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              Abstract: This study presents four methods for the purpose of adjusting the 

estimation ranks of the Kaplan-Meier  survival function, wconsidered 

alternative non-parametric estimates of the grouped censored data, thus 

obtaining estimates that are the rank-adjusted estimator , the Smoothing 

survival curves estimator, the Smith-Waterman estimator and the histogram 

estimator, in the applied aspect a simulation system is designed for the purpose 

of generating controlled aggregated data of three sizes (50 , 80, 100) for the 

purpose of calculating the estimate of the survival function for three sample 

sizes and comparing with the Kaplan-Meyer estimate, which serves as a 

reference model, and then calculating performance measures where it was 

found that the graph estimator comes first for all sample sizes followed by the 

Smoothing survival curves estimator by increasing the sample size.. 

             Keywords: Kaplan-Meier survival estimation, Censored data, Rank-Adjusted 

estimator, Smoothing survival curves, Smith-Waterman, Histogram estimators. 
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1.Introduction: 

Survival analysis is one of the most important branches of statistics that is used in the analysis of 

medical data. The main goal of survival analysis is to estimate the probability of survival and 

interpret it at a specific point. Medical studies, clinical trials, life science, epidemiology and 

diseases in which control and incomplete data appear frequently depend on the field of survival 

analysis that plays a pivotal and important role in it (Collett, 2023; etikan, Abubakar, and Al-Qasim, 

2017; Joel, Khanna, and kashour, 2010). Censorship occurs when the full time of an event ( e.g. 

death or illness ) is not fully observed for all cases, resulting in partial information about survival 

times. In such trials or settings, accurately estimating survival function is challenging for clinical 

decision-making, evaluating treatment effectiveness, and development (Collett, 2023). 

The Kaplan-Meier method or estimate, which is often denoted by (K-M), is still the most common 

and widely used non-standard estimate of the survival function given by (Kaplan-Meier, 1958) 

because it has simplicity, interpretability and strength under grouped censored data (Itkan et al., 

2017; Joel et al., 2010). The most common concept about the definition of (K-M) is the conditional 

probability of survival during certain times of events, which for its frequent use and features is 

considered to be the standard model or reference model in estimating the survival function, where it 

assumes that lifetimes are continuous through time and does not take into account the real reality 
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and what is encountered during the Applied side during practical practices (nematolahi et al., 2020). 

Due to the frequent recording of medical data or undergoing interval monitoring and periodic 

follow-ups during applied practices, which determines or impairs the efficiency of the method 

(Collett, 2023). 

From the foregoing, there was a need to propose alternative non-parametric estimates that can deal 

with grouped censored data that are collected periodically or take into account periodic monitoring 

according to the established routine or administrative protocols during the compilation of monitored 

survival data to reduce the amount of bias in sample sizes and thus provide clear and smooth 

estimates of the survival function (H. okerdl, 2012; Maron and H. okerdl, 1986). This study 

modifies the Kaplan-Meier estimation ranks using four methods : (I) rank-adjusted estimator (Les 

and Schumann, 2010; kunitomo and Matsushita, 2008), (II) Smoothing survival curves estimator 

(III) The Smith-Waterman estimator (Chen, Ferris, and Turk, 2008; comet et al., 1999; Khajeh said, 

Paul, and Piru, 2010; Mott, 1992), and (IV) the graph estimator (Friedman and diakonis, 1981; 

Chan and eroldi, 2014; Kontkanen and milim Oshki, 2007; Chen and Kelton, 2001). For the 

purpose of addressing the limitations imposed by practical reality on the Kaplan-Meier estimate that 

contradicts the assumption of continuous observation time by making adjustments to the contraction 

of the denominator or adjustment to the intervals during data aggregation or exponential decay. 

