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A Modified S emi-analytical M ethod f or t he S olution of 
System of Fractional Order Linear and Nonlinear Volterra 
Integro-differential Equations
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ABSTRACT: Background: Finding analytical solution to Volterra integro-differential equations (VIDEs),
especially nonlinear types, mostly poses a lot of difficulties and many a time impossible, thus the need to pro-
vide semi-analytical solution. Objective: This research is concerned with the solutions of system of linear
and nonlinear fractional order integro-differential equations with difference kernels. To achieve that, we ex-
ploited the advantage of integral transform and one of the existing semi-analytical methods to develop the
desired method of solution. Methods: One of the recently developed integral transforms, the Shehu transform
which generalizes Laplace and Sumudu transforms is systematically integrated into the well-known Adomian
decomposition method (ADM) for the purpose of getting a more simplified approach to solution of the class of
problems considered. The Shehu transform is first applied to both sides of the given VIDEs with difference ker-
nel, followed by the application of convolution theorem. The ADM is then employed to handle the nonlinearity
that are encountered. Results: The proposed method; Modified Semi-analytical Method (MSM) is applied to
selected problems in the literature, and gives comparatively good results. The method equally produce exact
solution whenever the solution is in closed form. The results are given in both tabular and 2D graphical forms
for ease of comparison. All the computations are carried out using Mathematica 13.3 with the fractional order
derivative interpreted in Caputo sense. Conclusions: Since MSM has been successfully used to solve linear and
nonlinear VIDEs with difference kernel, the scope of the method can be expanded to cover Volterra-Fredholm
integro-differential equations (VFIDEs) in the future studies.
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INTRODUCTION17

Integro-differential equations (IDEs) are the ones that consists of both integral and differential aspects,18

these make using them to model real life systems an excellent approach [1]. These equations are19

mostly used in different disciplines of science and engineering. Despite their usefulness, solving the20

nonlinear IDEs are most of the time difficult using the known analytical methods. Volterra integro-21

differential equations (VIDEs) as an example of IDEs, play a crucial role due to their ability to22

capture memory effects and hereditary properties [2, 3]. The VIDEs are highly relevant in practical23

applications in viscoelastic materials, population dynamics, heat conduction, and electrochemical24

processes [4]. Recent developments in research have underscored the relevance of VIDEs in modeling25

dynamic systems. A typical example is the work of [5] which analyzed the stability of VIDEs in26

control and biological models, demonstrating their effectiveness in handling impulsive effects and27

delay dynamics. Likewise in the work reported by [6] where the roles of VIDEs are explored in28

delay systems, emphasizing their applicability in engineering and theoretical sciences. Furthermore,29

Liu, Tao, and Zhang [7] proposed a spectral method to solve nonlinear VIDEs with weakly singular30

kernels, improving computational efficiency and accuracy. All the foregoing studies highlight the31
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growing significance of VIDEs in both theoretical research and practical problem-solving across various1

disciplines.2

Fractional calculus provides the desired requirements in modeling practical phenomenon where preci-3

sion is of essence [8]. The application of non-integer-order VIDEs enhances model accuracy in fields4

such as control theory and signal processing [9]. Expansion of the scope of VIDEs to fractional or-5

ders enhances the scope of their applications, since fractional calculus accurately describes real-world6

situations such as diffusion effects and so on [10]. Fractional order VIDEs provide the desired flex-7

ibility in capturing real life phenomena compared to their integer-order counterparts, making them8

suitable for modeling processes in engineering, biomathematics, mathematical physics, and fluid dy-9

namics [11, 12]. Several studies, including those by Wang [13] and Boulaaras, Jan, and Pham [14],10

have highlighted the advantages of fractional calculus in describing complex dynamical behaviors that11

classical integer-order models cannot effectively capture. More recent works by Guo, Yin, and Peng12

[15], as well as Alshammari, Iqbal, and Ntwiga [16], have demonstrated the increasing importance of13

fractional-order models in applications such as diffusion processes, viscoelasticity, and bioengineering,14

reinforcing the need for efficient solution methodologies.15

Despite their extensive applications, solving FVIDEs remains a significant challenge due to memory16

effects and non-local dependencies [17, 18]. Many researchers have attempted to derive analytical or17

numerical solutions, though exact solutions remain scarce [19–21]. Several analytical methods, includ-18

ing the ADM [22], HPM, VIM, and HAM, have been widely applied, with studies specifically utilizing19

the VIM [23] and HAM [24, 25]. On the numerical front, researchers have explored methods based on20

the use operational matrices for nonlinear VIDEs [26] and the multi-wavelet Galerkin method, which21

employs operational matrices of integration and wavelet transforms [27]. While these methods have22

shown considerable effectiveness, they often face challenges such as slow convergence, computational23

instability, and difficulties in handling strong nonlinearities. Moreover, existing approaches frequently24

require extensive computational resources for higher-order nonlinear problems, underscoring the need25

for more efficient solution techniques.26

The need for more easily accessible methods that are devoid of ambiguities that are inherent in27

some of the existing methods, such as small parameters to be determined along with solution to28

original problem. The present work therefore proposed Modified Semi-analytical Methods (MSM)29

which exploits the advantage in Shehu transform which is the fact that it handles both constant and30

variable problems, and the Adomian Decomposition Method. The essence of incorporating ADM31

is to overcome any nonlinear terms that may be encountered in the course of solving the problem.32

The proposed method has been successfully applied to both linear and nonlinear integro-differential33

equations with difference kernels has presented in the sequel.34

Adomian Polynomial35

The Adomian polynomials, denoted by Aq are used to decompose the non-linearity encountered in36

problems. It is given as37

Aq =
1

Γ(q + 1)

[
dq

dξq
N

(
q∑

m=0

ξiui

)]
ξ=0

, q = 0, 1, 2, ... (1)

For further reading on ADM and its applications see [28–30].38

The Caputo Fractional Derivative39

Let ψ ∈ ℜ+ and ϑ = ⌈ψ⌉. The operator Dψζ is defined by40

Dψζ f(s) = Jϑ−ψc Dϑf(s) =
1

(ϑ− ψ − 1)!

