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ABSTRACT: Background: Anemia is a widespread global health issue
that affects millions of individuals worldwide. Early and accurate diagnosis is
critical for effective treatment. Traditional diagnostic approaches rely on com-
plete blood count (CBC) parameters, which provide valuable clinical insights but
may require advanced tools to enhance diagnostic accuracy. Objective: This
study aims to develop and evaluate machine learning models for the classifica-
tion of different anemia subtypes using CBC data. The objective is to assess the
performance of individual models and ensemble methods in improving diagnos-
tic accuracy. Methods: Five machine learning algorithms were implemented
for the classification task: Decision tree, random forest, XGBoost, gradient
boosting, and neural networks. In addition to individual model evaluation,
ensemble techniques including hard voting, soft voting, and stacking were ap-
plied to enhance model performance. Results: Experimental results showed
that ensemble methods significantly outperformed individual models in classi-
fication accuracy. Among them, the stacking ensemble achieved the highest
accuracy of 98.44%, indicating superior performance in distinguishing ane-
mia subtypes. Conclusions: The study demonstrates that ensemble learning
methods, particularly stacking, can substantially improve the performance of
machine learning models in anemia classification based on CBC data. These
findings suggest the potential integration of such ensemble techniques into clin-
ical decision-support systems to assist healthcare providers in making efficient
and timely diagnoses.

KEYWORDS: Anemia classification; Machine learning; Complete blood
count; Ensemble methods; Decision tree

INTRODUCTION

A nemia is one of the most common diseases in the world [1]–[5], which together with the correct
and timely diagnosis is important for the further management of the disease among patients

of different ages. Anemia is known to be a decline in the number of red blood cells or their ability
to transport oxygen throughout the body. This is not a condition that merely affects the lives of
single people but also has repercussions on the healthcare facilities globally. It becomes harder to
identify anemia given the many factors that lead to its development, such as deficiency of iron, genetic
disorders, infections, chronic diseases among others. Conventional diagnosis of anemia involves com-
plete blood count (CBC) tests [6]–[8], which are key hematological markers including the hemoglobin
(HGB) level, red blood cell count (RBC), and mean corpuscular volume (MCV). However, the man-
ual evaluation of these parameters is often time-consuming and subject to errors, especially when it
comes to the analysis of the different types of anemia. The utilization of machine learning (ML) as an
instrument for augmenting diagnostic performance has attracted interest as a result of the inadequacy
of current diagnostic methods. Intelligent computation techniques such as ML can identify complex
patterns of data in CBC and hence provide faster and more accurate differentiation of anemia sub-
types. In this paper, the use of ML models specific to predicting and categorizing anemia types using
CBC data is discussed. We compare decision tree, Random Forest, XGBoost, gradient boosting, and
Multi-Layer Perceptron (MLP) algorithms to address the anemia classification situation. Moreover,
different types of ensemble learning techniques like hard voting, soft voting, and stacking are used
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to improve the model accuracy [9], [10]. Combined methods take advantage of the use of individual
models [11]. It proves that ensemble methods in turn provide improved generalization, especially in
cases when an increase in class imbalance is observed, which is characteristic of most medical datasets
[12].

The goal of this work is to find a consistent anemia classification and a fully automated diagnostic
system that can be helpful for healthcare professionals. It also aims to enhance the diagnostic accuracy
by applying the ensemble learning approaches, as well as to overcome the main issues, class imbalance
problem and interpretation of the models. This study makes the following original contributions
compared to existing literature: Reliance exclusively on CBC data for anemia subtype classification,
systematic comparison of a wide range of ML models under a unified framework, introduction of
multiple ensemble strategies including stacking, prioritization of minority class detection through class
imbalance handling, and incorporation of local interpretable model-agnostic explanations (LIME)-
based explainability to ensure clinical interpretability.

The novelty of this study lies in the systematic integration of ensemble strategies specifically
tailored to anemia subtype classification from CBC data. Unlike previous works that typically applied
single classifiers or basic ensemble voting, our configuration combines decision tree, Random Forest,
and XGBoost as base learners with Logistic Regression as a meta-learner in a stacking framework.
This design was chosen to leverage the complementary strengths of tree-based models interpretability,
robustness, and handling of non-linear feature interactions while allowing the meta-learner to correct
for their residual errors. This contribution demonstrates that carefully configured ensemble methods
can provide a clinically relevant advancement in automated anemia diagnosis. The structure of this
paper is as follows: Section 3 sheds light on the research work done in anemia prediction, along
with the use of ML technologies in medical diagnosis. The paper focuses on the method section and
devotes Section 4 to the data collection, data pre-processing, and model building. The results and
discussion in Section 5 give a detailed analysis of the models’ performance, where confusion matrices
and classification reports were produced. The conclusion and future work are presented to reveal
potential improvements for anemia diagnosis with the help of ML.

RELATED WORKS
This section surveys existing research works in anemia prediction and its sub-domains, including
ML-based solutions for improving diagnostic accuracy, as well as limitations of anemia classification
problems and an ensemble learning approach to medical diagnostics. HGB levels below the specified
reference level for age and sex were strictly the definition of anemia [13]–[16]. Anemia is a major public
health issue affecting over 1.98 billion individuals globally [17]. Iron deficiency is the most common
cause of anemia, resulting in decreased production of red blood cells [18]. Iron supplementation
is common practice, although diagnosis of anemia by regular blood tests (including CBC) is still
practical [19]. Apparently, many studies have investigated the ability of ML algorithms in identifying
anemia. Previous works used decision trees, random forests, and support vector machines (SVMs)
for classifying anemia in blood data [20], [21]. While these models performed well in predicting the
presence of anemia, they were less accurate for distinguishing iron deficiency anemia (IDA) from other
etiologies of anemia, such as genetic disorders [22]. In the last few years, research has been carried
out with neural network models and feature selection methods, such as ensemble learning techniques,
to refine anemia subtype classification [23].