This study uses a rigorous simulation framework to generate synthetic survival data under 

exponential distributions of both event and control times. By applying each estimator to data sets of 

different sample sizes (N = 50, 80, 100), we evaluate and compare their performance relative to the 

Kaplan-Meier estimator using multiple statistical measures. These metrics include mean squared 

error, mean absolute error, square root error, bias, variance, mean absolute percentage error, and 

R2. Through these comprehensive comparisons, the study aims to determine whether any of the 

proposed estimators offers superior or comparable performance in estimating the survival function 

under combined control conditions. 

In the applied aspect, the method of generating controlled medical data was used based on the 

design of a simulation system that generates exponential distributions for each of the sample sizes 

from the Times of events and control, then applies and calculates the formula of each of the four 

estimates in addition to the reference estimate ( Kaplan-Meier) for different sample sizes (N = 50, 

80, 100), then we evaluate and compare the performance of each formula of the four methods with 

each other – Meyer is a reference model, these metrics include mean squared error, mean absolute 

error, square root error, bias, variance, mean absolute percentage error, and R2, so it is easily 

possible to determine which of the methods of adjusting the ranks or weights of the Kaplan-Meier 

estimate is the best under practical practices facing continuous-time assumptions, especially in 

contexts where sample sizes are rather small or medium. 

2.Literature Review and Hypotheses 

Kaplan-Meier estimation is one of the nonparametric methods used to estimate survival functions 

for medical, clinical and epidemiological research (Itkan, Abubakar, & Al-Qasim, 2017; Joel, 

Khanna, & Kashour, 2010). Which were identified by researchers to estimate the survival 

probabilities of patients in clinical studies over time and during the presence of censored data. 

Several studies have shown that the Kaplan-Meier standard estimate often suffers from limitations 

when adjusting the rank to improve accuracy, especially when dealing with small sample sizes or a 

heterogeneous data set (Morris et al., 2019; nematolahi et al., 2020). 

Many researchers have proposed rank adjustment for survival abilities based on addressing biases 

and inefficiencies, where he (mantel, 1966) was the first to introduce the rank adjustment 

convention that means rank-dependent statistics in survival analysis and then laid the foundation for 

further improvements, more recently he (Lise & Schumann, 2010) conducted a modified rank test 

focused on the detection of interaction effects, which are considered nonparametric methods that 

are not directly applied to Kaplan-Meier estimates but the principle of rank conversion in these tests 

focus on the benefits of rank adjustment to improve survival estimates. 

In this context of rank adjustment, several methods of rank adjustment have been proposed. )Jung, 

2008( introduced a weighted-rank statistical method designed for paired survival data, which is 
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useful in calculating the reliability between sightings, also (nematolahi et al., 2020) propose and 

present an estimation method based on improving the Kaplan-Meier estimate based on taking each 

time a partially ordered set (Pros), which has been shown to enhance the efficiency of the estimator 

under the specified sampling conditions. 

In addition to the above, (Friedman&diakonis, 1981) and (etcherdel, 2012) have shown that graph – 

based estimation of the survival function requires non-standard smoothing for density estimation to 

achieve a consistent and unbiased estimate, as (kontkanin &milim oschke, 2007) showed that it is 

possible to balance the complexity of the model and its accuracy through a graph based on the 

minimum description length which is convertible to Kaplan-Meier estimates adjusted for rank. 

The above reference review prompted us to present four methods or methods for rank adjustment to 

estimate the Kaplan-Meier survival function, which is a reference model, and then make a 

comprehensive comparison between these estimates, which are the rank-adjusted estimator (Les & 

Schumann, 2010), the Smoothing survival curves estimator (nematolahi et al., 2020), the Smith-

Waterman estimator (Jung, 2008), and the graph estimator (kontkanin&milim oschke, 2007) relying 

on performance measures to choose the best method that helps improve or adjust the rank for the 

Kaplan-Meier estimate  helps to balance efficiency, accuracy, robustness and practicality of 

practices where accurate estimates are important in clinical decisions (Collett, 2023). 
 

