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Abstract

The generalized Ramos-Louzada distribution (GRL) is a potential option for
modeling the survival data which considers flexibility while modeling data with
decreasing, increasing, reversed-J shaped, and J-shaped hazard rate functions. It
should however be noted that the most widely used technique of parameter estimation
of GLR is the maximum likelihood technique (MLE). While the MLE is quite
efficient in large samples, they are known to be highly biased for small samples. We
are therefore forced to come up with essentially nonbiased estimators for GRL
parameters. Particularly, we investigate two procedures of bias correction: bootstrap
and analytical methods in order to minimize MLE bias up to the second-degree. Two
real-world data applications and Monte Carlo simulations are used to countercheck
the conclusions of these methods. Simulation results highlight the proposed
approaches’ performance, which is significantly less biased than the MLE, which is
highly Biased. In small sample sizes, the bias is eliminated to about the half of the
original amount.

Keywords: Bias correction; survival analysis; generalized Ramos-Louzada;
bootstrap.
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1. Introduction

In statistics and epidemiology, modeling survival data is a crucial activity that is frequently
used to assess time-to-event data, such as the amount of time until a certain event occurs, the
time until a component fails, or the time until death. The statistical method used to model and
examine such data is called survival analysis. A key idea in survival analysis is a survival
distribution. Taking into account the existing facts, it describes the likelihood that a given event
(such as failure, death, or any other outcome) will not occur before a given time point.

A class of probability distributions known as parametric survival distributions is employed
in survival analysis to model time-to-event data. Parametric models assume a certain functional
form for the survival distribution, in contrast to non-parametric techniques such as the Kaplan-
Meier estimator, which make minimal assumptions about the underlying distribution. Certain
aspects and interpretations of these models are essential for comprehending and evaluating
survival data.

Ramos and Louzada [1] recently introduced Ramos—Louzada (RL) distribution with survival
function as

S(x|a)=(%)(a—l+£)e_z, x>0, a=2. (1)

(24

Generalized Ramos-Louzada (GRL), a novel two-parameter model for the RL distribution
that incorporates a power parameter in the basic model, was presented by Al-Mofleh, et al. [2].
Let X be a positive random variable that follows the GRL model, the survival function of
random variable X is given by

S (x |a,9):(Lj(a—1+ﬁjeXa, Q)
a-1 a

where @ >2 and 6 > 0 are shape parameters. According to Eq. (2), the probability density
function (PDF) and CDF of GRL is given, respectively, by

f(x;r):Lxe‘l(a+£—2je_2, x>0 3)
a(a—1) a
F(x;r):l—(Lj(a—Hﬁ]exa, ()
a-1 a

wherer = (0, ).

One of the approaches discussed in this paper that should be mentioned is a kind of

‘correction,” - adjustment, which is capable to correct the bias up to the second order. The
rationale of this ‘corrective’ approach is that MLE is inconsistent because of the influence of
the bias and therefore the appropriate action is to remove this bias in order to get the so called
bias corrected MLEs. It is illustrated that the presented bias-corrected MLE of the generalized
Ramos-Louzada distribution not only has closed-form expressions in terms of a suitable matrix
notation but also minimizes the biases, as well as the root mean square errors, of the parameters.
Moreover, the last approach can be discussed in terms of Efron’s bootstrap resampling method
that can also minimize. It is maintained to the second order by the bias.
Our paper is tidy as follows. Section 2 covers the maximum likelihood estimation of the
generalized Ramos-Louzada distribution. In Section 3, bias-corrected maximum likelihood
estimation is summarized. The simulation and real application results are listed in Sections 4
and 5 respectively. The conclusion is provided in Section 6.
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2. MLE
For sample of size nand X =(x,x,,...... ,x ) from the GRL distribution. The log-likelihood
function is given by
[(0,a)= nln(0) — 3nln(a) — 2nin(a— 1) + nln(a— 2) +
n 2 n 6 (5)
G0- 23 in(x,) - 23 (x,)
i=l

i=1

Maximize Eq. (5), we have the following equations:

