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1-INTRODUCTION

By using supra topological space (X, M) which defined by A.S Mashhour [1]. In (2011) Alexander
Arhangel studies of extremally disconnected topological spaces[2].

Also in (2019), (2021) Ahmad AL — Omari (Ahmed A. Salih, Haider J. Ali)[3] study the above
concept via minimal structures spaces. We touched to many concepts such as the definition of supra
topological space by S. Modak and S. Mistry [4], N.K.Humadi and H.J.Ali [5]. We also benefited of
concept Supra- closure set and Supra- interior set that explain it by M. Devi and R. Vijaya lakshmi [6]
to give a new concept supra semi- closure set and supra semi- interior set. After that we developed a
concept supra- extremally disconnected which it referred by J. E.Jakson [7], Krishnavei, K,
Vigneshwaran [8], to define supra- semi extremally disconnected space. In our paper we introduce a
new concept namely supra semi extremally disconnected spaces (briedly SU-SED spaces), whenever
supra semi cl (A) is supra open for any supra open set A in supra space (X, M'). Also we define su.
Semi hyper connected spaces which is strong from of SU-SED spaces. Some characterization, facts,
results and examples have been given concerning these concepts.

2-PRELIMINARIES

In this section we give the basic of definition and facts we have needed

Definition 2-1 [9]

Let X a nonempty set, then the collection M of a subset of X is Saied to be supra topological
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Space of X if

I- @,X belong to M
2- If A e M foralll €3, then U A; € M.

The elements of M are to get to know supra — open sets (briefly su-o sets and the complement of Su- o
sets are called supra — closed sets.

Definition 2-2[10]

Let (X, M) is a su- top Space. For a subset Z of X, the su- Closure of Z (denoted by su- cl(Z),
Su - interior of Z (denoted by su- int(Z)) can be recognized

1- Su-cl2)=n {K:Zc KK eM}

2- Su-int(Z)=U{M:McZMeM}

Lemma 2-3 [11]

Let (X, M) be a su- space. For a subset Z of X the below features are holds

1- Zissu- closed set if and only if su- cl(Z) = Z
2- ZeMifandonlyif su—int(Z) =72
3- Su—int(Z) e M and su — cl(Z) is su — closed.

Lemma 2-4 [12]

Let (X, M) be a su- top space. Whatever partial set P, B the coming features realized

1- su—cl(X/P) = X/su— int(P) and su— int(X /P) = X/su — cl(P)

2- if (X)/P)eM thensu—cl(P)=Pandif PeM thensu— int(P) =P

3- Su—cl(@) =@ and su—cl(X) =X,su— int(@) = @and su—int(X) =X
4- If P c B,then su — cl(P) c su — cl(B) and su — int(P) c su — int(B)

5- P c su—cl(P)and su — int(P) c P.

6- Su—cl(su —cl(P)) = su— cl(P) and su — int(su — int(P)) = su — int(P).

Definition 2-5[13]
A subset A of a su —space (X, M) is name

1- Asu—a —closer

If su—cl (su—int(su—cl(A)) cA

2- Asu— semi — closed

If su—int(su—cl (A)) c A[14]

3- Asu— B —closed (or semi — pre closed )
If su—int(su—cl(su —int (4A))) c A [15]
4- A su —regular — closed

If A =su— cl(su— (int(4))) [16]

5- A su- pre- closed

if su— cl(su — int(4)) € A[17]

6- A su-semi-openif A c cl (su — (int(A4))) [15]

Definition 2-6 [18]
A su- top space (Y, M) is said to be supra- extremally disconnected space shortly SU- ED space if

Su—cl(A) e M, for each A e M.
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Example 2-7[19]
Let X ={c,d,e}, M ={ @,{c} {d} {e}{c,d} {d,e},{c,e}, X}is su- ED space.
Definition 2-8 [20]

A topological space (X, M) is said to be extremally disconnected space if cl(A) € M for each A €
M.

3-ON SUPRA- SEMI EXTREMALLY DISCONNECTED SPACE

In this section by using semi- open sets we introduce new kind of extremally disconnected space via
supra topology as.