3.Research Methodology 

This paper use methodological form grounded in nonparametric survival function analysis. The 

main objective is to estimate the survival function as formula  𝑆(𝑡) = 𝑃𝑟(𝑇 > 𝑡), where 𝑇 is a non-

negative random variable representing time-to-event, using censored data. In the with right-

censoring, the observed data consist of pairs (𝑌𝑖, 𝛿𝑖), where 𝑌𝑖 = min(𝑇𝑖, 𝐶𝑖) is the observed time, 𝐶𝑖 

is the censoring time, and 𝛿𝑖 = 𝐼(𝑇𝑖 ≤ 𝐶𝑖) is the event indicator (Nieto & Coresh, 1996). given a 

sample of size 𝑛, our objective  is to estimate 𝑆(𝑡) is nonparametrically     ، The Kaplan-Meier serves 

as the reference or benchmark model (Etikan et al., 2017). Let we  ordered observed times as  

𝑌(1) ≤ 𝑌(2) ≤ ⋯ ≤ 𝑌(𝑛), hence let 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑘 represent  distinct event times. At each event 

time 𝑡𝑗, 𝑑𝑗 represents the number of events and 𝑛𝑗  the number at risk. The Kaplan-Meier estimator 

is computed from : 

𝑆̂𝐾𝑀(𝑡𝑗) = ∏ (1 − 𝑑𝑖/𝑛𝑖)                  (1)

𝑡𝑖≤𝑡𝑗

 

Here (Leys & Schumann, 2010) , we present four methods to adjust the rank of the Kaplan-Meier 

estimate of the survival function for three sample sizes generated using the simulation system 

according to the method of observation data Rank-Adjusted, Smoothing survival curves, Smith-

Waterman, and Histogram estimators, which are mathematically adjusted or modified based on 

adjusting the rank of the estimated Kaplan-Meier survival function, and then choosing the best 

method from the above methods to determine it in adjusting the rank of the survival data set based 

on performance measures to reduce or control the inconsistency that guides the basis of the 

assumption underlying the estimation of the Kaplan-Meier survival function (Goel et al., 2010), 

which assumes that the survival time is continuous while not taking into account periodic 

monitoring, protocols or inconsistencies during the combined monitoring. 
 

4. Methods 
4.1.Rank-Adjusted Estimator 

The estimate of the Rank-Adjusted survival function is a non-parametric estimate based on the 

subtraction of a constant (usually C) from the Kaplan-Meyer denominator for the purpose of 

calculating the amount of bias of a small sample, when this constant is subtracted from the 

denominator (Kunitomo & Matsushita, 2008), we enhance the accuracy when calculating the 

survival estimate from the collected or highly controlled data and also prevent duplicate risks in 

estimating this function  𝑌𝑖 = min(𝑇𝑖, 𝐶𝑖), 𝛿𝑖 = 𝐼(𝑇𝑖 ≤ 𝐶𝑖), where T is a random variable as time-to-

event. 
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Where the censoring time is 𝐶𝑖 , 𝛿𝑖 ∈ {0,1} We observe data {(𝑌1, 𝛿1), (𝑌2, 𝛿2), . . . , (𝑌𝑛, 𝛿𝑛)} and use 

Kaplan-Meier Estimator (Reference Model) , Order distinct event times (Nematolahi et al., 2020) : 

𝑡1 < 𝑡2 < ⋯ < 𝑡𝑘 

 

 

Upward bias in 𝑆̂(𝑡)  It is used  Jackknife bias reduction  idea (Efron ,1967) Adjust denominator with 

use constant C as  𝐶 =
𝑑𝑗

2
  then we get  𝑛𝑗

∗ = 𝑛𝑗 −
𝑑𝑗

2
   ,Where C is a small positive constant for each 

event time 𝑡𝑗 , (Leys & Schumann, 2010) : 

𝑞𝑗 =
𝑑𝑗

𝑛𝑗
∗ =

𝑑𝑗

𝑛𝑗 −
𝑑𝑗

2

                     (2)  

By using Equ.2 , Then a formula have : 

𝑆̂𝑅𝐴(𝑡) = ∏ (1 − 𝑞𝑗)