0 2n < 2%,

— 10, a0)=—+3) In(x.)—— > x ' In(x.)=0 6
20 0,a) 7 Z:; (x;) a; ; In(x; ) (6)
s L +22—’§le?:0 7)
ox a (a-1) (¢-2) o 35

3. Bias-corrected MLEs

For the correction of the bias in the parameter as it is estimated, by the MLE method, the bias
corrected maximum likelihood estimation (BCMLE) technique is applied. From the above
relationship, when the true parameter value does not equal the average value of the estimates
calculated using the large number of samples, then there is Bias in MLE. Since it would be
more desirable to have methods that provide improved plug-in estimator, called bias-corrected
approaches attempt to solve this systematic mistake or reduce it to a certain extent [3-5].

When evaluating the bias, the common methods are corrective approach and bootstrap
which are normally applied [6]. This method is helpful in situations when bias might affect the
statistical conclusion of a study. Following the above two guises, numerous authors in the
literature addressed the BCMLE problem [7-36].

3.1. The Corrective approach
This approached was developed in part by [37]. Suppose L (7)=/(0, ), the joint cumulants

of the derivatives of Eq. (5) are given by

2
v —p| L@ )
! 01,01,
3
M., =E _0L(@) , 9)
! 0r,07,dt,
2
M., =E oL ar , (10)
y or,0t;, \dr,
with
o _M,
M; =—,i,7,=1,2,3,...,p (11)
or,
The bias of the s element of the MLE of 1 is, according to Cox and Snell [37],
p P L |
Bias(2,) =Y > > M M [EMU, +MU.J}+0(112) $ =12, p (12)
i=l j=1 =]

where MY is the (i , j)* element of the Fisher information matrix inverted. According to
Cordeiro and Cribari-Neto [3], they recommended Eq. (13)

2890



Ahmed and Algamal Iraqgi Journal of Science, 2025, Vol. 66, No. 7, pp: 2888-2901

D p .
Bias (fs)=ZM”ZZ{M(”——MU,}M/’ +o(n™?) s=12...p  (13)
1

i=l1 I=1

. . . . 1
Let Fisher’s information matrix of 1, M = {—M p } and let a“) =M _EM ;i are elements

A" =a" matrix  for i ,j,l =1,23....,p. Let A(l)z[ (l)}, then

ij l]
A= [ (D‘A(Z)

As a result, the bias expression for 7 can be expressed as

Bias(t)=M "'A vec(M " )+O(n™?). (14)
Thus, the BCMLE of 7 using CAMLE, 7* is given by
TME =7 —-M'4 vec(M ™) (15)

where 7 isthe MLEof 7 , M =M

quadratic.
Related to generalized Ramos-Louzada distribution, the derivatives are:

5 25:6’)(’ in In(x,)

__. . Whereas the bias of 7 is

=7 2

e o (16)
L &y 2n
802226 X[_e___ZX In(x,) ] (17)
i=l
I - z—i ] (18)
p a (a—l) (a-2) «a
’L 2
——= e Y X/ In(x,) (19)
80280( a’ = ,Z‘
- azzyze*xxxfln(xi)z (20)
i=l i
3 n
g_éz e—x(_‘;_’:_;ZX InCx,) ] @1)
i=1 i=1
0L & . 6n  4n 2n 12,
=pe’ | ——+ - -— > x| 22
aa?) ZZ::( ( a3 (a_1)3 (a_2)3 a4; lj ( )
Then,
o o0 0 @
A =[g0| @]y = %2 4 o 23
L i W >
with
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1
a1 _ Q]
a, =M, _EMIII

1
a1(12) :Ml(lz) _5M112
1
al(zz) = Ml(zz) _5M122 =a§f)
. (24)
alg) _M1(21) _Ean _a;)
1
é? _Mz(;) _5M122
1
ag) = Mz(zz) _§M222
where Appendix section defines M ;, . The GRL distribution's bias MLE is provided by
Z
Bias(A]:M‘lA Vec(M )+0(n™). (25)
a

And then,

>

(HCA—MLE J:[HMLE J_Blas[ej (26)
&CA -MLE MLE d
3.2. Bootstrap approach

An alternate approach to generate second-order bias-corrected estimators is presented,
which is based on the parametric bootstrap resampling process [38, 39]. Let
X =(x,,X,,X3,......,x ) be a size-n random sample with a distribution function of /' from the

random variable X . Using the distribution function ', B independent bootstrap samples are
created to determine the estimated bias of the MLE of 7 .