∫ s

c

(s− ρ)ϑ−ψ−1

(
d

dρ

)ψ
f(ρ) dρ, (2)

for c ≤ s ≤ d, is called the Caputo differential operator of order ψ.41

The definition (2) can equally be expressed as42

Dψsϑ =
Γ(ϑ+ 1)

Γ(ϑ− ψ + 1)
sϑ−ψ. (3)
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METHODS1

Application of Shehu Transform to Differential Coefficients [31]2

The Shehu transform of the differential coefficient g′(s) is defined as3

S{g′(s)} =

(
ψ

ϑ

)
G(ψ, ϑ)− f(0). (4)

The nth order derivative is given as4

S{g(ρ)(s)} =

(
ψ

ϑ

)ρ
G(ψ, ϑ)−

ρ−1∑
i=0

(
ψ

ϑ

)ρ−(i+1)

g(i)(0), (5)

where G(ψ, ϑ) is the Shehu transform of the function g(s).5

Nature of the Problem Considered6

In this work, the family of problem considered is7

Dρu(t) = g(t) + µu(t) +

∫ t

0

[g(τ)u(τ) + h(τ)F (u(τ))] dτ, 0 ≤ t ≤ b (6)

where ρ is a fractional order derivative, u(t) is the unknown function, g(τ) and h(τ) are degenerate8

kernels which in this study are taken to be difference kernel, F (u(τ)) is the nonlinear term.9

Implementation of the Modified Semi-analytical Method (MSM)10

We shall apply the Shehu Transform to both sides of (6) as follows:11

S
{
Dρu(x)

}
= S

{
g(t) + µu(t) +

∫ t

0

[g(τ)u(τ) + h(τ)F (u(τ))] dτ

}
. (7)

Applying Shehu transform of derivatives to the term on the left hand side of (7), we have12

S
{
Dρu(t)

}
=
ψρ

ϑρ
U(ψ, ϑ)−

ρ−1∑
j=0

(ψ
ϑ

)ρ−(j+1)
u(j)(0) (8)

We then substitute (8) back in (7) to get13 (
ψ

ϑ

)ρ
U(ψ, ϑ)−

ρ−1∑
j=0

(ψ
ϑ

)ρ−(j+1)
u(j)(0) = G(ψ, ϑ)+µS

{
u(t)

}
+S
{∫ t

0

k1(t−τ)u(τ)dτ+k2(t−τ)u(τ)dτ
}
,

(9)
where k1(t− τ) and k2(t− τ) are difference kernel representing g(τ) and h(τ) respectively.14 (

ψ

ϑ

)ρ
U(ψ, ϑ) =

ρ−1∑
j=0

(
ψ

ϑ

)ρ−(j+1)

u(j)(0) +G(ψ, ϑ) + µS
{
u(t)

}
+ S
{
k1(t− τ)

}
∗ S
{
u(s)

}
+ S
{
k2(t− τ)

}
∗ S
{
F (u(τ))

}
.

(10)

where F (u(τ)) is the nonlinear term.15

U(ψ, ϑ) =
ϑρ

ψρ

( ρ−1∑
j=0

(
ψ

ϑ

)ρ−(j+1)

u(j)(0) +G(ψ, ϑ) + µS
{
u(t)

}
+ S
{
k1(t− τ)

}
∗ S
{
u(s)

}
+ S
{
k2(t− τ)

}
∗ S
{
F (u(τ))

})
.

(11)
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The initial approximation u0(t) is obtained from (11) as1

S
{
u0(t)

}
=
ϑρ

ψρ

ρ−1∑
j=0

(ψ
ϑ

)ρ−(j+1)
u(j)(0) +G(ψ, ϑ) + µS

{
u(t)

}
+ S
{
k1(t− τ)

}
⋆ S
{
u(s)

} , (12)

while the recurrence relation is given by the remaining terms in (11) as2

S [uk+1(t)] =
ϑρ

ψρ

[
S {k2(t− τ)} ∗ S

{ ∞∑
k=0

Ak(s)

}]
, k = 0, 1, 2, ... (13)

The Adomian polynomials corresponding to the nonlinear term in (1) derived substituted and used3

as follows4

F (u(t)) =
∞∑
k=0

Ak(t), (14)

where Ak(t) represents the Adomian polynomials.5

Numerical Experiment on Linear Problems6

Problem 1 [32]7

Consider the system of linear VIDEs8

Dζt y1(t)− 2t2 −
∫ t

0

(
(t− τ)y1(t) + (t− τ)y2(τ)

)
dτ = 0,

Dζt y2(t) + 3t2 +
1

5
t5 −

∫ t

0

(
(t− τ)y1(τ) + (t− τ)y2(τ)

)
dτ = 0.

(15)

with the given initial conditions: y1(0) = y2(0) = 1, 0 < ζ ≤ 1.9

Solution to Problem 1:10

Dζt y1(t) = 2t2 +

∫ t

0

(
(t− τ)y1(τ) + (t− τ)y2(τ)

)
dτ,

Dζt y2(t) = −3t2 − 1

5
t5 +

∫ t

0

(
(t− τ)y1(τ) + (t− τ)y2(τ)

)
dτ.

(16)

Taking the Shehu transform of both sides, we get11

S{Dζt y1(t)} = 2S{t2}+ S
{∫ t

0

(
(t− τ)y1(τ) + (t− τ)y2(τ)

)
dτ

}
,

S{Dζt y2(t)} = −3S{t2} − 1

5
S{t5}+ S

{∫ t

0

(
(t− τ)y1(τ) + (t− τ)y2(τ)

)
dτ

}
.

(17)

Implementing the Shehu transform of the derivatives and simplifying, we get12 (
ψ

ϑ

)ζ
Y1(ψ, ϑ)−

(
ψ

ϑ

)ζ−1

y1(0) = 4

(
ϑ

ψ

)3

+ S{t} ∗ S{y1(t)}+ S{t} ∗ S{y2(t)},(
ψ

ϑ

)ζ
Y2(ψ, ϑ)−

(
ψ

ϑ

)ζ−1

y2(0) = −6

(
ϑ

ψ

)3

− 24

(
ϑ

ψ

)6

+ S{t} ∗ S{y1(t)} − S{t} ∗ S{y2(t)}.
(18)

Applying initial conditions and simplification gives13 (
ψ

ϑ

)ζ
Y1(ψ, ϑ)−

(
ψ

ϑ

)ζ−1

= 4

(
ϑ

ψ

)3

+

(
ϑ

ψ

)2

Y1(ψ, ϑ) +

(
ϑ

ψ

)2

Y2(ψ, ϑ),(
ψ

ϑ

)ζ
Y2(ψ, ϑ)−

(
ψ

ϑ

)ζ−1

= −6

(
ϑ

ψ

)3

− 24

(
ϑ

ψ

)6

+

(
ϑ

ψ

)2

Y1(ψ, ϑ)−
(
ϑ

ψ

)2

Y2(ψ, ϑ).