𝑡𝑗≤𝑡

= ∏ (1 −
𝑑𝑗

𝑛𝑗 −
𝑑𝑗

2

)                    (3)  

𝑡𝑗≤𝑡

 

4.2. Smoothing survival curves Estimator  

This means the Rank Adjustment of the estimated survival function, that the Smoothing survival 

curves estimate divides the survival time into separate periods such as intervals (bins) ((Wu & 

Kolassa, 2024)    ,  thus smoothers the survival curve, thereby reducing the variance in order to reduce 

the amount of bias by adjusting the order, that interval grouping leads to a decrease in variance 

(Kim et al., 2003) , divides the timeline into periods (bins): 

              𝐼𝑘 = [𝑏𝑘, 𝑏𝑘+1)                          (4)                          
Can be defined as  𝑏𝑘 and 𝑏𝑘+1 are the interval boundaries of 𝐼𝑘 ,  and  the k = 1,2, . . . , m is  number 

of intervals (bins) to determine m (number of intervals) using Sturges’ Rule: 

𝑚 = ⌈log2(𝑛) + 1⌉ 
where 𝑛 is the sample size , for each interval in Equ.4, The quantities are calculated  𝑛𝑘  the number 

of patients initially at risk  at 𝐼𝑘, this is the count of individuals whose observed time 𝑌𝑖 ≥ 𝑏𝑘 (i.e., 

they are still under observation just before 𝑏𝑘). 

𝑑𝑘 = Number of failures (events ) that occurred within 𝐼𝑘 

This is  𝑑𝑘  the count of individuals whose event time 𝑌𝑖 ∈ [𝑏𝑘, 𝑏𝑘+1) and 𝛿𝑖 = 1 (i.e., the event 

occurred within this interval and it was not censored) , we apply the adjustment rank to factors  

(0.5) as constant c , similar to  event probability within 𝐼𝑘 the interval in  Equ.4  (Jung, 2008) : 

𝑞𝑘 =
𝑑𝑘

𝑛𝑘 − 0.5
                         (5)             

Bay using 𝑞𝑘  as corrected factors  in Equ.5 to determined Survival estimate up to interval 𝑘: 

𝑆̂𝐿(𝐼𝑘) = ∏(1 − 𝑞𝑙)

𝑘

𝑙=1

= ∏ (1 −
𝑑𝑙

𝑛𝑙 − 0.5
)

𝑘

𝑙=1

 

                  = ∏ (1 −
𝑑𝑙

𝑛𝑙 − 0.5
)                          (6)                                             

𝐼𝑙≤𝑡

 

In Equ.6 include all intervals 𝐼𝑙 that is end 𝑏𝑙+1 ≤ 𝑡. 
 

4.3. Smith-Waterman Estimator 

The Smith-Waterman Estimator is a nonparametric survival estimator that applies sequence 

analysis-based local alignment notions to survival functions (Chen et al., 2008). It improves 

robustness to irregular event distributions by focusing local survival regions.  It computes survival 

probabilities using weighted local risk sets, addressing the bias-variance trade-offs in both sparse 

and heterogeneous censored datasets.  T is a time-to-event random variable.  Observed data using 
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censored data  {(Yi, δi)}i=1

n  Arrange observed times  and distinct event times (failures) For each event 

time tj, define a local neighbourhood (window), (Mott, 1992) is : 

Wj = [tj − h, tj + h]                          (7)  

Can be defined h as the bandwidth or also called the window size , which determines the local area 

for the time of the event tj, thus calculating the set of possible risks and events during the time for 

each window in Equ.7 , (Härdle, 2012) as : 

nj
(W)

= ∑ I

n

i=1

(Yi ∈ Wj)  

The number of events in window Wj : 

dj
(W)

= ∑ I

n

i=1

(Yi ∈ Wj, δi = 1) 

Now, the probability of a local event can be calculated (adjusted for window) : 

qj
(SW)

=
dj

(W)

nj
(W)

− 0.5
                           (8)  

The constant 0.5 is adjustment to bias reduction, and define Smith-Waterman Estimator  using 

