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Abstract

The objective of this paper is to examine the outcomes of third-order differential
subordination and superordination for analytic functions within the region D =
{z:7 € Cand |z| < 1}, specifically focusing on the utilization of the novel Hadamard
operator Kf]l,lf (z). The results are derived by analyzing relevant categories of

allowable functions. New findings have been found about differential subordination
and superordination, along with the discovery of several sandwich theorems.
Furthermore, other specific instances are also seen. The qualities and outcomes of
differential subordination exhibit symmetry with the properties of differential
superordination, leading to the formulation of the sandwich theorems.

Keywords: Differential subordination, Hadamard product, Superordination,
Analytic function, Sandwich theorem, Third-order.
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1. Introduction
Consider H(D) as a set of analytic functions within the open unit disk D, defined as D =
{z:z€ Cand |zl < 1}. Forn € N ={1,2,3,-:-} such that a € C, and let H[a,n] = {f:f €
H(D) and f(z) = a + a,z" + ap,1z"** + --- } and suppose that H, = H[0,1]. Consider A C

H(D), which denotes the subset of functions in D that are both analytic and have been
normalized. The Taylor-Maclaurin series is a mathematical series that takes the form:
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£ = z+zanz . eD). (1.1)

Assume that both f and g belong to H (D) We assert that f is a subordinate of g, (or g is a
superordinate of f), denoted

f<ginDorf(z) <g(z),(z €0),
when there is a Schwarz function h € H, defined in the unit disk D, that is analytic and satisfies

h(0) = 0 with |h(z)| < 1(z € C), it means f(z) = g(h(z)),(z € C). Furthermore, if the
function g is injective within the domain D. Subsequently, we can construct the following
equivalency based on the references provided in [1 — 3].

f(@) <g9() < f(0) =g(0)and f(D) c g(D).
Let f € A be a function defined by Equation (1.1). Consider g € A defined as follows:

9(z) =7+ z bnz",
The Hadamard product, often known as convolution of functions f and g is written as:

(f*g)(z)—z+zan w3 = (g )2, (z € D).

Lemma 1.1. The operator Qn is deﬁned as the new operator of f €A for n€
R\{-1,-2,...},|z1 =1, 0 <A< 1.1Itis defined as follows:

- R T e
QZf(Z) - (T] + 2)l+21“(/1 + 2)-]; tl e tn+2 f(%t )dt

T4+ 2 2)2n-2
_ g+z A+ /8(1 ; T (1.2)

n=2

Proof.
0 t
tA-1 e_[m]f(gtz)dt

7t? + Z anzntz”] dt.
n=2

Letxzn%,thenift = 0,wegetx = 0,t = oo, wegetx = ooand t = (n+ 2)x, then
dt = (n + 2)dx. Thus

Q1f(z) =

Qf(z) =

1
T (m+2)M2r(a+2) ),

(n + 2)M2r (1 + 2) j;)

ot il

1 o0
2 A+2 L A+1 -xdq
(n + 2)M2T(1 + 2) {ZJ;) n+2) x*"e X

+ z anznf (77 + 2)A+2n xl—1+2ne—xdx}
n=2 0

- i C(L+2n)(n +2)2%
— 5% T(A+2) In%

n=2
The proof is complete.

Definition 1.2. The operator K,‘;’ f (2): A = A, where f € A, is defined by convolving the new
operator Qn f (z) with the general Hurwitz- lerch zeta function @(z, §,1) [4].

Kpf @ = Q1f(z) « (0 +2)°*2[0(z, 6 + 2,0 + 1) — (n + 1)757))
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T(A+2n)(n + 2)?"+0
=7+ ( )@ ) <5 (1.3)
L FA+2)(n+n+1)°*2
where (n € R\{—-1,-2,...}, § €C, Re(6) >1, |zl =1, 0<1<1).
According to Equation (1.3), it is simple to prove the following identity:

3(K,£ (@) = 0+ K3 @) — (7 + DKG1f . (1.4)

Antonino and Miller [1] have extended the idea of second-order differential subordination
and superordination in the domain D, as initially established by Miller and Mocanu [2,3,5], to
the third-order scenario. This extension is also referenced in [6,7]. The features of functions p
that meet the third-order differential subordination were determined:

{0(G(2),36'(3),2°G"(2),2°G"" (2);2): 3 € D} < .
Additionally, this applies to third-order differential superordination:

0 c {0(6G(2),36'(2),2°G"(2),2°G"" (2);2): 7 € D},
where () be a set within C, G be an analytic function with @: C* x D — C.

In recent studies, multiple writers have examined various implementations of the second-
order differential subordination and superordination idea. They have also produced sandwich
outcomes, as evidenced by references [8]. Additionally, third-order outcomes have been
explored for diverse classes, as indicated by references [6,7,9]. To explore intriguing
applications of differential subordination and superordination in other mathematical
disciplines, we can consult references [10 — 12].

Ponnusamy and Juneja's work [13] built the concept of third-order differential subordination.
Tang et al. introduced a recent study that is a good example of this (see [6,7]).

The second and third-order terms are used interchangeably. Uneven subordination piqued
the interest of many academics in this field. (see [8,9],[14 — 25]).

In this study, we analyze a collection of appropriate admissible functions related to the
integral operator with established precise requirements on the normalized analytic function,
referred to as the sandwich condition.

2- Preliminaries
The concepts and lemmas listed below are necessary for the demonstration of our findings.