(19)
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(
ψ

ϑ

)ζ
Y1(ψ, ϑ) =

(
ψ

ϑ

)ζ−1

+ 4

(
ϑ

ψ

)3

+

(
ϑ

ψ

)2

Y1(ψ, ϑ) +

(
ϑ

ψ

)2

Y2(ψ, ϑ),(
ψ

ϑ

)ζ
Y2(ψ, ϑ) =

(
ψ

ϑ

)ζ−1

− 6

(
ϑ

ψ

)3

− 24

(
ϑ

ψ

)6

+

(
ϑ

ψ

)2

Y1(ψ, ϑ)−
(
ϑ

ψ

)2

Y2(ψ, ϑ).

(20)

Y1(ψ, ϑ) =

(
ϑ

ψ

)
+ 4

(
ϑ

ψ

)3+ζ

+

(
ϑ

ψ

)2+ζ

Y1(ψ, ϑ) +

(
ϑ

ψ

)2+ζ

Y2(ψ, ϑ),

Y2(ψ, ϑ) =

(
ϑ

ψ

)
− 6

(
ϑ

ψ

)3+ζ

− 24

(
ϑ

ψ

)6+ζ

+

(
ϑ

ψ

)2+ζ

Y1(ψ, ϑ)−
(
ϑ

ψ

)2+ζ

Y2(ψ, ϑ).

(21)

From where we get the initial approximations as:1

Y1,0(ψ, ϑ) =

(
ϑ

ψ

)
+ 4

(
ϑ

ψ

)3+ζ

,

Y2,0(ψ, ϑ) =

(
ϑ

ψ

)
− 6

(
ϑ

ψ

)3+ζ

− 24

(
ϑ

ψ

)6+ζ

.

(22)

Taking the inverse Shehu transform, we obtain2

y1,0(t) = 1 +
4t2+ζ

Γ(3 + ζ)
,

y2,0(t) = 1− 6t2+ζ

Γ(3 + ζ)
− 24t5+ζ

Γ(6 + ζ)
.

(23)

For the recurrence relation, we have3

Y1,k+1(ψ, ϑ) =

(
ϑ

ψ

)2+ζ

Y1,k(ψ, ϑ) +

(
ϑ

ψ

)2+ζ

Y2,k(ψ, ϑ),

Y2,k+1(ψ, ϑ) =

(
ϑ

ψ

)2+ζ

Y1,k(ψ, ϑ)−
(
ϑ

ψ

)2+ζ

Y2,k(ψ, ϑ).

(24)

When k = 0:4

Y1,1(ψ, ϑ) =

(
ϑ

ψ

)2+ζ

Y1,0(ψ, ϑ) +

(
ϑ

ψ

)2+ζ

Y2,0(ψ, ϑ),

Y2,1(ψ, ϑ) =

(
ϑ

ψ

)2+ζ

Y1,0(ψ, ϑ)−
(
ϑ

ψ

)2+ζ

Y2,0(ψ, ϑ).

(25)

Y1,1(ψ, ϑ) =

(
ϑ

ψ

)2+ζ [(ϑ
ψ

)
+ 4

(
ϑ

ψ

)3+ζ ]
+

(
ϑ

ψ

)2+ζ [(ϑ
ψ

)
− 6

(
ϑ

ψ

)3+ζ

− 24

(
ϑ

ψ

)6+ζ ]
,

Y2,1(ψ, ϑ) =

(
ϑ

ψ

)2+ζ [(ϑ
ψ

)
+ 4

(
ϑ

ψ

)3+ζ ]
−
(
ϑ

ψ

)2+ζ [(ϑ
ψ

)
− 6

(
ϑ

ψ

)3+ζ

− 24

(
ϑ

ψ

)6+ζ ]
.

(26)

Y1,1(ψ, ϑ) =

(
ϑ

ψ

)3+ζ

+ 4

(
ϑ

ψ

)5+2ζ

+

(
ϑ

ψ

)3+ζ

− 6

(
ϑ

ψ

)5+2ζ

− 24

(
ϑ

ψ

)8+2ζ

,

Y2,1(ψ, ϑ) =

(
ϑ

ψ

)3+ζ

+ 4

(
ϑ

ψ

)5+2ζ

−
(
ϑ

ψ

)3+ζ

+ 6

(
ϑ

ψ

)5+2ζ

+ 24

(
ϑ

ψ

)8+2ζ

.

(27)
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Y1,1(ψ, ϑ) = 2

(
ϑ

ψ

)3+ζ

− 2

(
ϑ

ψ

)5+2ζ

− 24

(
ϑ

ψ

)8+2ζ

,

Y2,1(ψ, ϑ) = 10

(
ϑ

ψ

)5+2ζ

+ 24

(
ϑ

ψ

)8+2ζ

.

(28)

Taking the inverse Shehu transform of both sides, we get1

y1,1(t) =
2t2+ζ

Γ(3 + ζ)
− 2t4+2ζ

Γ(5 + 2ζ)
− 24t7+2ζ

Γ(8 + 2ζ)
,

y2,1(t) =
10t4+2ζ

Γ(5 + 2ζ)
+

24t7+2ζ

Γ(8 + 2ζ)
.

(29)

When k = 1:2

Y1,2(ψ, ϑ) =

(
ϑ

ψ

)2+ζ

Y1,1(ψ, ϑ) +

(
ϑ

ψ

)2+ζ

Y2,1(ψ, ϑ),

Y2,2(ψ, ϑ) =

(
ϑ

ψ

)2+ζ

Y1,1(ψ, ϑ)−
(
ϑ

ψ

)2+ζ

Y2,1(ψ, ϑ).