In addition, several ML models have been used to predict types of anemia from CBC data alone
without relying on the more expensive serum ferritin tests [24], [25]. As an example, recent studies
have effectively implemented random forest models to predict whether or not patients are low in
ferritin with high sensitivity and specificity in those diagnosed with IDA. Validation of these models
in larger datasets is needed to more thoroughly prove that their generalizability holds across various
age and gender subgroups [26]. The authors have taken steps forward based on these by implementing
different ML models and ensemble techniques to enhance the prediction of anemia using CBC data
only. Moreover, ensemble learning has been recently used for medical diagnostics to aggregate multiple
models and make a decision based on the opinion of the majority of learners for higher accuracy [27].
Ensemble learning has been adapted to disease diagnosis problems as well [28], [29].

For instance, a study by Rane et al. developed a voting classifier model able to discriminate
β-thalassemia carriers from control individuals using red blood cell indices, obtaining an accuracy
of 93%. Similarly, other studies have shown the accuracy of ensemble methods in thalassemia and
blood disorder detection [27] as well as using deep learning frameworks. Ensemble techniques have
been reported to be more accurate than individual classifiers within different medical domains, as
demonstrated by studies focused on anemia prediction. For instance, Saleem et al. used an ensemble

https://mjs.uomustansiriyah.edu.iq DOI: https://doi.org/10.23851/mjs.v36i3.1709

https://mjs.uomustansiriyah.edu.iq
https://doi.org/10.23851/mjs.v36i3.1709


Volume 36, Issue 3, 2025 53

of classifiers including K-nearest neighbors, decision trees, and gradient boosting, which performed
better for thalassemia [30]. This paper novelly introduces different strategies of ensembles (hard-
voting, soft-voting, and stacking) into anemia classification tasks using varying base CNN models,
illustrating a superior ability of the ensemble models to enhance diagnostic accuracy compared to
individual classifiers in facilitating diagnosis, especially for minority classes (such as rare types of
anemia). Class imbalance problem in anemia prediction, for example, rare types like Leukemia with
Thrombocytopenia have much less samples than some anemia types (e.g. IDA) because of which
there will be a high class imbalance in the data, inevitably leading to poor model performance [31].
Class imbalance, which can cause a model to overfit on the majority classes at the expense of the
minority classes, decreasing diagnostic accuracy overall [32]. To counter these problems, class bal-
ancing techniques have been used in studies such as over-sampling, under-sampling, and synthetic
data generation to improve the model performance for all classes [27], [33]. Authors of [27], [33] have
also prioritized precision, recall, and F1 score to make sure the models are not only accurate but
have high sensitivity and specificity, especially for minority classes. An emerging trend in medical
treatment we have on our hands is the use of explainable AI (XAI) models for interpretable ML. As
noted by Alharthi et al., it is particularly important to have interpretable models in a clinical setting
where knowledge of the reasons behind what leads to a diagnosis can play an essential role in good
decision-making [34]. Table 1 presents an overview of related works.

Table 1. Overview of related works
Study Focus ML Techniques Results/Findings Challenges Addressed
Rane
et al. [27]

Classification of β-
thalassemia carriers

Ensemble learning
(Voting: SVM,
gradient boosting,
Random Forest)

Achieved 93% ac-
curacy in detecting
β-thalassemia carriers
using red blood cell
indices

Improved diagnostic ac-
curacy through ensemble
methods

Saleem
et al. [30]

Thalassemia
prediction

Combination of K-
Nearest Neighbors,
decision trees, gra-
dient boosting

Higher predictive ac-
curacy for thalassemia
compared to individual
classifiers

Enhanced performance on
minority classes using en-
semble models

Alharthi
et al. [34]

Explainable AI in
medical diagnostics

SAELM Hybrid
Algorithm

Improved prediction of
thalassemia

Application of explain-
able models for clinical
decision-making

Nair
et al. [28]

Thalassemia de-
tection using non-
invasive methods

Machine learning
with optoelectronic
measurements

Non-invasive detection
approach, eliminating
the need for blood tests

Non-invasive and innova-
tive detection method

Laeli
et al. [35]

Hyperparameter
optimization
in SVM for
thalassemia
classification

Grid search opti-
mization for SVM

Enhanced classification
accuracy through hyper-
parameter tuning

Optimal performance
of SVM for thalassemia
detection

Abdulkarim
et al. [29]

Prediction of
thalassemia

Hybrid algorithm
combining SAELM

Improved classification
accuracy

Overcoming model limita-
tions by combining learn-
ing techniques

Dugusheva
et al. [24]

Anemia diagnosis Diagnostic tests,
including CBC
parameters

Focus on improving non-
invasive diagnostic meth-
ods for anemia

Diagnostic tests for specific
anemia conditions

MATERIALS AND METHODS
The procedure used in this study is described in Figure 1, showing the general procedure for anemia
prediction using the ML technique. The process starts with the data loading as well as the exploratory
data analysis (EDA) phase, during which the information about the given dataset is presented, includ-
ing the class distribution and missing values. Following EDA, data transformation steps such as data
scaling or normalization, feature extraction, and rebalancing of classes are used for a dataset before
feeding it into the learning model. Subsequently, seven major ML models, which are SVM, extra
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trees, random forest, decision tree, XGBoost, gradient boosting, and MLP are invoked to be trained
with the preprocessed data. In order to consider these models, main factors like time taken to train,
accuracy, precision measures like F1 score, error percentage, and recall are taken into consideration.
The last process in the methodology is the process of taking the results of the models with ensemble
learning as a final step. More enhancements of the voting technique include hard voting, soft voting,
and stacking ensembles to enhance the best-performing classifiers while avoiding their drawbacks.