Equ.8 as estimated survival function is: 

ŜSW(t) = ∏ (1 − qj
(SW)

)

tj≤t

= ∏ (1 −
dj

(W)

nj
(W)

− 0.5
)                        (9) 

tj≤t

 

4.4. Histogram Estimator 

The Histogram Estimator can be defined as a non-parametric approach designed for the purpose of 

presenting a survival function that by taking advantage of the behaviour of grouped (binned) data, 

as a result, the survival function is calculated as an Empirical Cumulative Distribution Function 

(ECDF) over predefined periods (Härdle, 2012), since the available data is grouped or interval-

censored data, this estimator gives a smoother and more stable estimate of the survival function 

through projections of events within boxes of equal width ( fixed bandwidth) all events are separate 

in Kaplan-Meyer because he processed the notes Separately censored data by density estimates 

within each container and also the summation of contributions, therefore, this method mitigates the 

effect of local fluctuations and sharp jumps in the estimated curve, which is useful in smaller 

samples, to partition the time into m , as 𝐼𝑘 = [𝑏𝑘, 𝑏𝑘+1)  when 𝑘 = 1,2, … , 𝑚  and  𝑏1 < 𝑏2 < ⋯ <
𝑏𝑚+1 , and bin width: 

𝛥𝑘 = 𝑏𝑘+1 − 𝑏𝑘                                               (10)    
Now we can have obtained the observed events in each bin, (Kontkanen & Myllymäki, 2007) : 

𝑐𝑘 = #{𝑖: 𝑌𝑖 ∈ 𝐼𝑘,  𝛿𝑖 = 1}                                  (11)        
From Equ.10 and Equ., we get an estimate of the probability density function in each bin k as : 

𝑓𝑘 =
𝑐𝑘

𝑛 ⋅ 𝛥𝑘
 

The estimated Empirical Cumulative Distribution Function (ECDF) at time t is the sum of 𝑓𝑘: 

𝐹̂(𝑡) = ∑ 𝑓𝑘

𝑏𝑘<𝑡

⋅ 𝛥𝑘                                           (12)          

From (Freedman & Diaconis, 1981) , we substituting Equ.10 and  𝑓𝑘  : 

𝐹̂(𝑡) = ∑
𝑐𝑘

𝑛 ⋅ 𝛥𝑘
𝑏𝑘<𝑡

⋅ 𝛥𝑘 = ∑
𝑐𝑘

𝑛
𝑏𝑘<𝑡

    

Now the formula of estimate the survival function, by (Marron & Härdle, 1986) have : 

𝑆̂𝐻(𝑡) = 1 − ∑
𝑐𝑘

𝑛
𝑏𝑘<𝑡

=
𝑛 − ∑ 𝑐𝑘𝑏𝑘<𝑡

𝑛
           (13)  
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5. Simulation Design and Medical Dataset Generation 

In The simulation part will be presented in this part of the study, by designing simulations to 

generate experimental medical survival data under different control. The basis is to evaluate 

the performance of various survival estimates under realistic medical conditions  , Survival 

times were simulated based on the Weibull distribution with the figure parameter  =1.5 and the 

scale parameter  =12, which gives a picture of the survival patterns observed in breast cancer 

patients as reported in (Allen et al., 2009),the survival function is derived as follows: 

𝑆(𝑡) = exp (− (
𝑡

𝜆
)

𝜅

)           (14) 

The independent control time was assumed based on a uniform distribution 𝐶𝑖 ∼
𝑈(5,20),which represents the follow-up periods in typical clinical studies. Then calculate the 

observed time for each subject as follows: 

𝑇𝑖 = min(𝑆𝑖, 𝐶𝑖), 𝛿𝑖 = 𝐼(𝑆𝑖 ≤ 𝐶𝑖) 

where 𝛿𝑖 is the event indicator (1 = event occurred, 0 = censored). 