(30)

Y1,2(ψ, ϑ) =

(
ϑ

ψ

)2+ζ [
2

(
ϑ

ψ

)3+ζ

− 2

(
ϑ

ψ

)5+2ζ

− 24

(
ϑ

ψ

)8+2ζ ]
+

(
ϑ

ψ

)2+ζ [
10

(
ϑ

ψ

)5+2ζ

+ 24

(
ϑ

ψ

)8+2ζ ]
,

Y2,2(ψ, ϑ) =

(
ϑ

ψ

)2+ζ [
2

(
ϑ

ψ

)3+ζ

− 2

(
ϑ

ψ

)5+2ζ

− 24

(
ϑ

ψ

)8+2ζ ]
−
(
ϑ

ψ

)2+ζ [
10

(
ϑ

ψ

)5+2ζ

+ 24

(
ϑ

ψ

)8+2ζ ]
.

(31)

Y1,2(ψ, ϑ) = 2

(
ϑ

ψ

)5+2ζ

− 2

(
ϑ

ψ

)7+3ζ

− 24

(
ϑ

ψ

)10+3ζ

+ 10

(
ϑ

ψ

)7+3ζ

+ 24

(
ϑ

ψ

)10+3ζ

,

Y2,2(ψ, ϑ) = 2

(
ϑ

ψ

)5+2ζ

− 2

(
ϑ

ψ

)7+3ζ

− 24

(
ϑ

ψ

)10+3ζ

− 10

(
ϑ

ψ

)7+3ζ

− 24

(
ϑ

ψ

)10+3ζ

.

(32)

Y1,2(ψ, ϑ) = 2

(
ϑ

ψ

)5+2ζ

+ 8

(
ϑ

ψ

)7+3ζ

,

Y2,2(ψ, ϑ) = 2

(
ϑ

ψ

)5+2ζ

− 12

(
ϑ

ψ

)7+3ζ

− 48

(
ϑ

ψ

)10+3ζ

.

(33)

Taking the inverse Shehu transform of both sides, we get3

y1,2(t) =
2t4+2ζ

Γ(5 + 2ζ)
+

8t6+3ζ

Γ(7 + 3ζ)
,

y2,2(t) =
2t4+2ζ

Γ(5 + 2ζ)
− 12t6+3ζ

Γ(7 + 3ζ)
− 48t9+3ζ

Γ(10 + 3ζ)
.

(34)

The general solutions are obtained as:4

y1(t) = y1,0(t) + y1,1(t) + y1,2(t) + . . . , k = 0, 1, 2, . . . ,

y2(t) = y2,0(t) + y2,1(t) + y2,2(t) + . . . , k = 0, 1, 2, . . . .
(35)
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1

y1(t) = 1 + 4
t2+ζ

Γ(3 + ζ)
+

2t2+ζ

Γ(3 + ζ)
− 2t4+2ζ

Γ(5 + 2ζ)

− 24t7+2ζ

Γ(8 + 2ζ)
+

2t4+2ζ

Γ(5 + 2ζ)
+

8t6+3ζ

Γ(7 + 3ζ)
+ . . .

(36)

y2(t) = 1− 6t2+ζ

Γ(3 + ζ)
− 24t5+ζ

Γ(6 + ζ)
+

10t4+2ζ

Γ(5 + 2ζ)
+

24t7+2ζ

Γ(8 + 2ζ)

+
2t4+2ζ

Γ(5 + 2ζ)
− 12t6+3ζ

Γ(7 + 3ζ)
− 48t9+3ζ

Γ(10 + 3ζ)
+ . . .

(37)

y1(t) = 1 +
6t2+ζ

Γ(3 + ζ)
− 24t7+2ζ

Γ(8 + 2ζ)
+

8t6+3ζ

Γ(7 + 3ζ)
+ . . . (38)

y2(t) = 1− 6t2+ζ

Γ(3 + ζ)
− 24t5+ζ

Γ(6 + ζ)
+

24t7+2ζ

Γ(8 + 2ζ)
+

12t4+2ζ

Γ(5 + 2ζ)

− 12t6+3ζ

Γ(7 + 3ζ)
− 48t9+3ζ

Γ(10 + 3ζ)
+ . . .

(39)

Problem 2 [33]2

Consider the system of linear VIDEs3

Dζt y1(t) = 1 + t− t3

3
+

∫ t

0

(
(t− τ)y1(τ) + (t− τ)y2(τ)

)
dτ,

Dζt y2(t) = 1− t− t4

12
+

∫ t

0

(
(t− τ)y1(τ) + (t− τ)y2(τ)

)
dτ.

(40)

With the given initial conditions: y1(0) = y2(0) = 0, and 0 < ζ ≤ 1.4

Solution to Problem 2:5

Following the procedures as in problem 1, we have6

y1(t) =
tζ

Γ(1 + ζ)
+

t1+ζ

Γ(2 + ζ)
− 2

t3+ζ

Γ(4 + ζ)
+

2t2+2ζ

Γ(3 + 2ζ)

− 2t5+2ζ

Γ(6 + 2ζ)
− 2t6+2ζ

Γ(7 + 2ζ)
+

2t4+3ζ

Γ(5 + 3ζ)

− 4t7+3ζ

Γ(8 + 3ζ)
+

2t5+3ζ

Γ(6 + 3ζ)
+ ...

(41)

y2(t) =
tζ

Γ(1 + ζ)
− t1+ζ

Γ(2 + ζ)
− 2

t4+ζ

Γ(5 + ζ)
+

2t3+2ζ

Γ(4 + 2ζ)

− 2t5+2ζ

Γ(6 + 2ζ)
+

2t6+2ζ

Γ(7 + 2ζ)
+

2t4+3ζ

Γ(5 + 3ζ)

− 2t7+3ζ

Γ(8 + 3ζ)
− 4t8+3ζ

Γ(9 + 3ζ)
+ ...

(42)

Problem 3 [34]7

Consider the system of linear VIDEs8

Dζtu(t) +
3t2ζζΓ(3ζ)

Γ(1 + 2ζ)
−
∫ t

0

(t− τ)u(τ) dτ −
∫ t

0

(t− τ)v(τ) dτ = 0,

Dζt v(t) +
2t3ζ+2

2 + 9ζ + 9ζ2
+

3t2ζζΓ(3ζ)

Γ(1 + 2ζ)
+

∫ t

0

(t− τ)u(τ) dτ +

∫ t

0

(t− τ)v(τ) dτ = 0.