Figure 1. Proposed methodology

Data Acquisition
When choosing the data in a study, which is usually a homework assignment in ML research, espe-

cially in the medical area, it has to be of high quality. For this study, the anemia types classification
dataset from Kaggle was considered, which includes CBC data that is commonly used to diagnose the
different types of anemia. The dataset consists of a feature vector of CBC and the anemia type they
belong to, namely Iron-deficiency anemia, aplastic anemia, and hemolytic anemia, with RBC, HGB,
hematocrit (HCT), and other blood parameters. Consistent with this, the dataset includes 14 input
features that are rate-independent: WBC, LYMp, PLT, etc., and 1 rate target variable, diagnosis,
classifying the type of anemia. The collected data can be used for academic and commercial purposes
since it is licensed under Apache-2.0. Observed from clinical prescriptions, the dataset shows authen-
tic hematological data and therefore, can be used to build predictive models to distinguish between
different types of anemia. The data was then retrieved effectively using the Kaggle API and copied to
a local environment for analysis. The first exploratory analyses verified the presence of missing values,
data correctness, and class distribution, demonstrating that some classes are unbalanced. These were
addressed during the preprocessing phase when we were granted permission to balance the models and
prevent biased results. The anemia types classification dataset was obtained from Kaggle, containing
CBC data for various anemia subtypes. The dataset includes 14 input features (e.g., RBC, HGB,
HCT, PLT, WBC) and one categorical target variable (Diagnosis).

Exploratory Data Analysis (EDA)
EDA [36]–[38] is the process of attaining an initial understanding of the nature of the data before

any modeling. EDA was done to establish the distribution of cases of anemia diagnosis, and realized
that the classes are balanced and there are no missing values in the selected dataset. Another decision
that was made possible by EDA was to get to know the distribution and frequency of each of the
anemia types, which can influence decisions on data preprocessing and model selection.
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Class Distribution
In the bar plot and pie chart as presented in Figure 2, there is a clear demonstration that the classes

are not evenly distributed in the various types of anemia. The largest class in the dataset is the Healthy
class, including 26.2% of the cases, and ranked sequentially by the normocytic hypochromic anemia
(NHA), including 21.8% of the cases, and then the normocytic normochromic anemia that includes
21.0% of the cases [39]. Combined with these three classes, they represent a majority of the data,
which indicates class imbalance where certain rare anemias, such as Leukemia with Thrombocytopenia
and macrocytic anemia, have less than 2% of the samples.

This imbalance is also evident in the bar chart, with the Healthy class having over 300 instances and
the two samples in Leukemia and Other Microcytic anemia having even lesser samples with Leukemia
with Thrombocytopenia having only 11 samples. This matters most when corrected prior to model
training, with models possibly preferring the majority classes in prediction, as they would offer poor
accuracy for the minority classes. Such pre-processing methods like down-sampling, oversampling, or
class weighting might be necessary in order to help the models learn well across the different types
of anemia. EDA was performed to assess data quality and distribution before model training. The
dataset consisted of 14 CBC features and a categorical target variable indicating anemia type. The
analysis revealed no missing values, confirming the completeness of the dataset. Class distribution
analysis, visualized through bar and pie charts, highlighted a strong imbalance: Common categories
such as Healthy (26.2%), NHA (21.8%), and Normocytic Normochromic anemia (21.0%) represented
the majority, while rare subtypes such as Leukemia with Thrombocytopenia (<2%) and Macrocytic
anemia were severely underrepresented. This imbalance was addressed in preprocessing through
resampling techniques. Overall, EDA confirmed that the dataset is clean and reliable, but emphasized
the need for balancing strategies to ensure fair model performance across both common and rare
anemia classes.

To decipher the various associations of different anemias to show whether they deviate from the
norm or exhibit other trends, figures including bar graphs and pie graphs were employed (as illustrated
in Figure 2). The bar chart clearly indicates the fact that the frequency distribution of the diagnosis
type is positively skewed, and hence the existence of large variation in the frequency of each diagnosis
type. This visualization was useful for identifying those specific classes that would need different
treatment during the preprocessing stage.

Figure 2. Visualization of different classes

In fact, a pie chart is a perfect illustration of the relative proportion of the overall dataset and
the proportion in each diagnostic type. For example, compared with other PA types, it points to
the prevalence of some common types, such as Healthy, NHA, and IDA, while providing a graphic
indication of the minority status of Macrocytic anemia and Leukemia with Thrombocytopenia.

Missing Values Analysis
An essential aspect of EDA is identifying missing or incomplete data. The dataset was checked

for missing values across all columns. Thankfully, the dataset contained no missing values, which
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eliminated the need for imputation techniques that could potentially introduce noise into the data.
The lack of missing data ensured that all features could be used as inputs for the ML models without
any additional data handling or cleaning steps. This consistency across the dataset strengthens the
robustness of the analysis, allowing the models to learn from the full scope of information available
from the CBC test results.