Definition 3-1

A su- topological space (X, M) is said to be supra- semi extremally disconnected space denoted by
SU- SED space if SU —s cl(A) e M for each A e M.

Example 3-2
The su- indiscrete space (R, M ing) is SU- SED space
Definition 3-3

A su- top space (X,M) is said to be supra- semi hyper connected space shortly by SU- SH space
if SU— scl(A) =X,foreachA € M.

Example 3-4

The SU- co- finite space (R, M ) is SU-SH.

Lemma 3-5

Every SU- SH space is SU- SED.

Proof

Suppose (X, M) be a SU- SH space and P € M, then

Su—scl(P)=XbutX € M,then su — cl(P) € M so that X is SU — SED.
Remark 3-6

The Comverse of lemma (3-5) not true by next example

Example 3-7

In SU- discrete space (R, M) is SU- SED space but not SU-SH space.
Definition 3-8

Let (X, M) be a SU- SED space, for a subset P of X the supra semi closure of P (shortly by

SU- s cl(P) and supra semi interior of P (briefly SU- s int(P)) are defined as follows

1- SU-scl(P)=N{E:PcE;E‘e M}
2- SU— sint(P) =u {V:V c P; VeM}

Lemma 3-9

Let (X, M) be a SU- SED space, whateverP c X, the below features are holds
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1. PeM iff SU—-sint(P)=P
2. PisSU —sclosed iff SU—scl(P)=P
3. SU—scl(P)isSU — sclosed and SU — s int(P) € M.

Lemma 3- 10
Let (X, M) be a SU- SED space and Q, B by any subset of X, then the below features are holds

1- SU—=5scl(X\SU—-Q)=X\SU —sint(Q) and SUs int(X\SU — Q) = X\ SU —s cl(Q)
2- SU—scl(@) =0,SU—-scl(X)=Y,SU—-sint(@)=0,su—sint(X) =X

3- If SU—-Q c SU—B,thenSU — s cl(Q) € SU —s cl(B),SU —s int(Q) c SU — s int(B)
4- SU—-QcSU—-scl(Q)and SU—-sin(Q) c SU—-Q

Theorem 3-11

Let (X, M) be a SU- topological space, so the below features are equivalent

1- (X,M)is M SU-SED
2- SU — s int(F)is SU — closed for every SU — closed subset F of X
3- SU—=scl(SU —int (F)) c SU — int(SU — s cl(F)), for every subset F of X

Proof

1»2 Let F be a SU- closed set in X, then X- F is SU- open. By
SU—-scl(X—F)=X—-SU—sint (F) is SU- open. Thus SU- s int(F) is SU- closed.

2»3 Let F be any subset of X, then SU- int(F) is SU-open, thus

X/ SU- int (F) is SU- closed in X and by (2) SU- s int(X/ SU- int(F)) is SU- closed in X, but
SU—-sint(X /SU —int(F)) =X/ SU — s cl(SU — int(F)) is SU- closed, therefore

SU- s cl( SU- int(F)) is SU- open in X and hence SU- s cl(SU- int(F)) < SU- int(SU- s cl(F)).
3»1 Let F € M, then SU- int(F) = SU-(F) by (3)

SU—=scl(SU— (F)) = SU—scl(SU — int (F) c SU — int(SU — s cl(F)),but

SU — int(SU — s cl(F)) € M, then SU — s cl(SU — (F)) € M, so that X is SU-SED

Theorem 3-12

Let (X, M) be a supra topological space, then following properties are equivalent

1- Xis SU- SED space
2- forany E € M and B is SU — s open set such that E N B = @,
there exicst a disjoint SU — s closed set W and SU — closed V

suchthatEc Wand B cV
3- SU—sclW)n SU—cl(V) =@, foreveryW e M andV is SU — s open and

wnv=g

4

SU—scl (su — int(su — cl(W))) Nsu—cl(V) =0 foreveryW e M and V is SU —
sopensetand W NV =(
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Proof

1»2 Let X be a SU- SED space and E,B are two disjoint su- open and su- s open sets respectively, then
su—scl(E)and X — (su — s cl(E)) are disjoint su- s closed and su- closed sets containing E
and B respectively.

