Example 3.3, atw; = -5,w, =1,y =1

(a) solutionofpatT =1

(b) solutionof g atT =1
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(c)solutionofp atT =3

(d) solution of g at T = 3

(e) solutionofp atT =5

(f) solutionof g atT =5

£\

Y

N

(g)solution of patx = 0.3,y = 0.3

(h)solution ofé atx = 0.3,y =0.3
FIGURE 7. - Numerical solution of p , of Example 3.4, atw; =w, =1,y = 0.
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(a) solutionofpatT =1 (b) solutionof g atT =1

\ | a— e
(c) solutionof pat T = 3 (d) solution of g at T = 3
(e) solutionofpatT =5 (f) solutionof g at T =5
(g)solution of p at x = 0.3,y = 0.3 (h)solution of g atx = 0.3,y = 0.3

FIGURE 8. - Numerical solution of q , of Example 3.4, atw; = w, =1,y = 1.

Example 3.5. In this example, the parameters are chosen such that T = 5,w; = 1,w, = 2,y = 1, and the problem
is solved over the domain A = [0,1] X [0,1] with h = 0.01,At = 0.001 and J] = 100. The initial conditions considered
are:
p(x,y,0) = exp(1 + 0.2x), q(x,y,0) = exp(2 + 0.5y). (14)
The numerical solutions of p and q, for the time level T = 5, are shown in Figure 9.

i,

(a) solutionofpatT =1 (b) solutionof g atT =1
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(g)solution of p atx = 0.3,y = 0.3 (h)solution of g at x = 0.3,y = 0.3

FIGURE 9. - Numerical solution of p , of Example 3.5, atw; =1,w, =2,y = 1.

4. ERROR COMPUTATIONS

To evaluate the error, we make a simple modification to problem (H) by incorporating the source terms: gl(x, t) and
g2 (x, t), thus the systems (1)-(4) can be written in the form:
(H) Find {p, q} such that

dp .
~=8p+ (1= pp = (01— wyp)q +g,(x. D), in A, (15)

daq .

~ = A0+ (@ —wp)p + (1 - p*)g + g,(x 1), in A, (16)
As a result, we consider the following modified approximation of the problem:
Find {P", Q"} € S" x S", such that for all @" € S"

Pn,k _ Pn—l
@)+ (VP V") +y f PPk ghdA
a1
= (1= (" HHP @) = (wy = wy (™)) @) + (g1 (%, 0, @)
(17
Qn,k _ Qn—l
(—At ;@M + (VQMK, V) + yf Qv *whdA =
Yl
(w1 = wa(P™ DIPM @M + (L= (™))L @™ + (9206 1), @™
(18)

4.1 ONE-DIMENSIONAL ERROR

Three numerical examples, which are solutions to the systems (15) and (16), are introduced. The first example
satisfies Neumann boundary conditions y = 0. In the other examples, we have introduced Robin boundary conditions
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y = 1. For simplification, we used w; =w, =1,1=[0,1], and T = 1 in all examples. From the associated exact
solutions of each case, the source terms g, (x, t), g,(x, t) and can be derived. We divide the domain A = [0,1] into N
uniform intervals and set the mesh size for each element to h = 1/N . The exact solution are as follows:

(i)
p = exp(t + 3x),
q = exp(2t + 2x),
(i)
p =1+ exp(2t)cos(2mx),
q = 1 + exp(—3t)cos(mx),
(iii)

p = 2 + exp(—6t)sin(4ry),
q = 2 + exp(—4t)sin(2ry),

The associated L?, L”-Norms errors for a group of simulations are presented in Tables 1-3. The numerical
results of the error demonstrate that as J increases, i.e, as the value of h decreases, the error’s value reduces.
Additionally, the error for At = 0.00001 is the same as for At = 0.000001, indicating that our numerical technique
produces extremely accurate results for a variety of At values.

Table 1. - Discrete L?, L-norms error for one-dimensional problem with homogeneous Neumann boundary
condition of the Case (i).