(43)
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With the given initial conditions: u(0) = v(0) = 0, 0 ≤ t ≤ 1, 0 < ζ ≤ 1.1

Solution to Problem 3:2

Implementation of the earlier algorithm, we have3

u(t) = t3ζ − 2Γ(3ζ + 1)t6ζ+3

Γ(6ζ + 4)
+

2Γ(3ζ + 1)t7ζ+2

Γ(7ζ + 3)
+ . . .

v(t) = −2Γ(3ζ + 1)t4ζ+2

Γ(4ζ + 3)
− t3ζ +

2Γ(3ζ + 1)t5ζ+1

Γ(5ζ + 2)

+
2Γ(3ζ + 1)t6ζ+3

Γ(6ζ + 4)
− 2Γ(3ζ + 1)t8ζ+4

Γ(8ζ + 5)
− 2Γ(3ζ + 1)t7ζ+2

Γ(7ζ + 3)
+ . . .

(44)

Numerical Experiment on Nonlinear Problems4

Problem 4 [33]5

Consider the nonlinear VIDEs6

Dζy(t)−
∫ t

0

[y(τ)]2dτ = −1, 0 ≤ x ≤ 1, 0 < ζ ≤ 1. (45)

Subject to the initial condition y(0) = 0.7

Solution to Problem 4:8

Dζy(t) =
∫ t

0

[y(τ)]2dτ − 1. (46)

Taking the Shehu transform of both sides, we get9

S
{
Dζy(t)

}
= S

{∫ t

0

[y(τ)]2dτ − 1

}
. (47)

10 (
ψ

ϑ

)ζ
Y (ψ, ϑ)−

(
ψ

ϑ

)ζ−1

y(0) =
ϑ

ψ
∗ S
{
y(t)2

}
− ϑ

ψ
. (48)

Applying the initial condition, we get11 (
ψ

ϑ

)ζ
Y (ψ, ϑ) =

ϑ

ψ
∗ S
{
y(t)2

}
− ϑ

ψ
(49)

12

Y (ψ, ϑ) = −
(
ϑ

ψ

)1+ζ

+

(
ϑ

ψ

)1+ζ

∗ S
{
y(t)2

}
(50)

The initial approximation and the recurrence relation are obtained from (50) as follows:13

Y0(ψ, ϑ) = −
(
ϑ

ψ

)1+ζ

. (51)
14

y0(x) = − tζ

Γ(ζ + 1)
. (52)

The recurrence relation becomes15

Yq+1(ψ, ϑ) =

(
ϑ

ψ

)1+ζ

S
{
Aq(t)

}
, q = 0, 1, 2, ... (53)

The Adomian polynomials corresponding to the nonlinear term y(t)2 are derived from16

Aq =
1

Γ(q + 1)

[
dq

dξq
N

(
q∑
i=0

ξiyi

)]
ξ=0

, q = 0, 1, 2, ... (54)
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N(y) = y2 is the nonlinear term.1

When q = 0, q = 1, q = 2:2

A0 = y20, A1 = 2y0y1, A2 = y21 + 2y0y2, ... (55)

When q = 0 is implemented in the recurrence relation, we have3

Y1(ψ, ϑ) =

(
ϑ

ψ

)1+ζ

S
{
A0(t)

}
. (56)

4

Y1(ψ, ϑ) =

(
ϑ

ψ

)1+ζ

S
{(

− tζ

Γ(ζ + 1)

)2}
. (57)

5

Y1(ψ, ϑ) =

(
ϑ

ψ

)1+ζ

S
{

t2ζ

Γ(ζ + 1)2

}
. (58)

Y1(ψ, ϑ) =

(
ϑ

ψ

)1+ζ [Γ(2ζ + 1)

Γ(ζ + 1)2

(
ϑ

ψ

)2ζ+1 ]
. (59)

6

Y1(ψ, ϑ) =
Γ(2ζ + 1)

Γ(ζ + 1)2

(
ϑ

ψ

)3ζ+2

. (60)

Taking the inverse shehu transform of Y1, we get7

y1(t) =
Γ(2ζ + 1)t3ζ+1

Γ(ζ + 1)2Γ(2ζ + 3)
. (61)

When k = 1:8

Y2(ψ, ϑ) =

(
ϑ

ψ

)1+ζ

S
{
A1(t)

}
. (62)

From Adomian polynomial, A1 = 2y0y19

Y2(ψ, ϑ) =

(
ϑ

ψ

)1+ζ

S
{
2

[
− tζ

Γ(ζ + 1)

][
Γ(2ζ + 1)t3ζ+1

Γ(ζ + 1)2Γ(3ζ + 2

]}
(63)

Y2(ψ, ϑ) =

(
ϑ

ψ

)1+ζ

S
{
− 2

Γ(2ζ + 1)t4ζ+1

Γ(ζ + 1)3Γ(3ζ + 2

}
(64)

Y2(ψ, ϑ) =

(
ϑ

ψ

)1+ζ [−2Γ(4ζ + 2)Γ(2ζ + 1)

Γ(ζ + 1)3Γ(3ζ + 2)

(
ϑ

ψ

)4ζ+2 ]
. (65)

10

Y2(ψ, ϑ) =
−2Γ(4ζ + 2)Γ(2ζ + 1)

Γ(ζ + 1)3Γ(3ζ + 2)

(
ϑ

ψ

)5ζ+3

. (66)

Taking the inverse Shehu transform of Y2, we get11

y2(x) =
−2Γ(4ζ + 2)Γ(2ζ + 1)t2+5ζ

Γ(ζ + 1)3Γ(3ζ + 2)Γ(5ζ + 3)
. (67)

When k = 2 :12

Y3(ψ, ϑ) =

(
ϑ

ψ

)1+ζ

S
{
A2(t)

}
. (68)

From Adomian polynomial,13

A2 = 2y0y2 + y21. (69)
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1

Y3(ψ, ϑ) =

(
ϑ

ψ

)1+ζ

S
{
2

[
− tζ

Γ(ζ + 1)

][
−2Γ(4ζ + 2)Γ(2ζ + 1)t2+5ζ

Γ(ζ + 1)3Γ(3ζ + 2)Γ(5ζ + 3)

]

+

[
Γ(2ζ + 1)t3ζ+1

Γ(ζ + 1)2Γ(3ζ + 2

]2}
.