Definition 2.1. [1]. Consider the function @: C* X D — C with assume that a function h(z) is
univalent within D. Given that the function G (z) is analytic in D with fulfilling the given third-
order differential subordination:

0(G(2),26'(2),7°G" (2),7°G""(2); 2) < h(2). (2.1)
thus G(z) is denoted as a solution of the differential subordination (2.1). Moreover, a given
univalent function 7'(z) is referred to as a dominant of the solutions of Equation (2.1).
Alternatively, a dominant is defined as G (z) <7 (z) for any G (z) that meets Equation (2.1). The
best dominant is defined as a dominant 7 (z) which fulfills the condition 7(z) < T (z) for
every dominant 7 (z) of (2.1).

Definition 2.2. [1]. Consider the set Q, which consists of every function T that is both
univalent and analytic on D\E (T°), where

E(T) = {E f € dD : limz—»f T(ZJ) = oo},

with min|T'(&)| = p > 0 for ¢ € dD\E(T). Additionally, we can represent the subclass of
Q, where T(0) = a, as Q(a), where Q(0) = Q, and Q(1) = Q;.
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The method of subordination is used for an appropriate class of admissible functions.
The following class of admissible functions was given by Antonino and Miller [1].

Definition 2.3. [1]. Consider (), a set of complex numbers, and let 7 € Q and n € N\{1}. The
class of admissible functions ¥,[f2, 7] has functions ©:C* x D — C, which fulfills the

following admissibility conditions:
T(,stuz) € 0,

whenever
r=T(8), s = k&T'(8), Re (; + 1) > kRe (E;]:,(g) + 1>,
and
u §2T"(§)
Re (E) > sze <T’—(€)>’

wherez € D,& € dD\E(T), with k = n.

Lemma 2.4. [1]. Suppose that G € H[a,n] such that n > 2,and T € Q(a) satisfying the

following conditions:
TII GI
Re (E (E)) >0, ’z @ _

() 7|
wherez € D,& € D\ E(T),k = n.If Q2 is a set within C, 0 € ¥,[2,T], with
0(G(2),26'(2),3°G"(3),3°G""(2);3) € 2,

G(z) <T(z), (z€D).

then

Definition 2.5. [7]. Consider the function ©: C* x D — C. Let h(z) be an analytic in D. Given
the function G (z) with

0(G(2),36'(2),3°G"(3),2°G" (2); 2),
are univalent in D and fulfill the given third-order differential superordination:

h(z) < 0(G(2),2G'(2),2°G"(2),2°G"' (2); 2), (2.2)
if G(z) satisfies differential superordination, it is considered a solution. Further, an analytic
function T is referred to as a subordinant of the solutions of the differential superordination, or
it's just a subordinant, if 7'(z) < G(z) in each G(z) fulfilling Equation (2.2). A univalent
subordnant T (z) which fulfill T(z) < T(z) for every subordinants T'(z) of (2.2) is known to
be the best subordinant.

Definition 2.6. [7]. Consider €, a set of the complex numbers, and let I € H[a, n] such that
T'(z) # 0. The function class ¥,,[2,T] is defined as the set of functions ® : C* XD - C
which fulfills the next admissibility conditions:

0@y, s, tu; &) € 0,

whenever

77" (z) (t ) 1 27" (2)

= TJ(z),s = ,Re{-+ 1)< —R 1],
T (z),s — e s+ — e 0) +
and
u 1 2°T"" (z)
Re(=) < —Re[Z1—--X
e(s)_m2 e< T'(z) )

wherez € D, & € dD,withm = n > 2.
Lemma 2.7. [7]. Consider T € H[a,n], and ® € W[, T]. Assuming that

0(G(2),2G'(2),7°G" (2),7°G"" (2); 2)
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is a univalent within D with G € Q(a) that fulfills the following conditions:
Re (ET (z)) > 0, ‘ZG @) _
T'(2) T (3)
wherez € D,& € 0D, withm = n > 2, then
Qc {0(G(2),26'(2),7°G"(2),7°G"" (3);2): 3 € D},

T(@)<G(z), (z€ D).

The present study applies the methods described in the works of Antonino and Miller [1],
Jeyaraman and Suresh [23], and Tang et al. [6,25] to examine the third-order differential
subordination and superordination outcomes. Various situations are considered, as documented
in references [18,24]. This paper examines specific categories of permissible functions and
presents novel findings about third-order differential subordination and superordination for
analytic functions within the domain D, concerning the operator Kf]’ i ().

indicates that

3- Results on third-order differential subordination

Here, we give differential subordination results using the operator Kg, f ().

Definition 3.1. Consider Q as a set C, and let T € QoNH,. The function class 3;[2,7T] is

defined as the set of functions © : C* X D —» C which fulfills the admissibility condition:
O(a,b,c,d;z) ¢ Q,

whenever

B SkT'(E) + (n+ 1)7(5)
a=T(),b= m——

(n+2)[(n+2)c-2(n+1)bl+(n+1)%a §7''(8)
Re( (n+2)b—-m+1a ) = kRe( T'(&) + 1)

and

(n+2)3[d-3(c=b)]-[3(n+1)(+2)a+n+2)b]+[(n+1)a(1-(n+1)?)] 2 &27'"" (&)
Re( (n+2)b—-(m+1)a ) 2k Re( T'(8) )'
where z € D, & € OD\E(T) with k € N\{1}.