. A 1 & ., R
Bias (7)) = E Z (T, MLE ~ TmLE ) (27)
=

Where ff is the MLE of 7 from the ;" bootstrap sample generated from GRL. Then, the
bias-corrected bootstrap approach (BCBoot) is defined as

B
28 e (28)

Jj=1

. R 1
Tac oot = 2Twiie B
4. Simulation results

The purpose of this simulation study is to evaluate the performance of the MLE, CAMLE,
and BCBoot estimators of the parameters of the generalized Ramos-Louzada distribution. The
generalized Ramos-Louzada distribution was used to generate samples with three different pair
of its parameters: (0 =2,a2=2), (0=0.7,a=2), and (0 =4.5, =3.5). The sample size is
used as 10, 30, 50, and 100. Each case was generating under Monte Carlo samples with 5000
times and 1000 bootstrap samples in each time. The simulation experiments for the proposed
approaches have been modeled and executed in R program working on Intel core 17 processor
with 2.4 MHz processor speed, and16 GB RAM. The root mean squared error (RMSE) and the
bias (Bias) of the estimates, which are defined in Egs. (29) and (30), respectively, are provided
in order to assess the accuracy of the parameter estimates. Tables 1-3 provide a summary of all
averaged biases and RMSE results.
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A 1 &, R
Bias (7) = ﬁ Z (7, BC-MLE — PmLE ) (29)
-1

1 & . .
RMSE (7) = \/NZ(@,BCMLE 27 )2 (30)
iol

Tables 1-3 allow for the derivation of several conclusions.

e The MLE estimators of a appear to be positively biased for all the simulations that are
taken into consideration. This demonstrates how, generally speaking, they exaggerate the
parameter « value, especially when the sample size is small. Moreover, the MLE estimators
usually show a positive bias, that is, they consistently overestimate the true value of the
parameter @ for different sample sizes, when the real value of the parameter 6 is equal to or
greater than 0.7.

¢ In every simulation for varying sample sizes, the MLE estimators performed worse in terms
of bias and root mean square error (RMSE) than the CAMLE and BCBoot of & and 6. In
terms of RMSE, the BCBoot of & and 6 also fared better than the CAMLE. Furthermore,
BCBoot performed better than CAMLE for @ in terms of bias. On the other hand, for o,
CAMLE performed better than BCBoot.

e As sample size n increases, all examined estimators' biases and RMSEs will naturally
decrease. This is primarily due to the fact that most estimators in statistical theory perform
better as sample size n increases. As previously mentioned, both CAMLE and BCBoot exhibit
extremely significant reductions in bias and RMSE for small sample numbers. For example,
Table 2 shows that, for n=30, the reduction in RMSE of both CAMLE and BCBoot was
approximately 19.43% and 19.87% for €, and 25.10% and 25.31% for o lower than that of
the MLE. Further, the reduction in terms of Bias for the same case of both CAMLE and BCBoot
was 76.01% and 51.33% for €, and 71.51% and 71.79% for a lower than that of the MLE.

e Lastly, even though BCBoot and CAMLE are similarly efficient, BCBoot requires less
computing work than CAMLE.

Table 1: Bias and RMSE, on average, when (0 =2, =2)

0 a

n MLE CAMLE BCBoot MLE CAMLE BCBoot
10 RMSE  0.4064 0.3391 0.3376 0.4022 0.3165 0.3158
Bias 0.2251 0.0165 0.0842 0.2038 0.0228 0.0221

30 RMSE 03462 0.2789 0.2774 0.3422 0.2563 0.2556
Bias 0.2197 0.0111 0.0788 0.1984 0.0174 0.0167

50 RMSE 03184 0.2498 0.2483 0.3127 0.2215 0.2235
Bias 0.2183 0.0097 0.0771 0.1971 0.0161 0.0153

100  RMSE  0.2743 0.2072 0.2055 0.2701 0.1844 0.1837
Bias 0.2174 0.0088 0.0753 0.1961 0.0151 0.0144

Table 2: Bias and RMSE, on average, when (0 =0.7,a =2)