At = 0.00001 At = 0.000001

lp—=Pl lg—al Ilp—=Pl lg—@Ql
h 12 L® 12 L® 12 L® 12 L®
0.1 455E-04 | 4.20E-06 | 1.41E-04 | 1.18E-06| 1.44E-04 |4.20E-07| 4.47E-05| 1.18E-07
0.05 5.64E-04 | 6.67E-06 | 1.27E-04 | 1.15E-06| 1.10E-04 |4.18E-07| 4.00E-05| 1.15E-07
0.04 5.05E-04 | 5.47E-06 | 1.15E-04 | 1.15E-06| 1.03E-04 |3.48E-07| 3.26E-05| 1.11E-07
0.025 3.63E-04 | 9.68E-07 | 1.00E-04 | 1.05E-06| 8.42E-05 |3.21E-07| 2.38E-05| 1.05E-07
0.02 1.83E-04 | 1.01E-06 | 1.93E-05 | 4.59E-07| 4.49E-05 |1.00E-07| 1.09E-05| 1.00E-07

Table 2. - Discrete L?, L”-norms error for one-dimensional problem with homogenous Robin boundary
condition of the Case (ii).

At = 0.00001 At = 0.000001

lp—Pl lg—aql lp—Pl lg—2Qll
h 1? L® 2 L® 2 L® 2 L®
0.1 6.05E-02 | 3.95E-04 | 7.99E-02 | 4.43E-04| 1.91E-02 |3.95E-05| 2.53E-02| 4.43E-05
0.05 5.42E-02 | 3.61E-04 | 7.22E-02 | 4.40E-04| 2.03E-02 |4.61E-05| 2.60E-02| 4.90E-05
0.04 4.49E-02 | 3.15E-04 | 6.27E-02 | 4.00E-04| 2.05E-02 |4.75E-05| 2.61E-02| 5.00E-05
0.025 1.60E-02 | 2.98E-04 | 6.14E-02 | 3.16E-04| 2.09E-02 |4.98E-05| 2.64E-02| 5.15E-05
0.02 6.64E-03 | 1.06E-04 | 6.06E-02 | 1.21E-04| 2.10E-02 |5.06E-05| 2.64E-02| 5.21E-05

Table 3. - Discrete L?, L”-norms error for one-dimensional problem with homogenous Robin boundary
condition of the Case (iii).

At = 0.00001 | At = 0.000001
lp—=Pl lg—20l Ilp—="PI lg—20l
h 12 L® [? L® 12 L® I L®
0.1 8.57E-04 | 5.08E-06 | 3.64E-04| 1.99E-06 | 2.71E-04 |5.08E-07| 1.15E-04| 1.99E-07
0.05 8.48E-04 | 4.27E-06 | 2.60E-04 | 1.59E-06 | 2.00E-04 |4.27E-07| 1.14E-04| 1.99E-07
0.04 7.65E-04 | 4.13E-06 | 2.59E-04 | 1.40E-06 | 1.05E-04 |3.53E-07| 1.04E-04| 1.50E-07
0.025 5.90E-04 | 3.92E-06 | 1.59E-04| 1.20E-06 | 7.13E-05 |3.22E-07| 6.13E-05| 1.40E-07
0.02 2.98E-04 | 2.06E-06 | 3.58E-05| 1.10E-06 | 3.16E-05 |2.06E-07| 4.13E-05| 9.99E-08
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4.2 TWO- DIMENSIONAL ERROR

In this section, we explore two numerical examples corresponding to systems (15) and (16), similar to the
approach used in the one-dimensional case. In the first example, Neumann boundary conditions are applied. The second
example also satisfies Neumann boundary conditions, which correspond to Robin boundary conditions with
y=1\gamma = 1y=1. The fourth example satisfies the Robin boundary conditions. For all cases, we used w; = w, =1,
A=1[0,1] X [0,1], and T = 1. The initial and boundary conditions, as well as the source terms g;(x, y, t), g (x,y,t),
can be deduced from the exact solution of each case. The Exact solutions are in the following forms:

(i)
p = 2 + exp(—2t)cos(3mx))cos(Br(x + y)).

q = 2 + exp(—2t)cos(2nx)cos(2n(x + y)),

(i)
p = exp(0.5t + x + ),

q = exp(0.5t + x2 + y?).