Theorem 3.2. Suppose that © € J;[€, T]. Given that the functions f € Aand T € Q, N Hy,
they both fulfill the next condition:

7" (8) K33 (2)
Re ( 7 ) 77 (5) <k, (3.1
and
0(KS 1 f (2), K331 f (2), K572 (2), K3 7% f (2):3): 3 € D} € Q, (3.2)
then

KS,f(z) <T(3), (z€D).
Proof. Consider the function G (z), which is analytic in D by

G(z) =K,/ (3). (33)
From Equation (1.4) with differentiating (3.3) concerning z, we obtain

G' 16
Kﬁ,‘ff(z)J (z)w;(jz;r ) (z)_ 3.4)

By a similar argument yields
5-2 722G (z) + [2(n + 1) + 1]26'(3) + (n + 1)20(%)
K032 (2) = 2y

(3.5)

and
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K)2*f ()
n,A Y/
76" () +3( +2)72G"(3) + [3(n + D(n + 2) + 1]26'(2) + ( + DG (2)
= T2 . (3.6)
Define the transformation from C* to C by
a(x, s, t,u) =r, b(x, s, t,u) = w,
n+2 ,
c(r,s, tu) = t+@n 4‘(773):2*‘)2(77 D , (3.7)
and ,
dles tu) = u+3(m+2)t+[3(n J(rnli(g): 2)+1ls+(n+1) r. 3.8)
Let X(r,s,t,u) = O(a, b, c,d) =
s+(m+Drt+2n+3)s+ @+ 1)%*
e{ ConEz w2 \\ (39)
u+3(+2)t+ B+ D +2)+1]s+ (n +1)°r '
\ (n+2)3 ’Z/

The proof will be utilized in the following Lemma 2.4. By utilizing Equations (3.3) through
(3.6), and also Equation (3.9), we obtain
X(G(2),26'(2),2°G" (2),2°G""(2);3) =
0K 4 (@), K ' f (2), K03 f (2), Kp3°f (2); 3). (3.10)
Hence, Equation (3.2) leads to
X(6(2),36'(2),3°G"(2),7°G"" (2);2) € 0,

note that
t - m+2)[(n+2)c—2(n+ 1)b]l+ (n+ D?a
E+ B m+2)b—Mm+ Da
and
u_ (M+2°[d=3(c-b)]-m+2)[B0n+Da+b]+[(+Dal -+ D]
s m+2)b—(Mm+ 1a '

As aresult, the admissibility condition in Definition 3.1, for © € J;[(, T] is equivalent to the

condition X € W, [(), T] as stated in Definition 2.3, such that n = 2. As a result, using Equation
(3.1) and Lemma 2.4, we get

KA (2) < T ().
This completes the proof.

The next result is a generalization of Theorem 3.2 to the case when the effects of 7(z) on
dD is unknown.

Corollary 3.3. Consider ) ¢ C and the function T be univalent in D with 77(0) = 1. Assume
that ® € 3;[Q, 7,] where p € (0,1), and T,,(z) = T (pz). Given the function f€A as well as

I, € Qo, and if they satisfy the following conditions:

£7, @) Kyi @ |
Re( 77 () > =0, EAGE <k,(3€D,§€ID\E(T,)withk > 2.),
and
0(K2 ,f (), K33 (2, K232 f (2), K23 f (2);3) € 0,
then

K8 ,f (@) < T,(2), (3 € D).
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Proof. Using the Theorem 3.2, we obtain

K} 1f (2) < T,(2), ( € D).
Corollary asserts the following conclusion that Equation (3.1) is now deduced from the
subordination characteristic that follows: 7,(z) < 7'(2), (z € D).
If Q # C is a domain with only one connection, then {0 = h(D) for the purpose of conformal
mapping h(z) of D onto Q. The class in this situation is J;[h(D),T] is written as J; [h, T].
This is a direct result of the Theorem 3.2 and Corollary 3.3.

Theorem 3.4. Suppose that © € J;[h,T]. Let f € A, and let T € Q, N Hy, and they fulfill the
following conditions:

E%”(f)) K23'f (3)
Re( X6 >0, EAGH <k, (3.11)
and

0(K2 ,f ), K373 f (2), K332 £ (2), K373 f (2); 3) < h(z). (3.12)
Then

K25'f(3) < T(2), (3 € D).
The subsequent outcome is a direct consequence of Corollary 3.3.

Corollary 3.5. Consider 0 c C and the function T be univalent in D with 7(0) = 1. Assume
that © € J;[Q, 7] where p € (0,1), and T,(z) = T (pz). Given the function f€A and 7}, and

if they satisfy the following conditions:

§T," (&) K271 f (3)
Re<7§(€)>20' —nng(f) <k,(z€D,§ €ID\E(T,) andk = 2)
and
G(Kf,,zf(z), Kﬁ,ilf(z), K,‘;}sz(z_,), Kfl,ff(z_,); Z) < h(z),
thus

K7'f(®) <T@, (3€D).
The following theorem makes the differential subordination (3.12) of the best dominant.

Theorem 3.6. Consider the function h in D. Assume that h is univalent. Let ©: C* x D - C
and X be given by Equation (3.10). Consider the equation of differentiation:

X(G(2),76'(2),3°G" (3),5°G""(3);2) = h(3). (3.13)
Then there exists a solution 7' (z) such that 77(0) = 1, that fulfills Equation (3.1). If f € A and
fulfills condition (3.12), such that

016 f @), Kn ' f (@), Kn 7' f (2), K0 7°f (2); 2).
If a function is analytic in the region D, then
Koaf() <T(2), (z€D)

and T (z) is the best dominant.