2»3 LetW e M andV is SU —s openwithW N V = @. By (2), there exist disjoint a SU- s closed
set F and SU- closed set D such that W c F and V c D, therefore

SU—=scl(W)Yn SU—=cl(V)cF nNnD = @.ThusSU —scl(W)n SU - cl(V) = @.

34 Assume that W c X and V is SU — sopenwithW NV = @.Since SU — int(SU —
scl(W) € M and SU — int(SU — scl(W)nSU(V) = @, by (3)

SU - scl(SU—int (SU— scl(W))) n SU—- cl(V) =@.
4»1 Assume that W be any SU- open set. Then [X / SU — s cl(W)] n SU (W) = @. Thus
X /SU — s cl(W) is SU- s open set and by (4)

SU— scl(SU = int(SU—=scl(W))) NnSU = cl(X/SU —scl(W)) = @,sice W
€ M,weget

SU— scl(W) n[X/SU— int(SU — scl(W))] = @,so that

SU— scl(W) cSU— int(SU —s cl(W)) and SU — s cl(W) is SU — open. Therefore X is SU-
SED space.

Definition 3-13

A subset S of (X, M) is said to by SU- SR- open (supra- semi regular set) if

S = SU- int(SU- s cl(S)). The complement of SU- SR- open set is called SU- SR closed set.
Theorem 3-14

Let (X, -#) be a supra s topological space, then the following properties are equivalent

1- Xis SU- SED space
2- Every SU- SR- open set of Y is SU- s closed in X.
3- Every SU-SR- closed set of Y is SU- s open set in X.

Proof

1»2 Let X be SU- SED space, let S be SU-SR - open set in X, then S = SU- int(SU- s cl(S)). Since S is
SU- open set, thenSU — s cl(S) is SU — open,thus S = SU — int( SU — s cl(S)) = SU —
scl(S)sothat S is SU- s closed.

2»1 Suppose that every SU- SR- open set of X is SU- s closed in X. Let S be a SU- open subset of
X,since SU — int(SU — s cl(S)) is SU — SR — open, then it is SU-s closed. So that

SU—-scl(S) €cSU—scl(SU— int(SU —scl(S))) =SU — int (SU — s cl(S),

Since S c SU — int (SU — scl(S)).Thus SU — s cl(S) is SU — open set so that X is SU- SED
space.

2»3 Let S be a SU- SR- closed set, then S¢ is SU- SR- open. Then by (2) S¢ is SU-s closed and in this
manner S is a SU-s open set in X.
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Theorem 3-15
Let (X, M) be a supra topological space, then the following properties are equivalent

1- Xis SU- S ED space
2- SU— scl(W)eM for eachSU — SR — open set W in X.

Proof
1»2 Let W be a SU-SR-open set of X, then W is SU- s open so that by (1) SU — s cl(W) € M.
2»1 Let SU — cl(W) € M for every SU- SR- open set W of X. Let B be any SU- open set of X, then

SU —int(SU — s cl(B)) isSU — SR — open set and SU —s cl(B) = SU —scl(SU — int(SU —
scl(B))) € M.Therefore SU — s cl(B) € M so that X is supra extremally disconnected.

Theorem 3-16
Let(X, M) be a supra topological space, X is SU- SED space if and only if for each

SU- open set U like that each SU- s closed set V with U c V, there exist a SU- open set U;and SU- s
closed VysuchthatU cV;, c U, c V.

Proof

Let X is a SU-SED space, and U is a SU- open set, V is a SU- s closed set in which U < V, on him
Un (X— V)= g,thenbytheorem (3-11) SU — s cl(U) N SU — cl(X — V) = @, that mean
SU—-scl(U) ¢ X-SU - cl(X-V).Wenowthat X - SU — cl(X - V) c V and writing

SU—- scl(U)=V,,X-SU— cl(X— V)= U,wehaveU c V; c U; c V.Conversely, let the
condition hold. Let A be a SU- open set and B be a SU- s open set in X suchthat A n B = @, then
A c X- Band X - BisSU-sclosed then there exist a SU- open set G and SU- s closed set F such
that Ac F c G c X- B.So that

SU— scl(A)nX- (SU—int(X - B)) = @, but

X - (SU—-int(X-B)) = SU—cl(B).Hens SU —s cl(A) n SU —cl(B) = @ by theorem
(3-11) X is SU-SED space.