Three different sample sizes (N = 50, 80, 100) were used to find out the effect of sample size on the 

performance of estimates . The Kaplan-Meyer estimator has been used as a reference model due to 

its wide application in survival analysis. It was compared with four alternative estimators: the rank-

adjusted estimator, the Smoothing survival curves estimator, the Smith-Waterman estimator, and 

the graph-based estimator. These estimators represent modifications of the estimation of the 

standard survival function, these simulations are designed using Python programming language 

algorithms for the purpose of simulating realistic medical survival scenarios. 

 

 

 
   

  
 
 

Figure 1: Represents The Histogram For Generating Data For Various Sample sizes 
 

6.Discussion of Results 

6.1. Overview Results 
The results of calculating the four estimates will be presented, which are the rank-adjusted 

estimator, the Smoothing survival curves estimator, the Smith-Waterman estimator and the 

Histogram Estimator compared with the true value of the survival function, which is the Kaplan-

Meier estimate, which was assumed as a reference model whose rank was adjusted by four 

methods. Here in this part of the study, visual comparison according to the graph and curve is very 

important for the purpose of knowing the behavior and correspondence of the estimates of the 

survival function. 

 
 

 

 
 

 

 
 

 

 
Figure 2: Represents the Comparison Curve of Benchmark Model with the Others Estimators at n=50 

 

We note from the above Figure that the Histogram method of adjusting the rank of the Kaplan- 

Meier survival function was closer than the other three estimates, because the rank-adjusted 
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estimate moved significantly away from the true value, followed by the Smoothing survival curves 

estimate, with Smith-Waterman approaching significantly in the average values while decreasing by 

a lower level, finally it turned out that the Histogram estimate gives a clearer proximity of all the 

true values at the top and bottom to estimate the survival function with a noticeable deviation in the 

curve. 

 
 

 
 
 

 

 

 

 
Figure 3: Represents the Comparison Curve of Benchmark Model with the Others Estimators at n= 80 

Figure 2 shows a comparison of the Kaplan-Meier survival function using four proposed methods 

for adjusting the rank of survival times, we note that the rank adjustment method moved away a lot 

and began to be consistent with the Kaplan-Meier curve estimate for Time 20 and above (the tail of 

the curve) while it turned out that the Smoothing survival curves estimate followed the behavior of 

the Kaplan-Meier curve gradually at the tail of the curve, at the other end of the figure, we are 

shown the estimate of the graph, which significantly follows the curve of the true value of the 

model A reference that is considered more and gives a more impression of follow-up and 

consistency . 

 

 
 

 

 

 

 

 

 

 

 
Figure4: Represents the Comparison Curve of Benchmark Model with the Others Estimators at n= 100 

 

Finally, after assuming that the estimate of the survival function represented by the Kaplan-Meier 

(KM) estimate as a standard model on the basis of which the curve and consistency of those four 

estimates that were indicated earlier are compared, Figure 3 showed that the rank adjustment 

method for the graph is excellent by tracing the curve of the real survival function (reference 

model) the opposite of the estimates of the real survival function at the top of the curve until it 

decreases at the bottom ( at times 20 and above ) and this is what I show Also, the curve estimated 

using Smith-Waterman for the lower part while slightly improved and increased in the upper part to 

match the average of the real curve, but that the Histogram method  of adjusting the rank of the 

survival function was quite consistent in the upper part at small survival times to remain optimistic 

and increasing from the real survival estimates while following the same method. 
 

6.2. Discussion 

In this part, the results of estimating four methods for adjusting the rank of the reference model are 

discussed, specifically the Kaplan-Meyer survival function estimation, we rely here in determining 
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the best method for adjusting the rank after reviewing and evaluating those methods using different 

performance measures ( MSE, AME, RMSE, Bias, Variance, MAPE, and R2) for different sizes n. 
 