Proof. According to Theorem 3.2, T is a dominant of Equation (3.12). Since T fulfills Equation
(3.13), it this is additionally a solution to Equation (3.12). Thus, 7" will be dominated by any
dominants. Therefore, T is the best dominant.
The proof of the theorem is completed.

Utilizing Definition 3.1, and the special case T'(z) = Mz (M> 0), the class of admissible
functions J;[Q, T'], given as J;[(2, M], expresses itself as follows.
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Definition 3.7. Consider Q asaset Cand M > 0. The class of admissible functions J;[Q, M]
consists of functions ©: C* x D — C that fulfills the condition
(k+ M+ D)Me L+[[2(n+ 1)+ 1]k + (n + 1)*]Me"

i0
Me™, n+2 ’ (n + 2)? ’
N +3(m+2)L+[(3(+ D1 +2) + Dk + (n + 1)*|Me®®
(n+2)3 &
¢ Q, (3.14)

whenever 7 € D,
Re(Le ) > kM(k — 1),
and
Re(Ne ®)>=0, VOeRkz=2.

Corollary 3.8. Consider © € J;[Q, M]. Given a function f € A satisfies:
[KOG'f@)| <kM,  (z€D,k>=2;M>0)
and
O(K)Af (@), Kp 3 f (2), K022 f (2), K3 2°f (2);3) € Q,
then
K .f @) < M.
In the particular case where Q = T(D) = {w: [w| < M}, the class J;[Q, 7] is simply referred
to as J;[M]. Corollary 3.8 can now be used as follows:
Corollary 3.9. Assume that © € J;[M]. If the function f € A and fulfills the following
conditions:
K23 f(@)| <kM,  (z€D,k=2;M>0)
and
(K9 Af (2), K972 f (2), Ky 22 f (2), Ky 2 f (2); 2) | < M,
then
|K S @] <M.

Corollary 3.10. Given that k > 2,and M > 0. If the function f € A and satisfies its
conditions:

K32 f (@) < kM,
and
K52 @ — Knaf @] <
then
[KpAf @] < M.
Proof. Consider ©(a, b,c,d;z) = b —a, Q = h(D), with h(z) = —,g €D,M > 0.

Make use of the Corollary 3.8. We must prove it 0 € J; [Q M], in other words, the
admissibility condition of Equation (3.14) is fulfilled. This follows readily, since it is seen that

k-1 . k-1 M
0, b,e il =[S D me| =X m = T

n+2 n+2
wheneverz € D,6 € Rand k > 2.
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Definition 3.11. Consider Q as a set in C, and let 7 € Q; N H;. The class J;[Q,T] of
functions that are admissible consists of those functions ®: C* x D — C, which fulfills the

given admissibility conditions:
0(a,b,c,d;z) € Q,

whenever KETE) 4 ( AT
"+ M+
Q=T bz: €n+712 5’
+2)a+c—-2 T"
Re <(77 )IE s ]> > kRe <—ET’(§;) + 1>,
and
Re ((n+2)2(d—a)—3(n+2)(n:)3_)((lc—a)+(b—a)[3(n+3)2—1]) > k2R (szTI’(’;gé’))’

where z € D,§ € D\E(T) and k > 2.

Theorem 3.12. Consider a function © € J;,[Q,T]. If f € A be a function and T € Q; N Hj,
fulfilling the given conditions:

K53/ @) _

§T "(E))
Re <k, 3.15
< 7@ ) G15)
and
K K K
{9 ( af(%) f(z) f(z) 2f(@) > - D} ca, (3.16)
Z Z Z Z
thus
K Af (2)
mT <T(z), (3€D).
Proof. The analytic function should be defined as G (z) within D by
K Af (2)
G(z) = ”T (3.17)
Using the Equations (1.4) and (3.17), we have
Kna'f @ _36'@) + (1 +2)6(3) (3.18)
n+2 ' '
Using a comparable line of reasoning, we obtain
Kna'f () _ 726" (3) + [2(n +2) + 1126"(3) + (7 + 2*6() (3.19)
Z (n +2)? '
and
K03 f(2)
76" () +3(n +3)7°6" () + 30+ 2)(n +3) +1]26'@) + (1 + 2)°G(3) (3.20)
(n+2)° '
Define the transformation from C* to C by
s+(m+2)x
a(r,s,tu) =r, b(r,s, tu) = L
n+2
t+(2n+5)s+(n+2)°%
c(r,s,tu) = o+ 2)° , (3.21)
and
u+3M+2)t+ B +2)(n+3)+1s+ (n+2)3
dCes,ta) = (n+2)t+ [3(n - J)r(g)3 )+ 1s+(+2)°c (3.22)
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Let

X(z,s,t,u) = 0(a,b,c,d;z) =

s+M+2r t+[2(n+2)+1]s+ (n + 2)*r
n+2 ' (n + 2)? '
u+3m+2)t+ B3 +2)(n+3)+1s+ (7 +2)°

(n+2)3 '
The proof will utilize Lemma 2.4. Equations are used from the Equation (3.17) to (3.20), and
from the Equation (3.23), we have

X(G(2),26'(2), Z;G”(z), z360”’(z): z) = S
®<Kn,,1f(%) Kp2'f(2) Kp7°f(2) K{ff(z)_g)
Z ) ZJ ) Z ) ZJ ) -
Hence, Equation (3.16) becomes

X(G(2),36G'(3),2°G"(2),3°G""(2); 7) € Q,

)

(3.23)

(3.24)

Note that,

t +2)a+c—2b
b, (2l ]
S b—a
and
u (m+2)?’(d-a)-3n+2)(n+3)(c—a)+ (b—a)3(n+3)*-1]
s b—a
As a result, the admissibility condition for ® € J;1[Q, 7] in Definition 3.11 is the same as the
admissibility criterion for X € W, [, T'] as stated in the Definition 2.3 with n = 2. As a result,

using Equation (3.13) and Lemma 2.4, we get
Kyf (2)
—<

T(2).