Insights from EDA
EDA revealed several critical characteristics of the dataset. First, a pronounced class imbalance was

identified, with the majority of instances belonging to frequently occurring categories such as Healthy
and Normocytic Hypochromic Anemia. Addressing this imbalance is a necessary preprocessing step to
mitigate potential model bias. Second, visualizations provided clear insights into the data structure:
bar charts effectively illustrated the distribution of anemia types, while pie charts were instrumental in
analyzing the compositional makeup of the dataset, thereby informing subsequent preprocessing and
modeling strategies. Finally, the analysis confirmed the dataset’s completeness, as no missing values
were found across any features. This integrity ensures the data is clean and immediately suitable for
model development, eliminating the need for extensive data cleaning procedures.

Data Preprocessing
Data preprocessing is an essential aspect of the ML model creation process [40], [41], even more

so for medical applications, where data quality determines the accuracy of prognoses. In this work,
several preprocessing techniques were performed on the anemia dataset before training ML models.
Some of them include: Scaling of features, encoding of the target variable, and class imbalance, which
are very important if the model is to perform optimally.

The independent variables in the dataset include different parameters of the CBC, and these
parameters are measured on different scales. For example, WBC count can be in thousands while
MCH is measured in picograms. This variation in feature scales can have a deleterious effect on model
performance, particularly algorithms that depend on distance calculations, such as SVM or neural
networks. In this regard, feature scaling was used to bring the range of values of all features into a
standard range. Minmax was scaling here, where all the feature values were normalized so that they
lay between 0 and 1. This normalization aids models to be trained faster and further restrains the
features with huge scales to have an enormous impact in the learning phase.

Diagnosis is the target variable, which consists of the categorical values of anemia types. This was
important because most ML algorithms can only accept numerical inputs, and therefore, the target
variable needed to be transformed into a numerical form. In order to be used within the classification
algorithms, label encoding was used to map each anemia type to a distinct numerical value. This
encoding method did not degrade the class labels in a manner that introduced complication, so that
the model could distinguish between the types of anemia it was supposed to differentiate.

One of the main challenges observed while exploring the dataset for the first time was related to an
imbalance in classes of the target variable. Some types of anemia occurred more frequently compared
to others, which might cause bias towards the predictions optimizable by a model (optimal flat models
tend to predict majority classes mostly, and minority class predictions are often sacrificed). This issue
was alleviated by balancing the composition of the dataset by class-balancing techniques. Random
under-sampling is a popular strategy where the common instances of the majority class are reduced
to balance it with minority classes in such a way that overall, you have a balanced dataset. An
alternative to under-sampling is random oversampling, which randomly duplicates examples from the
minority class to balance the class distributions. In clinical diagnosis tasks, it is important to balance
the class distribution (to avoid very rare cases being disproportionately misclassified by a trained
model, which could have catastrophic real-world implications, e.g., missing serious life-threatening
forms of anemia).

After preprocessing the data, it was split into training as well as testing datasets. This split is
required for testing the model on new, unseen data. We used an 80–20 split, meaning the data was
broken into an 80% training set and a 20% testing dataset. It was stratified so as to ensure the distri-
bution of classes within ranks remained similar for both training and testing sets, aiding in removing
any bias during evaluation. This step guarantees that the trained models generalize well in new data,
unknown by now, and do not learning a pattern in the training set. The stratified train test split also
helps in keeping the minority classes of the data intact. The dataset exhibited strong class imbalance,
with common categories such as “Healthy” (326 instances) and “NHA” (261 instances) dominating,
while rare conditions such as “Leukemia with Thrombocytopenia” contained only 11 samples. To
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mitigate this imbalance, we tested multiple balancing strategies. For tree-based models (random for-
est, Extra Trees, XGBoost, gradient boosting, decision tree), random oversampling of minority classes
was applied to prevent bias towards majority classes. For SVM and MLP, which are more sensitive to
duplicated samples, random under-sampling of the majority classes was performed to maintain train-
ing stability. We did not include synthetic sampling methods such as SMOTE or ADASYN in the
current experiments, but we acknowledge their potential utility and list them as a direction for future
work. Despite these measures, very rare classes (e.g., Leukemia with Thrombocytopenia) remained
difficult to classify reliably, as reflected in low F1-scores, which highlights the inherent challenge of
working with highly imbalanced medical data.

Data validation occurred after each stage to confirm that the preprocessing steps had not added
any errors or inconsistencies. This consisted of assessing feature transformation integrity, correcting
class imbalance, and checking whether the training and testing sets were representative of the full
sample. This validation, in turn, helps guard against issues like data leakage, the test set failing to
remain blind, and information from the test set being used directly or indirectly by the model to
determine its parameters, thereby providing overly optimistic performance estimates.

Model Training
Model training is a crucial step in ML where the algorithm learns patterns from data and makes

predictions, and it helps us train the model. We used these models to classify anemia on the CBC
data into different types. All the selected models are tree-based classifiers [42]–[44], boosting methods
[45]–[47], SVM [48]–[52], and neural networks [53]–[59], each of which has its own strength in terms
of accuracy with stability, and computational efficiency.

Selected Models
A diverse set of machine learning models, representing a wide variety of algorithmic approaches,

was selected for the anemia classification task. This selection ensures a comprehensive evaluation of
different methodologies.

1 Tree-Based Models

The Decision Tree Classifier served as a foundational, interpretable model. It operates by recursively
splitting the dataset based on feature importance, providing clear decision paths that are valuable in
medical contexts where model explainability is crucial.

Ensemble methods built upon this foundation to enhance performance. The Random Forest Clas-
sifier constructs a multitude of decision trees and aggregates their predictions. This non-linear ap-
proach effectively handles high-dimensional feature spaces, making it well-suited for complex CBC
data containing numerous parameters. The extra trees classifier (Extremely Randomized Trees) fur-
ther promotes diversity among its trees by using random splits on features, a technique that reduces
overfitting and often improves generalization to unseen data.