Table 1 Represents the Comparison of Estimates Based on Benchmark model (K-M) at a sample size of 50 
 

Estimator MSE MAE RMSE Bias Variance MAPE R2 

Rank Adjusted Estimator 0.063183005 0.233691 0.251362 -0.23369 0.035849 42.20489 0.153247 

Smoothing survival curves  0.037006793 0.171026 0.192371 -0.17103 0.037427 28.68557 0.50405 

Smith-Waterman Estimator 0.020245 0.117203 0.142284 -0.1019 0.032611 21.91385 0.728689 

Histogram Estimator 0.007745 0.06804 0.088007 -0.06665 0.097301 19.41115 0.896202 
 

Table 1 shows that the estimate of the Rank Adjusted Estimator   was weak across all scales, MSE 

scores from 0.0632, MAE from 0.2337, and RMSE from 0.2514, which indicated high results in 

estimation errors compared to the rest of the other three estimates, as the bias showed negative by -

0.2337, while the moderate variance by 0.0358 reflects the moderate variance, however, the MAPE 

amounted to 42.20%, and R2 is 0.1532, these indicate that the first in rank adjustment explains only 

about 15% of the differences in lifetimes, which puts it in last place in terms of efficiency compared 

to the rest of the methods. 

While it turned out that the Smoothing survival curves estimation method gives better performance 

than the rank-adjusted estimator, which achieved errors of less MSE than 0.0370, MAE from 

0.1710, and RMSE from 0.1924, and that the bias of -0.1710 shows the least systematic 

underestimation in comparison with the rank-adjusted estimator, while the moderate variance was 

0.0374 and MAPE improves to 28.69% and R2 increases to 0.5041, which means that almost 50% 

of the variability and prevalence of the lifetime data have been interpreted and calculated, but the 

Smoothing survival curves estimate is still less efficient than other methods with the exception of 

the rank-adjusted estimator. 

It also turned out that the Smith-Waterman estimate showed a significant improvement in the 

adjustment of the rank of the survival function estimator, where the performance measures 

indicated a significant decrease with MSE from 0.0202, MAE from 0.1172, and RMSE from 

0.1423, which reflects how low these measures are compared with the rank-adjusted estimator and 

Smoothing survival curves, while the bias shows a negative that reflected a low systematic error at 

values of -0.1019, and the variance of 0.0326 indicates the MAPE index is stable while falling to 

21.91%, while the R2 index rises significantly to 0.7287, which indicates the explanation of 

approximately 73% of the differences in lifetimes, which was put by the second best method for 

adjusting the rank of a function Stay compared with the estimates above. 

The results showed that the Histogram Estimator in the rank adjustment of the survival function 

estimator has an advantage in performance compared with all the methods used in this study, it 

gives the lowest MSE of 0.0077, MAE of 0.0680, and RMSE of 0.0880, which indicates these 

scales indicate the smallest estimation errors and the highest accuracy. While the bias of -0.0667 is 

the lowest among all the estimates, which leads to the lowest systematic error, but we note that the 

variance is relatively higher than 0.0973, but on the other hand, it gives high accuracy, as the chart 

gives the best value by 19.41% and R2 reaches 90%, which indicated its explanation for differences 

in life times is captured and explained by the Histogram Estimator, so the Histogram is considered 

the best in terms of rank adjustment of the estimated Kaplan-Meier survival function at the first 

sample size n=50. 
 
 

Table 2 Represents the Comparison of Estimates Based on Benchmark model (K-M) at a sample size of 80 
 

Estimator MSE MAE RMSE Bias Variance MAPE R2 

Rank Adjusted Estimator 0.058992 0.215176 0.242882 -0.21518 0.021755 33.75655 0.112309 

Smoothing survival curves  0.034918 0.155507 0.186864 -0.15362 0.024363 22.61983 0.474562 

Smith-Waterman Estimator 0.020808 0.117454 0.144251 -0.09196 0.022866 19.69515 0.686882 

Histogram Estimator 0.011809 0.097942 0.108668 -0.0963 0.085482 24.12105 0.822304 
 

It turns out from the above table No. 2 that the Histogram Estimator is the most powerful and 

accurate compared to all other methods, as it achieves the lowest error scales of 0.0118, MAE of 
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0.0979, and RMSE of 0.1087 which shows that it has the minimum deviation from the truth values 

of the Benchmark model of survival function, although it records a high variance at 0.0855 with the 

result corresponding to the lowest amount of bias at (-0.0963), also records the highest R2 scale at 

0.8223, which leads to the interpretation of approximately 83% of the magnitude of the differences 

in the lifetime data, this means that it can be said here that the Histogram Estimator is the best at the 

second sample size n=80. 