0 (04
n MLE CAMLE BCBoot MLE CAMLE BCBoot
10 RMSE 0.4615 0.3938 0.3923 0.4569 0.3712 0.3705
Bias 0.2798 0.0712 0.1388 0.2585 0.0773 0.0768
30 RMSE 0.4009 0.3336 0.3321 0.3969 0.3112 0.3104
Bias 0.2743 0.0658 0.1335 0.2531 0.0721 0.0714
50 RMSE 0.3731 0.3045 0.3032 0.3674 0.2762 0.2782
Bias 0.273 0.0644 0.1318 0.2518 0.0708 0.0703
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100 RMSE 0.3291 0.2619 0.2602 0.3247 0.2392 0.2383
Bias 0.2721 0.0634 0.1303 0.2508 0.0698 0.0692

Table 3: Bias and RMSE, on average, when (6 =4.5,a =3.5)

0 a

n MLE CAMLE BCBoot MLE CAMLE BCBoot
10 RMSE 0.5145 0.4472 0.4457 0.5103 0.4246 0.4239
Bias 0.3332 0.1246 0.1323 0.3119 0.1310 0.1302

30 RMSE 0.4543 0.3872 0.3855 0.4503 0.3644 0.3637
Bias 0.3278 0.1192 0.1269 0.3063 0.1255 0.1243

50 RMSE 0.4265 0.3579 0.3564 0.4208 0.3296 0.3316
Bias 0.3264 0.1178 0.1252 0.3053 0.1241 0.1231

100 RMSE 0.3824 0.3153 0.3136 0.3782 0.2925 0.2918
Bias 0.3255 0.1169 0.1222 0.3041 0.1234 0.1218

5. Real data application

In this section, we illustrate the utility of the proposed bias-corrected estimators for the
generalized Ramos-Louzada distribution using two real datasets with small sample sizes. The
first dataset shows the 18 electronic devices' lifetime failures [40]. This data was further
analyzed by Wang and Wang [33]. The tubes that exhibit leakage at a stress level of 120 psi
are represented in the second dataset, with n=30, [41], [42], and by Cetinkaya and Bulut [12].
The GRL distribution estimation is shown in Tables 4 and 5. The BCBoot and CAMLE
estimates of @ and o are less than the MLE estimate, as seen in Tables 4 and 5, suggesting
that the MLE technique overestimates these parameters.

Figures 1 and 2, respectively, present the study of the generalized Ramos-Louzada distribution
pdf for the 8 and o values of both datasets in reference to Tables 4 and 5. These Figures show
that the density shape based on the MLE approach may be misleading, hence we recommend
utilizing CAMLE and BCBoot estimations for both datasets.

Table 4: Generalized Ramos-Louzada distribution parameter estimation for the electronic
device data.

0 (04
MLE 0.7041 17.0851
CAMLE 0.6788 16.4272
BCBoot 0.6592 16.3041

Table S: Generalized Ramos-Louzada distribution parameter estimation for the show leak data.

0 a
MLE 1.841 2.121
CAMLE 1.756 2.108
BCBoot 1.738 2.066
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Figure 1: First dataset estimated density function.
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Figure 2: Second dataset estimated density function.

6. Conclusion

This study suggested a corrective technique to get simple closed-form equations for the
second-order biases of the MLE of the parameters of the generalized Ramos-Louzada
distribution. Specifically: BCBoot and CAMLE. The recently suggested estimators converge
to their true value far more quickly than the MLE, as shown by the fact that their biases are of
order O(n~) as opposed to O(n") for the MLE. The numerical data shows that the proposed
techniques perform better than the MLE in terms of bias and RMSE, which makes them very
attractive. It is strongly recommended to use the bias-corrected estimators that have been given,
especially when the sample size is small. We propose to investigate the skewness of the MLE
in other distributions in a subsequent paper.
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