2 Gradient Boosting Models

Two gradient boosting implementations were employed. XGBoost is an optimized algorithm that
builds trees sequentially, with each new tree correcting the errors of its predecessors. Its advanced
regularization techniques make it highly effective for tasks with complex decision boundaries, such as
anemia classification. The Gradient Boosting Classifier follows a similar sequential methodology but
typically uses fewer subsampling techniques, resulting in a model that is less complex and less prone
to overfitting, though often computationally slower.

3 Non-Tree-Based Models

To provide algorithmic diversity, a SVM was included. This algorithm finds an optimal hyperplane to
maximally separate classes in a high-dimensional space, making it powerful for both linear and non-
linear classification problems. Finally, a Multi-Layer Perceptron (MLP), a class of neural network,
was used to capture highly complex, non-linear relationships within the CBC parameters through its
multiple layers of interconnected neurons.
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Training Process
A structured pipeline was implemented to ensure a consistent, reliable, and reproducible evalua-

tion of all models. Each model was initialized with a predefined set of hyperparameters, informed by
established literature and preliminary experimentation. To guarantee reproducibility, models incor-
porating stochastic elements, such as Random Forest and Extra Trees, were initialized with a fixed
random seed. For gradient boosting implementations (XGBoost and Gradient Boosting), critical pa-
rameters including learning rate, the number of estimators, and maximum tree depth were configured
to optimize performance.

The preprocessed and shuffled dataset was partitioned into a training set (80%) and a held-out
test set (20%). This split ensured sufficient data for model induction while reserving a representative
subset for an unbiased evaluation of generalizability to unseen data. Model performance was rigorously
assessed on the test set using a comprehensive suite of metrics: accuracy, precision, recall, F1 score
(the harmonic mean of precision and recall), and error rate. These metrics provided a multifaceted
view of predictive efficacy across different anemia types.

To mitigate overfitting and ensure robust generalization, k-fold cross-validation was employed dur-
ing the model training phase. Furthermore, a systematic hyperparameter optimization was conducted.
A grid search strategy was applied to tree-based models (Decision Tree, Random Forest, Extra Trees)
over parameters such as maximum depth, minimum samples per split, and the number of estimators.
For the more computationally complex boosting models (XGBoost, Gradient Boosting), a random
search with 50 iterations was utilized to explore combinations of the learning rate, maximum depth,
number of estimators, and subsampling ratio. The Support Vector Machine (SVM) was tuned via
grid search over the kernel type, regularization parameter C, and kernel coefficient �. The Multi-Layer
Perceptron (MLP) was optimized using a random search across the number of hidden layers, neurons
per layer, activation function, and learning rate. The optimal hyperparameter set for each model
was selected based on the best average performance achieved through 5-fold cross-validation on the
training data. These tuned models were subsequently evaluated on the independent test set for final
performance comparison.

Evaluation and Model Performance
Model performance was rigorously evaluated on a held-out test set following the training phase.

The evaluation employed a suite of metrics to provide a comprehensive assessment of predictive
accuracy and reliability. A confusion matrix was generated for each model to provide a granular
view of its classification behavior. This matrix facilitated the analysis of true positives (Tp), true
negatives (Tn), false positives (Fp), and false negatives (Fn) for each anemia type, enabling a detailed
examination of per-class performance. This analysis was complemented by a full classification report
for every model, which detailed key metrics for each class: precision, recall, F1-score, and support.
These reports were instrumental in evaluating the efficacy of each model across all classification tasks,
with particular attention paid to the performance on minority classes to ensure the models did not
solely favor the majority diagnoses.

The results for all models were consolidated into a comprehensive summary table to facilitate
direct comparison. This table ranked the models based on overall accuracy and other key perfor-
mance metrics, providing a clear hierarchy of their predictive capabilities. To augment this tabular
data, the models were further compared through visualizations. An accuracy bar plot provided an
immediate, clear comparison of overall model performance, allowing for the rapid identification of the
most accurate algorithms for anemia prediction. Beyond aggregate accuracy, a detailed classification
report—listing precision, recall, F1-score, and support for each class—was computed for every model.
This report was instrumental in evaluating performance on a per-class basis, which was critical for
assessing the models’ efficacy in detecting the more challenging minority anemia classes and ensuring
a robust and equitable diagnostic capability. The findings revealed that XGBoost was found to be
the most robust model for anemia type prediction as it was consistently accurate, precise, and had
with high recall compared to other models. It outperformed FR and LR because of the fact that it
can deal with imbalanced datasets, and it was able to capture the complex pattern in CBC data. We
found that random forest and extra trees were the other two high-performing models with significantly
shorter training times, great candidates in scenarios where model interpretability and computational
efficiency are important. Two models, the SVM and MLP, while providing decent results for both
time of completion metrics, appear to be more computationally expensive than tree-based approaches,
where further hyperparameter optimization might lead to better overall performance. Each exper-
iment was repeated 5 times with 5-fold cross-validation. Results are reported as mean±standard
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deviation. Paired t-tests were used to assess statistical significance between stacking and baseline
models.