The associated L?, L -norms error for a collection of simulations is provided in Tables 4 and 5. In the two-dimensional
situation, the error behavior is identical to that of the one-dimensional case.

Table 4. - Discrete L?, L-norms error for a two-dimensional problem with homogeneous Neumann
boundary conditions of Case (i).

At = 0.00001 | At = 0.000001

lp—Pl Ilg—Qll lp—Pl lg—Qll

h L L® L L® L? L~ L2 L~
0.1 4.11E-07 | 1.23E-05 | 3.75E-07 | 1.09E-05 | 4.11E-08 |1.23E-06| 3.75E-08| 1.09E-06
0.05 2.80E-07 | 1.86E-05 | 2.45E-07 | 1.59E-05 | 2.80E-08 |1.16E-06| 2.45E-08| 1.06E-06
0.04 2.36E-07 | 1.79E-05 | 2.03E-07 | 1.67E-05 | 2.36E-08 |1.09E-06| 2.03E-08| 1.06E-06

0.025 1.57E-07 | 1.27E-05 | 1.33E-07 | 1.77E-05 | 1.57E-08 |1.01E-06| 1.33E-08| 7.73E-07

0.02 1.28E-07 | 1.21E-05 | 1.07E-07 | 1.51E-05 | 1.28E-08 |1.01E-06| 1.07E-08| 6.10E-07

Table 5. - Discrete L?, L-norms error for a two-dimensional problem with a homogeneous Robin boundary
condition of Case (ii).

At = 0.00001 | At = 0.000001
Ilp—=Pl lg—20I Ilp—="PlI lg—20l
h 12 L® 12 L® 12 L 12 L®
0.1 4.61E-06 | 1.34E-04 | 5.03E-06 | 1.33E-04 | 4.61E-07 |1.34E-05| 5.03E-07| 1.33E-05
0.05 2.71E-06 | 1.76E-04 | 2.51E-06 | 1.43E-04 | 2.71E-07 |1.76E-05| 2.51E-07| 1.43E-05
0.04 2.24E-06 | 1.75E-04 | 2.00E-06 | 1.43E-04 | 2.24E-07 |1.85E-05| 2.00E-07| 1.44E-05
0.025 1.46E-06 | 1.40E-04 | 1.24E-06 | 1.43E-04 | 1.46E-07 |2.00E-05| 1.24E-07| 1.45E-05
0.02 1.19E-06 | 1.21E-04 | 9.92E-07 | 1.05E-04 | 1.19E-07 |2.01E-05| 9.92E-08| 1.45E-05

5. CONCLUSIONS

In this paper, we derived numerical solutions for a nonlinear predator—prey system using the finite element

method. Our primary objective was to analyze the system’s dynamics while quantifying the error between the
numerical and continuous solutions. The finite element method effectively captured the intricate behaviors of predator—
prey interactions, producing numerical solutions that exhibited positive characteristics and indicated system stability.
The results showed that decreasing the mesh size led to faster convergence of the numerical solutions toward the true
solution.
To assess the accuracy of our approach, we conducted a thorough error analysis, providing estimates by comparing the
numerical solutions with the continuous solutions. The findings revealed a significant reduction in error with increased
mesh refinement, confirming the efficiency of the employed method. Tables illustrating errors across various test cases
enabled a comprehensive evaluation of the method’s performance.

10



Ghassan et al., Wasit Journal for Pure Science Vol. 4 No. 3 (2025) p. 1-12

Overall, our results reinforce the reliability of the numerical solutions and highlight the potential of this framework for
more complex ecological models. This research contributes to a deeper understanding of predator—prey dynamics and
establishes a foundation for developing effective computational strategies to study such intricate biological interactions.
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