The proof is complete.
Assuming Q # C, and is a simply connected domain, then Q0 = h(D) for some conformal
mapping h(z) of D onto Q. In this situation, the class J;[h(D),T] can be written as

J;,1[€Q, T]. This follows the immediate consequence of Theorem 3.12, as follows:

Theorem 3.13. Consider a function © € J; [, T]. If the functions f € A and T € Q; N H;
fulfills the following conditions:

£T,'(8) Ky f @)
(Fw)z0 [ < o
and
S 5—1 5—2 6—3
o (21222, 52 [0 B 2 S0 ) < nea (326)
Z 7 7 7
then

o)
Kl (@) T(z), (z€D).

Given the Definition 3.11 and the specific case when T(z) = Mz, M> 0, the class functions that
are admissible J; 1[Q, T'], written as J; ; [, M] is expressed as follows.

Definition 3.14. Consider Q to be a set in C and M > 0. The class of admissible functions
J;,1[Q, T consists functions ©: C* x D — C that fulfill the following conditions:
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k+(n+2)Me® L+ ([(2n+5)]k+ (n+2)*>)Me'®

i6
o Me™, n+2 ' (n + 2)? ’
N +3(n+3)L+ ([3(n +2)(n +3) + 1]k + (n + 2)*)Me®®
\ (n+2)3 &
¢ Q, (3.27)
whenever
z€D, Re(Le ) =kM(k—1),
and

Re(Ne®)>0, VvOeRk=2
Corollary 3.15. Consider a function © € J;,[Q,T]. Let f € A that fulfills the following
conditions:

K)Af (2)
%fz <kM, (z€D,k=>2M>0),
and
o <Kg,/1f(Z) Kyi'f @) K2 (3) Kp7°f () _Z> <o
Z ) Z ) Z ) Z ) )
then
K5—1
n,)LZJf(Z) <M

In the particular case where Q = T (D) = {w: |w| < M}, the class J;[Q,T] is simply
referred to as J; ;1 [M]. Corollary 3.15 can now be used as follows:

Corollary 3.16. Consider a function @ € J;[Q,T]. If the function f € A and fulfills the
following conditions:

K5—1 ( )

%f% <kM, (z€D,k>2;M>0),
and

KS,f (@) KS2'f(2) K2 f(2) K373f(2)
0 , , , ;2| < M,
Z 7 Z Z
thus
K2 ,f (2) o
7

Definition 3.17. Assume that 77 € Q; N H;, and consider Q to be a set within C. The class
32[9, T of admissible functions contains functions ©: C* x D — C, which fulfills each of the

following admissibility requirements:
O(a, b,c,d;z) ¢ Q,

whenever
_ 1 [T @+ +2(T©)
(n + 2)[2a? + cb — 3ab] ET (&)
Re( Py )2kRe<T,(€) +1),
and
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Re([bc(d — c)(n +2)% — b(n + 2)?(c —b)(1 — b — c + 3a) — 3(n + 2)(c — b)b + 2(b —
Q)+3am+2)b-a)+b-a)?m+2)((b-—c)n+2)—3—4a(n+2))+a®(n+
2%(b - a)](b - ) = k2Re (S22),

where z € D, £ € D\E(T) and k > 2.

Theorem 3.18. Consider the function ® € J;,[€Q, T']. Given that the functions f € Aand T €
Q, N H; fulfill the following conditions:

TN K5—2 ( )
Re <§ , (E)> >0, %f% <k, (3.28)
T (";) Kn,/'l f(%)
and
0 (Kf,,ilf (@) K7°f(2) K.°f (@) K3'f(2) '%) eplea (3.29)
K3 Af (@) K3 f(2) K32 f (@) Ko7 f (@) '
then
Kpa'f (@)
———<7T(z), (z€D).
Kn,)[f(%)
Proof. The analytic function should be defined G(z) in D by
K23 f(2)
G(2)=—5—F71 (3.30)
Kn,lf(%)
From Equations (1.4) and (3.30), we have
G2f@ _ 1 [16'@ + 0+ 26 @)] __A 331)
KO3'f(z) n+2 G(z) n+2
By a similar argument, we have
K6—3 ( ) B
’;’fzf L. , (3.32)
Kn,/l f(%) 77 + 2
and
K5—4- ( )
Z’fsf ol [B+B~*(C+A™'D - A7%C?)], (3.33)
Kn,)t f(%) n + 2
where

226" @)+16' () (zG'(z)

2
' +(1+2)76' (2)
p=%® (1 + 2)G(z) + G(z) G(2) )

6@ jﬁé?“’”m@

210 ! 12

2°G" (z) + 2G'(2) (zG (z))

= - + (n + 2)zG'(2),
G(2) G(2)
and
2

36" @+3726" (+26'(x) _ 372(6'®) +35°6" )6’ ) 6'@))° 2

D=2 — 2 2)7°G
e T +2(22) + @+ 256" @) + 0+

2)7G'(2).