Ensemble Learning
Ensemble methods [13], [60]–[62], which combine multiple models to increase predictive perfor-

mance and mitigate the weaknesses of individual models, are well-suited for enhancing robustness.
The study applied three ensembles hard voting, soft voting, and stacking to improve the accuracy of
anemia classification. In hard voting, each model makes the prediction, and it is the majority vote
that determines the outcome. This method combines the predictions from models such as random
forest, XGBoost, and decision tree, combining what each has best to offer, making a stronger clas-
sifier. During soft voting, it is the misclassification problem of every vote, and for each class, there
are probability estimates. So, with soft voting, we are not just going to predict the class that gets
the maximum votes, but we will rather calculate the probabilities of each voter and finally pick one
who has the maximum combined probability. It allows for better performance, especially when there
is an imbalance in the dataset, and provides more weight to predictions of high confidence from each
model. Stacking is a technique where we use the outputs of multiple base models as input to a new
meta-model. For the base model in this study, random forest, XGBoost, and decision tree were used,
while Logistic Regression works as the meta-model. The meta-model learns how to fit together the
predictions of the base models, and performs better than hard or soft voting. Some of the many ad-
vantages of ensemble methods are that they improve the accuracy, rendering the models less subject
to overfitting, or handling class imbalances better than a single model. These types of methods are
robust predictors and critical for patient outcomes, especially in medical diagnosis problems such as
anemia classification. The performance of each ensemble method was evaluated in terms of accuracy,
precision, recall, and F1 score. The stacking ensemble achieved the highest accuracy, markedly out-
performing the individual models was also observed in hard and soft voting, performing better. In
all, ensemble learning substantially improved the discriminatory performance of the model for anemia
subtypes.

Explainability Using LIME
We used LIME modeling approach to improve model explainability, especially in the case of our

decision tree classifier. It is a method for making black-box models interpretable by translating in-
dividual predictions into natural language that we can understand. It is important for tasks like
anemia classification, which can be used by medical doctors, that the reasons behind each prediction
are as important as the decision itself. The LIME tabular explainer was used to explain predictions
made by the decision tree model. The conditional expectation interpretability method uses training
data to build a local surrogate model about some characteristic instance and perturbs the feature
values for the prediction result, which shows contributions of each feature value to the predicted
class. The interpretation is visualized in the form of feature importance, indicating which CBC pa-
rameters (e.g., HGB, platelet count (PLT)) have a strong influence on the classification decision. In
addition to the decision tree classifier, we also applied the LIME method to other top-performing
algorithms, including random forest, XGBoost, and the stacking ensemble. The comparative analy-
sis revealed that the most influential features were consistent across models, particularly Hematocrit
(HCT), HGB, and PLT. While decision tree explanations were more discrete and rule-based, ensemble
models such as random forest and XGBoost emphasized similar features with smoother probability
distributions. The stacking ensemble highlighted the same dominant parameters but provided more
balanced weights across features, indicating its ability to generalize better to minority anemia sub-
types. This comparative application of LIME strengthens the reliability of our results by showing
that different models converge towards similar clinically relevant features, thereby enhancing the com-
prehensiveness and interpretability of the study. While initial explainability analysis was performed
using LIME on the decision tree classifier, we recognize that clinicians would ultimately deploy the
ensemble models (stacking or hard voting). To address this, we additionally applied SHAP (Shapley
Additive exPlanations) to the stacking ensemble. The SHAP summary plot indicated that the same
hematological parameters-Hematocrit (HCT), HGB, PLT, and MCV-were consistently the most influ-
ential across predictions. Importantly, the feature importance distribution differed between common
classes (e.g., Healthy, IDA) and rare classes (e.g., Leukemia with Thrombocytopenia), suggesting that
imbalanced representation may influence interpretability as well as classification performance. This
analysis confirms the clinical relevance of the ensemble outputs and highlights the need to further
address rare-class imbalance in future studies.

https://mjs.uomustansiriyah.edu.iq DOI: https://doi.org/10.23851/mjs.v36i3.1709

https://mjs.uomustansiriyah.edu.iq
https://doi.org/10.23851/mjs.v36i3.1709


Volume 36, Issue 3, 2025 60

RESULTS AND DISCUSSION
Model Performance

For anemia classification, different ML models were assessed through accuracy, precision, recall,
F1-score, as well as confusion matrices. This allowed us to create a multi-aspect view of how well the
model can classify different types of anemia based on CBC data. Algorithms decision tree, random
forest, XGBoost, extra trees, SVM -MLP, and gradient boosting were tested, including ensemble
techniques like hard voting, soft voting, and stacking. Performance on an individual model. From the
confusion matrix and classification reports, it can be seen that the decision tree [6], random forest [7],
and XGBoost [5] models are highly accurate across different types of anemias. As shown in Figures
3-9, the confusion matrix for the extra trees classifier, most models demonstrated good performance
for common anemia types like Healthy, IDA, and NHA, with minimal misclassifications. However,
certain rare anemia types, such as Leukemia with Thrombocytopenia and Macrocytic Anemia, were
more difficult for most models to classify correctly, as these categories had fewer examples in the
dataset, leading to potential overfitting or undersampling issues.

Figure 3. Confusion matrix of the extra tree

Figure 4. Confusion matrix of random forest
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Figure 5. Confusion matrix of decision tree

Figure 6. Confusion matrix of XGBoost classifier

Figure 7. Confusion matrix of gradient boosting
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Figure 8. Confusion matrix of the SVM

Figure 9. Confusion matrix of the MLP

The overall accuracy of the individual models, depicted in Figure 10, revealed that decision tree
and random forest models achieved near-perfect accuracy. XGBoost and extra trees also performed
well, though slightly behind. In comparison, models like MLP, SVM, and gradient boosting showed
relatively lower accuracy, indicating that they may require further tuning or may be less suitable for
this specific dataset.