4 Finite products

Let (X1, M;) and (X5, M) be SUP- topological space andX; X X, be the product of

(X1, M) and (X,, M,)In this topic we investigate together two problems in specific cases represent.

By SU — s cl(F;) X SU — s cl(F,) = SU — s cl(F; X F,)where F; ¢ X;,F, © X, holds, and what
are relationships between SU-SED space(X;, M;) and (X,, M) and

X, X X, where M is the product topology in X; X X, .
Proposition 4-1

Let(X,, M;) and (X,, M) be SU- SED space and A;is SU-s open in (X;,M;) and A, is SU-s open in
(X2, M) ,thenSU — s cl(A; X A2) =SU —scl(A;) X SU —scl(Ay)

Proof
By fact SU — s cl(4;) eM, therefore SU — s cl(A;) = A, U SU — int (SU — cl(A,), and
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SU—-scl(A;) = A, U SU — int (SU — cl(A,), therefore

SU — scl(A;) X SU— scl(4,)
= A; U SU— int (SU = cl(4;) X A, U SU — int (SU — cl(4,)
c (A X 4,) U [SU — int (SU — cl(A1)) X (SU — int (SU — cl(4,))]

Since X; and X;are SU- SED spaces, then SU — scl(A,) € Myand SU — s cl( A,) € M,
then SU — int (SU — scl(A,)) = SU — scl(A,)and SU — int (SU — scl(4,)) = SU — scl(A,))so

(A; x Ay) U [SU — int (SU — scl(A;1)) X (SU — int (SU — scl(4,))]
= (A; X 4,) U [SU — scl(4,)) x SU — scl(43))]

=A; X SU — scl(A;) U A, x SU — scl(4y))
= SU — scl(A; X A3)
Theorem 4-2
Let (X;, M;) and (X,, M) be SUP- topological space and X; X X, be SU- SED, then
(X1, M) and (X,, M) Are both SU- SED space
Proof

Supposed X; X X, is SU- SED space and let U € M, ,V € M, by assumption X; X X, is SU- SED,
SO

SU—-scl(Ux V) = SU—scl(U) x SU— scl(V)isSU — openin X; X X,

But projections on

(X1, M) and (X,, M,) are supra- open mapping, so SU — s cl(U) € M;) and

SU — scl(V) e M, on him

(X1, M) and (X,, M,) are both SU- SED space

Proposition 4-3

Let (X, M) and (X, M) be finite SU- SED spaces, then the space X; X X, is SU-SED.
Proof

Let w = Ugs (Us X V5) be any SU- open subset of ses in the product topology Us € M;,
Vs € M,

(The set S is finite). Then SU- s cly « x,(®) = Uges(SU- s clyg, (Us) * SU-S clyy, (Vs), SO
X, X X, is SU-SED.

Remark4-4

The product of infinite SU-SED spaces need not be SU-SED

Remark4-5

We utilize the following fact [the diagonal set of product is open (SU- open) in it

If and only if the product is discrete.
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Example 4-4

Let the product KN x KN is SU- SED space. The set n = { (n,n) € KN X KN:ne N}is SU- open in
KN x KN since each singleton { n } is SU- open in KN. The SU-s cl (n) is the whole diagonal in
KN x KN and is SU- open in it by given. But it is impossible, since the product KN X KN is not
discrete.

Theorem 4-5

Let (X;, M;) and (X,, M) be finite SU- topological spaces, then the space X; X X, is SU-SED iff
(X1, M) and (X,, M,) are SU- SED space.

Proof

By theorem (4-2) and Proposition (4-3).

CONCLUSION

We proof the su- top space is SU- SED space if and only if SU- s int( F) is SU- closed for every SU-
Closed subset F of Y. A also it is SU- SED space iff SU- s cl(SU- int (F)) € SU- int(SU- s cl(F)), for

every subset F of Y. We defined supra- semi regular set (SR- open) and we made it Y is SU- SED space
iff every SU- SR- open set of Y is SU- s closed in Y. Finally we knew supra- semi hyper connected
Space and study the relationships between them.
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