(70)

2

Y3(ψ, ϑ) =
4Γ(4ζ + 2)Γ(2ζ + 1)

(
ϑ
ψ

)4+7ζ

Γ(ζ + 1)4Γ(3ζ + 2)Γ(5ζ + 3)Γ(6ζ + 3)
+

Γ(2ζ + 1)2
(
ϑ
ψ

)4+7ζ

Γ(ζ + 1)4Γ(3ζ + 2)2Γ(6ζ + 3)
. (71)

Taking the inverse Shehu transform of Y3, we get3

y3(t) =
4Γ(4ζ + 2)Γ(2ζ + 1)t3+7ζ

Γ(ζ + 1)4Γ(3ζ + 2)Γ(5ζ + 3)Γ(6ζ + 3)Γ(7ζ + 4)

+
Γ(2ζ + 1)2t3+7ζ

Γ(ζ + 1)4Γ(3ζ + 2)2Γ(6ζ + 3)Γ(7ζ + 4)
.

(72)

The general Solution is4

y(t) = y0(t) + y1(t) + y2(t) + y3(t) + .... (73)

y(t) =− tζ

Γ(ζ + 1)
+

Γ(2ζ + 1)t3ζ+1

Γ(ζ + 1)2Γ(2ζ + 3)
− 2Γ(4ζ + 2)Γ(2ζ + 1)t2+5ζ

Γ(ζ + 1)3Γ(3ζ + 2)Γ(5ζ + 3)

+
4Γ(4ζ + 2)Γ(2ζ + 1)t3+7ζ

Γ(ζ + 1)4Γ(3ζ + 2)Γ(5ζ + 3)Γ(6ζ + 3)Γ(7ζ + 4)

+
Γ(2ζ + 1)2t3+7ζ

Γ(ζ + 1)4Γ(3ζ + 2)2Γ(6ζ + 3)Γ(7ζ + 4)
. (74)

Problem 5 [33]5

Consider the nonlinear VIDEs6

Dζy(t)−
∫ t

0

exp−τ [y(τ)]2dτ = 1, 0 ≤ t ≤ 1, 3 < ζ ≤ 4. (75)

Subject to the initial condition y(0) = y′(0) = y′′(0) = y′′′(0) = 0.7

Solution to Problem 5:8

Implementing the algorithm as we did in the earlier problems yields9

y(t) = 1 + t+
t2

2
+
t3

6
+

tζ

Γ(ζ + 1)
+

tζ+1

Γ(ζ + 2)
+

2tζ+2

Γ(ζ + 3)
+

4tζ+3

Γ(ζ + 4)
+

8tζ+4

Γ(ζ + 5)
+

14tζ+5

Γ(ζ + 6)

+
20tζ+6

Γ(ζ + 7)
+

20tζ+7

Γ(ζ + 8)
+

Γ(2ζ + 1)t3ζ+1

Γ(ζ + 1)2Γ(2ζ + 3)
+

2t2ζ+1

Γ(2ζ + 2)
+

2Γ(ζ + 2)t2ζ+2

Γ(ζ + 1)Γ(2ζ + 3)

+
Γ(ζ + 3)t2ζ+3

Γ(ζ + 1)Γ(2ζ + 4)
+

Γ(2ζ + 4)t2ζ+4

3Γ(ζ + 1)Γ(2ζ + 5)
+

t2ζ+2

Γ(2ζ + 3)
+

Γ(ζ + 3)t2ζ+3

Γ(ζ + 2)Γ(2ζ + 5)

+
Γ(ζ + 3)t2ζ+4

Γ(ζ + 2)Γ(2ζ + 5)
+

Γ(ζ + 5)t2ζ+5

6Γ(2ζ + 6)Γ(2ζ + 2)
+

Γ(2ζ + 2)t2+3ζ

6Γ(ζ + 1)Γ(ζ + 2)Γ(3ζ + 3)

+
2Γ(2)t3+2ζ

Γ(ζ + 3)Γ(2ζ + 4)
+

2Γ(ζ + 4)t4+2ζ

Γ(ζ + 3)Γ(2ζ + 5)
.

(76)
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RESULTS AND DISCUSSION1

In this study, five numerical examples are solved using the proposed Modified Semi-analytical Method2

(MSM). To validate the effectiveness of our method, these examples were carefully selected from3

recently published articles that employed different numerical techniques, highlighting the uniqueness4

and versatility of our approach.5

Specifically, Osama & Adyan [32] applied the Homotopy Analysis Method (HAM) and the Variational6

Iteration Method (VIM) to solve Problems 1 and 2, respectively. Our tabulated results show perfect7

agreement with theirs, thereby confirming the reliability of our method. Similarly, for Problem 3,8

we obtained results consistent with those of [34], who utilized the Optimal Homotopy Asymptotic9

Method. Our results for Problem 4 are precisely the same as those obtained in [33], where the method10

of solution is the Bernoulli Pseudospectral Method. Additionally, our results for Problem 5 are in11

perfect agreement with those of [35], who employed the Wavelet Method. Moreover, all results for the12

problems considered are represented graphically through 2D plots to enhance interpret-ability and13

provide clearer insights.14

Tables15

Table 1: Results for Problem 1
t MSM y1 MSM (y2) HAM (y1) HAM (y2)
0.0 1.000 1.000 1.000 1.000
0.1 1.001 0.999 1.001 0.999
0.2 1.008 0.992 1.008 0.992
0.3 1.027 0.973 1.027 0.973
0.4 1.064 0.936 1.064 0.936
0.5 1.125 0.875 1.125 0.874
0.6 1.216 0.783 1.216 0.782
0.7 1.343 0.655 1.343 0.653
0.8 1.512 0.484 1.512 0.479
0.9 1.729 0.262 1.729 0.253
1.0 2.000 -0.017 2.000 -0.033

Table 2: Results for Problem 2
t MSM (y1) MSM (y2) VIM (y1) VIM (y2)
0.0 0.000 0.000 0.000 0.000
0.1 0.105 0.095 0.105 0.095
0.2 0.220 0.180 0.220 0.180
0.3 0.345 0.255 0.345 0.255
0.4 0.480 0.320 0.480 0.320
0.5 0.625 0.375 0.625 0.374
0.6 0.780 0.420 0.780 0.419
0.7 0.945 0.455 0.945 0.452
0.8 1.120 0.480 1.120 0.475
0.9 1.305 0.495 1.305 0.485
1.0 1.500 0.500 1.500 0.483