Define the transformation from C* to C by

a(y, s, tu) =r, b(x,s,t,u) =

1 [s+ (n+2)r? E
R

n+2 :n+2’
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t+ s$\2
1 |s+ @+ 2)r? ——(;) +(+2)s
c(r,s, tu) = + S
n+2 r S+ @+ 2)r
I 3.34)
42 @
and
1
d(r, s, t,u) =77?[F+F‘1(L+HE‘1 — E212)], (3.35)
where
t+s S\ 2
L:T—(;) +(T]+2)S,
and

w_3(5)2_3:—2t+2(%)3+(n+2)(s+t).

Let
X(r,s,t,u) =0(a,b,c,d) =
0 (r E _F 1 riF '+ HE - E212)] ) (3.36)

‘mM+2'n+2'n+2 ' '
The proof will make use of Lemma 2.4. By utilizing Equations (3.30) through Equation (3.33),
and by using Equation (3.36), we get
x(G(2),26'(2),3 G”(%) Z G”’(z) z) =

9( @ K7 (@) K@) Kt >

Ky f (@) K3 f(2) K037 f (3) K22 f (@)
Hence, Equation (3 29) leads to

X(G(2),36G'(3),2°G"(2),3°G""(2); 7) € Q.

r

(3.37)

We note that
_ (n+2)[2a® + cb — 3ab]
B b—a ’

t
-+
s
and
- = [bc(d —)Mm+2)2%2-b(n+2)*(c-b)A—-b—c+3a)-3(n+2)(c—b)b+2(b-
) +3am+2)b-a)+b-a)?m+2)((b-c)n+2)—3—4a(n+2))+a*(n+
2)2(b—a)|(b—a) .
Thus, the admissibility condition for © € J; ,[€, '] in Definition 3.17 is the same as the criteria
of admissibility for ® € W,[(, q] as stated within the Definition 2.3 with n = 2. As a result,
by utilizing Equation (3.30) and Lemma 2.4, we obtain
K2 f @)
<T(2).
)Lf K,f @)
This completes the proof.

Assuming (1 # C, and is a simply connected domain, then . = h(D) for some conformal
mapping h(z) of D onto Q. In this situation, the class J;,[h(D),T] can be written as
Jj2[Q,T]. This follows the immediate consequence of Theorem 3.18 which is stated below
without proof.

Theorem 3.19. Consider a function © € J;,[€, T']. Given that the functions f € A with T €
Q,, and they fulfill the following conditions (3.29) and

< oA f@ K@) K@) K3t
KyAf (@) Kf,ff(z) KO3 f(2) K533 (3)’

) < h(z),
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therefore,
KO3 f(2)

LT 2T (), D).
K /@) <7 (2) (z €D)

4- Results on third-order differential superordination
Definition 4.1. Consider Q as a set in the complex plane C, and let T € Q, N H, such that
T'(z) # 0. The class of admissible functions J;[Q,T] includes functions ©: C*xD - C,

which fulfills the particular admissibility conditions:
O(a,b,c,d;¢) € Q,
whenever

zT7'(z) + m (n + 1)T(2)
a=7(), b= mn+2) :
(n+2)[(n+2)c-2(n+1)b]+(n+1)%a] 1 37" (z)
Re( (n+2)b—-(m+1)a ) =LR ( T'(z) + 1)

and

(+2)%[d-3(c=b)]-+2)[3(+ Da+bl+[(m+Da(-+D]\ _ 1 (77" ()
Re( m+2)b—(m+1)a ) m?2 Re( T'(2) )'
where z € D,§ € 0D and m > 2.

Theorem 4.2. Let © € J;[Q, T]. If the functions f € A, with Kn 1f(z) € Qpandif T € Hy and
T'(z) # 0, fulfilling the followmg conditions:

§7"(3) Ky Af(2)
Re( ) ) =0, T'—(Z) <m, (4.1)
and the function
O(K 1 f (2), K271 f (), K572 f (2), K333 f (2); 2),
is univalent within D, thus
0 < {8(Ky ,f (2), K33 f(2), K72 (2), K3 7°f (2); 3 € D}, (4.2)

implies that
T(z) <K),f(z), (z€D).

Proof. The function G(z) is given by Equation (3.3), while X is defined by Equation (3.8).
Since © € J;[Q, T]. Using Equations (3.10) and (4.2), we get

0 c {0(G(2),36'(2),2°G"(2),3°G""(2);3):3 € D}.
Using equations (3.7) and (3.8), We can observe that the admissibility condition for © €
3;[Q, T] in Definition 4.1 is the same as the admissibility criterion for X € Wy, [Q, T'] as stated

in the Definition 2.6 such that n = 2. Hence ¥ € W,[Q, T] as well as by Equation (4.2) and
Lemma 2.7, we obtain

T(z) <Kpaf®@,  (z€D).
This completes the proof.

Assuming () # C, and is a simply connected domain, then = h(D) for some conformal
mapping h(z) of D onto Q. In this situation, the class J;[A(D), T'] can be written as J;'[h, T'].
This follows the immediate consequence of Theorem 4.2 which is stated below.