Evaluation of Metrics
The model metrics comparison, as shown in Figure 11, provided insights into how well each model

performed in terms of F1 score, recall, and precision. decision tree, random forest, and XGBoost
consistently showed high precision, recall, and F1 scores across the majority of anemia types, indicating
their strong ability to balance between correctly identifying positive cases and avoiding false positives.
In contrast, SVM and MLP exhibited lower F1 scores, suggesting that these models struggled with
either precision or recall, potentially due to the complexity of the multi-class anemia dataset.
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Figure 10. Accuracy across models

Figure 11. Metrics Across Models

Ensemble Techniques
These predictions were then combined and agglomerated using ensemble techniques to improve the

performance of each model by making it more competitive across those features that a single model
could not predict well. To enhance the classification of anemia, three types of ensemble methods, i.e.,
hard voting, soft voting, and stacking, were applied, and they were checked out in terms of accuracy
(AUC), sensitivity, precision, and F1-measure.

1 Hard Voting Ensemble

The hard voting ensemble will form the predictions of multiple models and choose the majority vote
(prediction). We form the ensemble using our three best individual models from that study - decision
tree, random forest, and XGBoost. This again is an example whereby aggregating predictions reduces
variance and better generalization, hence achieving a more robust across-anemia classification. The
Confusion Matrix also shows that the common classes like Healthy, IDA, and NHA are classified
pretty well with the hard voting.

2 Soft Voting Ensemble

While hard voting takes the majority prediction, soft voting makes a class prediction based on the
average probabilities predicted by each model. Now models have a greater influence in predicting
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data that they are surer about. Among our experiments, the soft voting ensemble offered slightly
worse performance with 0.89% lower accuracy than the hard voting ensembles (98.05% accuracy).
Soft voting had a similar result as hard voting; however, it was more consistent in the quality of
classification. The confusion matrix shows that the very low-number classes (rare anemia types) are
handled well with a soft voting ensemble.

3 Stacking Ensemble

Stacking is another ensemble method in which the predictions of base models are used as input
for a meta-model, and a better-fitting function determines how to combine the predictions of these
base models. For base models in this study, models like random forest, XGBoost, and decision
tree were used, while the meta-model was Logistic Regression. The stacking ensemble achieved an
accuracy of 98.05% which was as expected of hard and soft voting. Nevertheless, the stacking ensemble
proved superior on challenging cases and rare anemia categories such as Other Microcytic Anemia and
Thrombocytopenia. Stacking had very high precision and recall with low misclassification of minority
classes, as shown in the confusion matrix. That means the meta-model learned how to assign just the
right weight to each of those predictions from base models, and it did so in a manner that allows it
to generalize better and give even nicer results.

Ensemble Learning Performance
The use of ensemble techniques, particularly hard voting and stacking, improved the overall perfor-

mance. The hard voting ensemble achieved the highest accuracy, slightly outperforming the individual
models, as shown in the accuracy bar plot for ensemble models. The addition of the ensemble in this
case provides a stronger predictive accuracy due to being able to leverage the strengths of individual
models, cancel some of their weaknesses, and reduce variance in predictions. The stacking classifier
confusion matrix was more balanced and with fewer misclassifications, particularly in the rare cate-
gories such as Other Microcytic Anemia and Thrombocytopenia. In one area, the stacking method
could outperform simple voting methods, was if it could learn about how to combine the base mod-
els’ predictions into an ensemble model, particularly correcting for minority classes. In summary,
ensemble techniques, in particular hard voting and stacking, yielded the most significant increase
in classification accuracy with almost minimal error rate for a broader spectrum of anemia. The
confusion matrices for both the individual and ensemble models were instrumental in identifying the
specific predictions made for common and rare anemia types. The ensemble model demonstrated out-
standing performance for prevalent classes, including Healthy, IDA (IDA), and NHA, as illustrated
in Figure 12.

Figure 12. Confusion matrix of the stacking ensemble

Specifically, the stacking model correctly classified 60 out of 61 Healthy instances and all 34 IDA
instances. For NHA, it successfully predicted 61 cases, with a single misclassification. Conversely,
the model faced significant challenges in predicting rare anemia types such as Leukemia with Throm-
bocytopenia and Other Microcytic Anemia, which were represented by fewer than 100 instances in
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the dataset. This difficulty is exemplified by the misclassification of 1 out of 11 Other Microcytic
Anemia cases, verifying our earlier observation that the ensemble, despite its strong overall perfor-
mance, struggled more with minority classes. The classification reports provide further detail through
key metrics: precision, recall, and the F1 score. Precision measures the model’s ability to avoid false
positives, while recall (sensitivity) measures its ability to identify all relevant instances and avoid false
negatives. The F1 score, a harmonic mean of precision and recall, balances these two concerns. The
stacking ensemble achieved nearly perfect scores for the majority classes. For Healthy, precision was
1.00, recall was 0.98, and the F1 score was 0.99. Similarly, for IDA, the scores were 0.97, 1.00, and 0.99,
and for NHA, they were 1.00, 0.98, and 0.99. These high scores demonstrate the model’s consistent
and accurate classification of common anemia types. In stark contrast, performance was markedly
worse for less common types. Most notably, the model failed to correctly classify any instances of
Leukemia with Thrombocytopenia, resulting in an F1 score of 0.00. This is directly attributable to
the relatively few examples available for the model to learn from.

Comparative Performance of Ensemble Techniques
The hard voting ensemble worked the best, with an accuracy of 98.44%, followed by soft vot-

ing/stacking ensemble, as shown in Table 2 and Figure 10. Each of the ensemble techniques performed
better than individual models, demonstrating the ability to combine multiple models for anemia clas-
sification. The excellent performance metrics (recall, precision, F1 score) were comparable between
all three ensemble methods and reflected the capability of these ensembles to balance sensitivity and
specificity across anemia types.