12

Table 3: Results for Problem 3 for values of ζ=1
t MSM [u(t)] MSM [v(t)] OHAM [u(t)] OHAM [v(t)]

0.0 0.000 0.000 0.000 0.000
0.1 0.001 -0.001 0.001 -0.001
0.2 0.008 -0.008 0.008 -0.008
0.3 0.027 -0.027 0.027 -0.027
0.4 0.064 -0.064 0.064 -0.064
0.5 0.125 -0.125 0.125 -0.125
0.6 0.216 -0.216 0.216 -0.216
0.7 0.343 -0.343 0.343 -0.343
0.8 0.512 -0.512 0.512 -0.512
0.9 0.729 -0.729 0.729 -0.729
1.0 1.000 -1.000 0.999 -1.000

Table 4: Results for Problem 4
t MSM (ζ = 1) MSM (ζ = 0.9) BPM (ζ = 1) BPM (ζ = 0.9)

0.0000 0.00000 0.00000 0.00000 0.00000
0.0625 -0.06250 -0.08574 -0.06250 -0.08576
0.1250 -0.12498 -0.15996 -0.12498 -0.15997
0.1875 -0.18740 -0.23024 -0.18740 -0.23025
0.2500 -0.24968 -0.29790 -0.24968 -0.29791
0.3125 -0.31171 -0.36342 -0.31171 -0.36344
0.3750 -0.37336 -0.42699 -0.37336 -0.42702
0.4375 -0.43446 -0.48862 -0.43446 -0.48866
0.5000 -0.49482 -0.54824 -0.49482 -0.54829
0.5625 -0.55423 -0.60572 -0.55423 -0.60576
0.6250 -0.61243 -0.66086 -0.61243 -0.66089
0.6875 -0.66917 -0.71347 -0.66917 -0.71347
0.7500 -0.72416 -0.76330 -0.72115 -0.76327
0.8125 -0.77711 -0.81013 -0.77709 -0.81007
0.8750 -0.82771 -0.85373 -0.82767 -0.85360
0.9375 -0.87565 -0.89386 -0.87557 -0.89363
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Table 5: Results for Problem 5
t MSM (ζ = 3.25) MSM (ζ = 3.5) MSM (ζ = 3.75) CAS (ζ = 3.25) CAS (ζ = 3.5) CAS (ζ = 3.75)

0.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.1 1.1052 1.1052 1.1052 1.1053 1.1052 1.1052
0.2 1.2220 1.2217 1.2215 1.2219 1.2216 1.2216
0.3 1.3521 1.3509 1.3502 1.3523 1.3510 1.3510
0.4 1.4975 1.4945 1.4928 1.4968 1.4941 1.4941
0.5 1.6604 1.6545 1.6509 1.6635 1.6565 1.8334
0.7 2.0484 2.0319 2.0210 2.0444 2.0283 2.0293
0.8 2.2793 2.2544 2.2374 2.2776 2.2537 2.2537
0.9 2.5390 2.5032 2.4781 2.5265 2.4949 2.4949

Figures1

Graphical Representation of Result2

Figure 1: Graph of y1 for Problem 1
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Figure 2: Graph of y2 for Problem 1

Figure 3: Graph of y1 for Problem 2
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Figure 4: Graph of y2 for Problem 2

Figure 5: Graph of u(x) for Problem 3
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Figure 6: Graph of v(x) for Problem 3

1 2D Graphs for Nonlinear Problems1

Figure 7: 2D graph for Problem 4
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Figure 8: 2D graph for Problem 5

Conclusion
It is evident from the tabulated results in Tables 4, when compared with existing results in the 
literature that the Modified Table Semi-analytical Method (MSM)is an established mathematical 
tool for solving both fractional-order nonlinear Volterra integro-differential equations and fractional-
order systems of linear Volterra integro-differential e quations. This method has thus proven to be 
reliable. All computations were performed using Mathematica 13.3.

The method reported in the present research can be investigated with the view of extending it 
to Volterra-Fredholm Integro-differential Equations (VFIDEs). This thought is premised on the fact 
that Fredholm integral equation which is an extension of VIDEs, that have been successfully discussed 
in the present work, in VFIDEs.

Supplementary Materials:
None

”

Funding
. None

Data availability statements
.None

23



18

Acknowledgments1

None.2

Conflicts of interest3

The authors declare no conflicts of interest.4

References5

[1] J. K. Mohammed and A. R. Khudair, “Integro-differential equations: Numerical solution by a new operational ma-6

trix based on fourth-order hat functions,” Partial Differential Equations in Applied Mathematics, vol. 8, p. 100 529,7

2023.8

[2] S. Santra and J. Mohapatra, “Numerical analysis of volterra integro-differential equations with caputo fractional9

derivative,” Iranian Journal of Science and Technology, Transactions A: Science, vol. 45, no. 5, pp. 1815–1824,10

2021.11

[3] P. Singh and S. S. Ray, “An efficient numerical method based on lucas polynomials to solve multi-dimensional12

stochastic itô-volterra integral equations,” Mathematics and Computers in Simulation, vol. 203, pp. 826–845, 2023.13

[4] M. N. Azese, “Optimizing linear/non-linear volterra-type integro-differential equations with runge–kutta 2 and 414

for time efficiency,” Scientific African, vol. 26, e02443, 2024.15

[5] M. De la Sen, “A study of the stability of integro-differential volterra-type systems of equations with impulsive16

effects and point delay dynamics,” Mathematics, vol. 12, no. 7, p. 960, 2024.17

[6] Y. El Kadiri, S. Hadd, and H. Bounit, “Analysis and control of integro-differential volterra equations with delays,”18

in Semigroup Forum, Springer, vol. 107, 2023, pp. 375–401.19

[7] Z. Liu, D. Tao, and C. Zhang, “An efficient spectral method for nonlinear volterra integro-differential equations20

with weakly singular kernels,” Mathematical Modelling and Analysis, vol. 29, no. 3, pp. 387–405, 2024.21

[8] S. S. Ahmed and S. A. Hamasalih, “Solving a system of caputo fractional-order volterra integro-differential equa-22

tions with variable coefficients based on the finite difference approximation via the block-by-block method,” Sym-23

metry, vol. 15, no. 3, p. 607, 2023.24

[9] J. Hou, J. Niu, M. Xu, and W. Ngolo, “A new numerical method to solve nonlinear volterra-fredholm integro-25

differential equations,” Mathematical Modelling and Analysis, vol. 26, no. 3, pp. 469–478, 2021.26