Theorem 4.3. Suppose that © € 3 j'[h, T'] and h be analytic in D. If the function f € A, with
K,‘;'A f(z) € Qy and T € Hy and T'(z) # 0, fulfilling the following conditions (4.1) and the
function

0(K21f @), K33 (2), K522 f (2), K333 f (2); ),
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1s univalent within D, thus
h(z) < O(Ky 2f (2), Kna'f (2), K3 3£ (2), K 2°f (); %), (43)
implies that
T(z) <K),f(z), (z€D).
Theorem 4.2 and 4.3 may only be utilized to get third-order differential superordination of the
form subordination of Equation (4.2) or (4.3).

The next theorem shows the existence of the best subordinant of Equation (4.3) with suitable
0.

Theorem 4.4. Consider a function h that is univalent function within D and ©:C* x D - C
with X be given by Equation (3.9). Consider the given differential equation:

X(T(2),27'(2),2°T"(2),7°T""(2);2) = h(2), (44
has a solution T'(z) € Qq. If the functions f € A, and Kg’lf(g) € Qy, and if T € H, with
T'(z) # 0, , and these functions fulfill the criteria Equation (4.1) and the function

0(Kpf (2, Kp ' f (), K571 (2), Kp 2°f (2); 2),
is analytic within D, thus
h(z) < O(KS 1f @), K531 f (@), K72 f (), K233 f (2); 2),
implies that
T(z) <Kpf(2),  (z€D)

with T (z) is the best subordinant.

Proof. According to Theorem 4.2 and 4.3, it is clear that T is a subordinant of Equation (4.3).
As T fulfills of Equation (4.4), it is also a solution of Equation (4.3). Thus, T will be
subordinant by all subordinants. Hence, T is the best subordinant. Then proof of Theorem 4.4
well be completed.

Definition 4.5. Consider Q as a set in the complex plane C, and let 7 € H; such that 7' (z) #
0. The class of admissible functions 5]'-’1[9, T] includes functions ©:C* x D — C, which

fulfills each of the following admissibility requirements:
O(a,b,c,d; &) € Q,

whenever
T'(z) +m@m+2)T
0=T@), b=> (z) +m (1 +2)7(2)
mm+2)
(n+2)[c+a—2b] 1 727" (2)
¢ < b—a m ¢ T'(z)
and
(+2)*(d-a)-3(+2)(+3)(c-)+(b-a)[3(+3)*-1] _ 1 , (7°T""(3)
Re( b-a )szRe( T'(z) )’

where 7z € D, € dD withm > 2.

K5—1
Theorem 4.6. Consider a function © € J; ,[Q, T']. If the function f € 4 and "”1;@ € Q,, and
if T € Q, N Hy with 7' (z) # 0, it satisfies the following conditions:
T K5—1
Re (E : (5)) >0, Lf@ <m, (4.5)
T'(§) 27" (2)

and the function
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®< Af(Z)K f(z)K f(z)K f(z)_z>

7 Z 7 7
1s univalent within D, thus

QC{®< af(z)K f(z)K f(z)K f2) )% D}
Z Z Z Z

(4.6)

implies that

T(z) <

KjAf (3)
T, (Z, (S D)

Proof. The function G (2) is defined by Equation (3.17) and O is defined by Equation (3.23).
Given that © € S]’-'l [Q,T], from Equations (3.24) and (4.6) we have the following:

0 c {X(G(2),36'(2),73°G" (2),3°G""(2);2):3 € D}.
Equations (3.21) and (3.22) demonstrate that admissibility is a necessary condition for © €
3} 1[Q, T] by Definition 4.1 is equivalent to the admissibility condition for X as defined in
Definition 2.3 and n = 2. Therefore, it follows that ¥ € W,[Q,T], by utilizing (4.6) and
Lemma 2.7, we obtain

)
T(3) < K’”Tf@ (z € D).

This completes the proof.
Assuming Q # C, and is a simply connected domain, then 0 = h(D) for some conformal
mapping h(z) of D onto Q. In this situation, the class 3} ; [n(D), T'] can be written as J; ; [, T].

This follows the immediate consequence of Theorem 4.6.

Theorem 4.7. Suppose that ® € J; ;[h, T] and h is an analytic function in D. If the functions
fEeA withT € H and T’ (g) # 0,and they satisfy criteria of Equation (4.5) with the function
9( if(z) Ky f(z) Ko f(z) Kpi’f(2) z)

// [/ [/ [/

is univalent within D, thus

h(z) < ©

(K:?,if(z) Kpa'f(2) K22 f(3) K2°f () _Z>
Z J Z ) Z ) z ) )
implies that
Kpaf ()
T() < %” (z € D).
Definition 4.8. Consider Q as a set in C, and let T € H; with T'(z) # 0. The class J; ,[Q, T
of admissible functions S]'-,Z[Q, T] includes functions ©: C* x D — C, which fulfill the given

admissibility conditions:
O(a,b,c,d; &) € Q,

whenever
_ 1 [T @rma+D(T®)
a=T7), b_n+2 m T (z) ’
(m + 2)[cb + 2a? — 3ab] 1 77" ()
Re( h—a )SER <T(Z_,)+1>’
and
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Re([bc(d — c)(n +2)% — b(n + 2)?(c —b)(1 — b — c + 3a) — 3(n + 2)(c — b)b + 2(b —
Q)+3am+2)b-a)+b-a)?m+2)((b-—c)n+2)—3—4a(n+2))+a®(n+

2 nr
2)%(b — a)](b —a) ) < #Re (Z TT,(;)),

wherez € D, £ € dD\E(T) withm = 2.