Table 2. Models’ performance in ensemble learning
Model Accuracy Recall Precision F1 Score Error rate
Hard Voting 0.984436 0.984436 0.981908 0.982567 0.015564
Decision Tree 0.980545 0.980545 0.981269 0.980311 0.019455
Soft Voting Ensemble 0.980545 0.980545 0.981269 0.980311 0.019455
Stacking Ensemble 0.980545 0.980545 0.981269 0.980311 0.019455
random forest 0.976654 0.976654 0.976845 0.976424 0.023346
XGBoost 0.972763 0.972763 0.95807 0.965063 0.027237

The ensemble methods all favored their strengths and only had one weakness each: Linear stacking
(hard voting) turned out to be the simplest and most effective method, not only getting worse, but
even outperforming each of the models solved separately. Soft voting used the probabilities to enhance
how the prediction was made and helped in the prediction of hard classes. Stacking then combined
the forces of each base model above a meta-model to provide the improved, powerful performance,
especially under dealing with rare classes. Ensemble learning was superior to individual model building
in classifying the anemia types by fully exploiting their combined potentials, whereas hard voting and
stacking proved to be more robust and well-performing underneath. Ensemble methods are the best
technique in medical diagnosis challenges, which require a high rate of precision and low dependence
on patient expected results.

LIME Explanation for Model Prediction
LIME is being used to explain the prediction of a test instance by the decision tree model, as

shown in Figure 13. The class expected was Healthy with a probability of 1.00. Below are the main
attributes that LIME visualizes making a significant difference to the prediction: HCT (Hematocrit):
The observables are definitely in favor of a low HCT value (0.01) to predict the Healthy class. PLT:
also had a positive weight in this prediction, as a moderately elevated PLT Count with 0. HGB
and MCV were also very important features, but are less significant than HCT and PLT. The LIME
explanation shows how the decision tree model heavily depended on a set of hematological parameters,
especially HCT and PLT, to make that prediction. It serves to illustrate the clinical relevance of these
parameters in anemia diagnosis and classification. This visualization validates the model to some
degree, but more importantly, it reveals an interpretable feature breakdown of decisions made by the
model, a critical factor for interpretation in medical tasks, for which clinicians must be able to gain
some insight into why automated diagnostic systems are making decisions.
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Figure 13. LIME explanation of the decision tree model prediction

Comparison with Related Work
In this section, we conduct a comparison study of the results of our method on anemia classification

with previous state-of-the-art approaches explained in related work. This comparison is made to show
models, accuracy, precision, recall, and many other metrics that highlight how our proposed ensemble
learning approach is better than the rest, as shown in Table 3.

Our stacking ensemble method outperforms other techniques from related works, achieving an
accuracy of 98.44%, higher than the accuracy reported by Rane et al.. Ensemble methods in other
studies, such as Rane et al. and Saleem et al., reported improvements over individual models, but
none achieved the level of accuracy or robustness seen with our stacking approach. Class imbalance
and frequent occurrence of rare anemia subtypes are restricting issues in many works. The fact that
the model was able to properly predict minority classes (like rare types of anemia) hints at its greater
efficiency in this sense. This contrast highlights that our method is a superior and robust method for
anemia classification from CBC data, owing to the abilities of the stacking ensemble technique while
appropriately addressing class imbalance problems.

Table 3. Comparison with related work
Study Model/Technique Used Accuracy

(%)
Precision
(%)

Recall
(%)

F1
Score
(%)

Additional Metrics/
Observations

Rane
et al. [27]

Ensemble (Voting: SVM,
gradient boosting, random
forest)

93.00 91.50 92.80 92.30 Focused on β-
thalassemia carriers;
good performance

Abdulkarim
et al. [29]

SAELM Hybrid Algorithm 94.00 93.80 93.40 93.60 Hybrid method im-
proved prediction for
thalassemia

Saleem
et al. [30]

Combination (K-Nearest
Neighbors, decision trees,
gradient boosting)

92.50 91.40 91.90 91.65 Enhanced prediction
for thalassemia with
combination models

Nair
et al. [28]

Machine learning (optoelec-
tronic measurements)

91.00 89.00 90.00 89.50 Non-invasive anemia
detection method

Our
Methodology

Stacking (random forest,
XGBoost, decision tree,
MLP)

98.44 98.05 98.12 98.08 Superior accuracy with
stacking ensemble

CONCLUSION
This study shows that ensemble learning with stacking has significant advantages over other methods
and can improve accuracy and performance in terms of precision, recall, and F1 score. The stacking
ensemble managed to improve upon the individual models, which shows that it can leverage the
strengths of multiple classifiers and minimize their weaknesses. Not only did this increase overall
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classification accuracy, but it also improved the ability of the model to correctly identify even rare
anemia types, which individual models often misclassify. The ensemble techniques were of great help
to mitigate the class imbalance issue, which is a common problem associated with medical datasets,
and ensured that a minimum number of minority classes would be represented in the prediction phase.
These results indicate that the ML models can be embedded into clinical decision support systems
that are accurate and an automatic platform ready to assist healthcare professionals in diagnosing
anemia. As a result, these systems can help deliver more accurate diagnoses that can lead to improved
patient outcomes and operational efficiency. The lack of external validation on independent hospital
datasets or temporal validation across different time periods may raise concerns of overfitting and limit
the generalizability of the results. To address this limitation, future work will focus on validating the
proposed models with larger, multi-institutional clinical cohorts in order to confirm robustness and
clinical applicability.
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