[10] N. Rajagopal, S. Balaji, R. Seethalakshmi, and V. Balaji, “A new numerical method for fractional order volterra27

integro-differential equations,” Ain Shams Engineering Journal, vol. 11, no. 1, pp. 171–177, 2020.28

[11] H. Khan, T. Abdeljawad, J. Gómez-Aguilar, H. Tajadodi, and A. Khan, “Fractional order volterra integro-29

differential equation with mittag-leffler kernel,” Fractals, vol. 29, no. 06, p. 2 150 154, 2021.30

[12] M. F. El-Amin, Fractional Modeling of Fluid Flow and Transport Phenomena. Elsevier, 2025.31

[13] J.-L. Wang, Dynamical Behaviors of Fractional-Order Complex Dynamical Networks. Springer, 2024.32

[14] S. Boulaaras, R. Jan, and V.-T. Pham, “Recent advancement of fractional calculus and its applications in physical33

systems,” The European Physical Journal Special Topics, vol. 232, no. 14, pp. 2347–2350, 2023.34

[15] J. Guo, Y. Yin, and G. Peng, “Fractional-order viscoelastic model of musculoskeletal tissues,” Proceedings: Math-35

ematical, Physical and Engineering Sciences, vol. 477, no. 2249, pp. 1–19, 2021.36

[16] M. Alshammari, N. Iqbal, and D. B. Ntwiga, “A comparative study of fractional-order diffusion model within37

atangana-baleanu-caputo operator,” Journal of Function Spaces, vol. 2022, no. 1, p. 9 226 707, 2022.38

[17] B. Yisa and Z. Yusuf, “Solution of fractional order integro-differential equations by two semi-analytical methods,”39

International Journal of Mathematical Analysis and Modelling, vol. 6, no. 2, 2023.40

[18] A. E. Shammaky and E. M. Youssef, “Analytical and numerical techniques for solving a fractional integro-41

differential equation in complex space,” AIMS Mathematics, vol. 9, no. 11, pp. 32 138–32 156, 2024.42

[19] B. Prakash, A. Setia, and S. Bose, “Numerical solution for a system of fractional differential equations with43

applications in fluid dynamics and chemical engineering,” International Journal of Chemical Reactor Engineering,44

vol. 15, no. 5, p. 20 170 093, 2017.45

[20] A.-K. Alomari, M. Alaroud, N. Tahat, and A. Almalki, “Extended laplace power series method for solving nonlinear46

caputo fractional volterra integro-differential equations,” Symmetry, vol. 15, no. 7, p. 1296, 2023.47



19

[21] A. E. Shammaky, E. M. Youssef, M. A. Abdou, M. M. ElBorai, W. G. ElSayed, and M. Taha, “A new technique48

for solving a nonlinear integro-differential equation with fractional order in complex space,” Fractal and Fractional,1

vol. 7, no. 11, p. 796, 2023.2

[22] B. M. Yisa and A.-w. T. Tiamiyu, “Shehu transform adomian decomposition method for the solution of systems of3

integer and fractional order differential equations,” Journal of Fractional Calculus and Applications, vol. 15, no. 2,4

pp. 1–18, 2024.5

[23] D. I. Lanlege, F. Edibo, and M. S. Omeiza, “Solution of fredholm integro-differential equation by variational6

iteration method,” Fudma Journal of Sciences, vol. 7, no. 2, pp. 1–8, 2023.7

[24] A. A. Yousif, F. A. AbdulKhaleq, A. K. Mohsin, O. H. Mohammed, and A. M. Malik, “A developed technique8

of homotopy analysis method for solving nonlinear systems of volterra integro-differential equations of fractional9

order,” Partial Differential Equations in Applied Mathematics, vol. 8, p. 100 548, 2023.10

[25] Z. Eshkuvatov, “New development of homotopy analysis method for non-linear integro-differential equations with11

initial value problems,” Math. Model. Comput., vol. 9, no. 4, pp. 842–859, 2022.12

[26] R. M. GANJI and H. Jafari, “A new approach for solving nonlinear volterra integro-differential equations with13

mittag-leffler kernel.,” Proceedings of Institute of Mathematics & Mechanics National Academy of Sciences of14

Azerbaijan, vol. 46, no. 1, 2020.15

[27] B. N. Saray, “An efficient algorithm for solving volterra integro-differential equations based on alpert’s multi-16

wavelets galerkin method,” Journal of Computational and Applied Mathematics, vol. 348, pp. 453–465, 2019.17

[28] G. Adomian, Solving frontier problems of physics: the decomposition method. Springer Science & Business Media,18

2013, vol. 60.19

[29] B. Yisa and M. Baruwa, “Shehu transform homotopy analysis method for the solution of nonlinear initial value20

ordinary and partial differential equations,” Daffodil International University journal of Science and Technology,21

vol. 14, no. 1, p. 21, 2019.22

[30] B. M. Yisa, “Solution of ordinary differential equations with special nonlinearities by adomian decomposition23

method,” 2019.24

[31] S. Maitama and W. Zhao, “New integral transform: Shehu transform a generalization of sumudu and laplace25

transform for solving differential equations,” arXiv preprint arXiv:1904.11370, 2019.26

[32] O. H. Mohammed and A. M. Malik, “A modified computational algorithm for solving systems of linear integro-27

differential equations of fractional order,” Journal of King Saud University-Science, vol. 31, no. 4, pp. 946–955,28

2019.29

[33] P. Rahimkhani, Y. Ordokhani, and E. Babolian, “A numerical scheme for solving nonlinear fractional volterra30

integro-differential equations,” ����� ���� ����� � ����������, vol. 13, no. 2, pp. 111–132, 2018.31

[34] M. Akbar, R. Nawaz, S. Ahsan, K. S. Nisar, A.-H. Abdel-Aty, and H. Eleuch, “New approach to approximate32

the solution for the system of fractional order volterra integro-differential equations,” Results in Physics, vol. 19,33

p. 103 453, 2020.34

[35] Y. Wang and L. Zhu, “Solving nonlinear volterra integro-differential equations of fractional order by using euler279

wavelet method,” Advances in difference equations, vol. 2017, pp. 1–16, 2017.280


	2D Graphs for Nonlinear Problems