@

Theorem 4.9. Consider a function © € J;,[Q, T]. If the function f € A an d f =
l

€ Q and
if T € H; with T'(z) # 0, given these conditions:

ET" () KD f (2)
Re< G >2 0, —Kg,ilf(z) <m (4.7)
and the function
®< @) K2 (z) KO3f(z) KO f(%) )
K2.f (@) KO3 f(2) K2 f () KO3 f ()
1s univalent within D thus
qc 9( 2@ K72 (@) K@) Kt ) zED} 45)
K22f (2) KO3 f(2) KO3 f () KO3 f (3

implies that

K33 f ()
T a2 D).
(z) < Kf,_l 16 (z€D)

Proof. The function G (z) is defined by Equation (3.30), while 0 is defined by Equation (3.36).
Given that © € J;,[Q, 7], we can deduce from Equations (3.37) and (4.8) that

0 < {X(6(2),36'(2),2°G" (2),2°G""(2);2): 2 € D}.
From Equations (3.34) and (3.35), it is clear that admissibility is a requirement © € J; ,[Q, 7]
by Definition 4.8 is identical to the admissibility condition for X as stated by Definition 2.6,
and n = 2. Therefore, it follows that X € W;[Q, T'], by utilizing (4.6) and Lemma 2.7, we obtain

Ky'f (2)
T(z) <—=——, (z€D).
Kn,lf(%)
This completes the proof.
Theorem 4.10. Consider a function © € J;,[Q, T]. If the function f € A and K’g’l ]{((Z)) € Qq,

and if T € Q; N Hy such that T'(z) # 0, fulﬁlling the given conditions (4.7), and the function
9( 7@ K22 f(@) K@) K3 (@) )

K22f (@) KO3 f(2) K2 f () KO3 f (%)

is univalent within D, thus

(@) KA K f(m) K f(z)
h(z) < ©
lf(z) K2 (2) K22 f(7) KO f(z)

implies that

K23 f ()
T Al D).
(z) < Kf;,a @ (z € D)

5- Sandwich results
By combining Theorems 3.4 and 4.3, we get the next sandwich-type theorem.
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Theorem 5.1. Consider two analytic functions, h; and 77, defined in the unit disk D. Let h,
be univalent function in D and 7, € Q, such that 73(0) = 7,(0) = 1 and © € J;[h,, 2] N

3j[hy, 71]. If the function f € A with Ko maf (z) € Qo N Hy and the function
0K,/ (2), K ff @), K33 f (2), K5 3°f (2); 3),
is univalent within D, and if the Equat10ns (3.1) and (4.1) are fulfilled, thus
hi(z) < O(K) Af (3), K3 f (2), K2 F (2), K 22 f () 2) < ha(3)

implies that

T <K ,f(2) <T5(z),  (z€D). (5.1)
Combining Theorems 3.13 and 4.7, The next sandwich-type theorem is obtained.

Theorem 5.2. Consider two analytic functions, h; and 77, defined in the unit disk D. Let h, be
univalent function in D and J; € Q; such that 73(0) = 73(0) = 1 with © € J;;[h,, T3] N

3 1[hq, T1]. If the function f € A and —— "Af@ € Q; N Hy, and the function

9( lf(%) K23 f(z) K23 f(z) K033 f(2) z)

Z Z Z Z
is univalent in D, and the Equations (3.15) and (4 5) are fulfilled, we can conclude that

KS,f (@) KS3'f(2) K ff(z) Ky f(2) )
hl (Z) < ®< Z ) Z ] Z Z hZ (Z)
implies that
)
7i(z) < K’”Tf@ <7(z), (z€D). (5.2)

Theorem 5.3. Consider two analytic functions, h; and 77, defined in the unit disk D. Let h, be
univalent function in D and 7, € Q; such that 73(0) = 7,(0) = 1 and O € J,[h;, 2] N

Sj",zlhl,Tl]. If the function f € A and n;;]{((z))

9( @) K032 f(z) KO3f(2) KO 'fz) )
K2 1f (@) Kf,ff(z) K02 f (@) KO f ()

is univalent within D, and the Equatlons (3.28) and (4.7) are fulﬁlled we can conclude that

€ Q4 N Hy, and the function

(@) K 2f(2) K 2f(2) K f(z)
h 0] h,(z),
1(&) < ( K @) Kﬁff(z) K2 () K@) >< (%)
implies that
KS5'f ()
7 12 "2 L T(z), D). 5.3
(z) < Kﬁ,l @ < 7(2) (z € D) (5.3)

6-Conclusions:

The study successfully extends the concepts of differential subordination and
superordination to third-order scenarios for analytic functions within the open unit disk. By
employing the new operator K,‘;‘A f(z) novel results and properties were discovered that
contribute significantly to the existing body of knowledge in complex analysis. Future research
could explore the application of the third-order differential subordination and superordination
concepts in other branches of mathematics, such as geometric function theory and
approximation theory. This could uncover new relationships and further extend the utility of
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the operator Kg' 1f (z). Investigating higher-order differential operators beyond the third order

could reveal deeper insights and more generalized results. This progression could potentially
lead to new mathematical models and theories that encapsulate a broader range of differential
subordinations and superordinations.
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