While Smith – Waterman rating in terms of performance was ranked second. Which gave us a 

strong balance between low error and stable variance, with MSE of 0.0208, MAE of 0.1175, and 

RMSE of 0.1443. Its bias of -0.0920 is smaller compared to other estimates, while the variance of 

0.0229 reflects that the estimation process is consistent to stability. The R2 value of 0.6869 indicates 

that 69% of the differences or variation in life times are explained by this estimator, which indicates 

a significant improvement over the adjusted rank and Smoothing survival curves estimators. 

Smoothing survival curves estimators, this estimate shows rather moderate improvements, which 

put it in third place, but does not exceed in its advantage the Smith-Waterman estimates and the 

histogram estimate. It turns out that the error scale is — MSE (0.0349), MAE (0.1555), and RMSE 

(0.1869) — are significantly high, which indicates less accurate estimates. The bias at -0.1536 

indicates a systematic reduction, while its divergence (0.0244) is still moderate. The R2 value of 

0.4746 reflects that 47.5% of the variations can be explained which shows how poorly this method 

modifies the rank of the Benchmark model estimate of the survival function. 

The Rank Adjusted Estimator shows us poor performance metrics. The highest recorded are MSE 

(0.0590), MAE (0.2152), and RMSE (0.2429), which indicates the presence of significant errors in 

the estimate. Its bias -0.2152 is the largest in magnitude, which indicates the strongest trend of 

systematic reduction. The variance (0.0218) is the lowest, and the variance has been reduced at the 

expense of the high amount of bias . With an R2 value of 0.1123, it explains about 11 percent of the 

variance in the lifetimes data. 
 

Table 3 Represents the Comparison of Estimates Based on Benchmark model (K-M) at a sample size of 100 
 

Estimator MSE MAE RMSE Bias Variance MAPE R2 

Rank Adjusted Estimator 0.050412 0.216444 0.224526 -0.21644 0.057111 40.08293 0.271116 

Smoothing survival curves  0.027861 0.15855 0.166915 -0.15726 0.050628 28.09493 0.597178 

Smith-Waterman Estimator 
0.014235 0.10766 0.11931 -0.09757 0.04136 21.04068 0.794185 

Histogram Estimator 
0.014154 0.096193 0.118971 -0.07607 0.108044 24.37327 0.795353 

 

Finally, in Table No. 3 it is shown that the histogram estimate is the best compared with the rest of 

the estimates and records the lowest MSE (0.01415), MAE (0.09619), and RMSE (0.11897) which 

indicates high estimation accuracy and minimal deviation from the truth values of the survival 

function estimate, also indicated the highest R2 (0.79535), dividing approximately 79.5% of the 

differences in the data — the strongest explanatory ability among the rest estimates. However, also 

the variance for this estimate is 0.10804 which resulted in a lower bias which was (-0.07607) and 

gave the lowest error measures which proved its prestige and efficiency among other methods. 

The Smith-Waterman estimator turns out to be the second best performer, as the performance 

metrics approach the performance of the histogram estimate. It achieves MSE from 0.01424, MAE 

from 0.10766, and RMSE from 0.11931, which are low and marginally higher than the chart 

estimate. Its bias (-0.09757) is slightly larger, but it is offset by a significantly lower divergence 

(0.04136), which indicates more stable fluctuations. Its R2 value (0.79419) is almost identical to the 

value of the histogram estimate, explaining approximately 79.4% of the difference in the data. 

Notably, both the histogram and Smith-Waterman estimators provide robust, nearly convergent 

estimates, while maintaining a slight advantage at most scales. 

It turned out that the Smoothing survival curves estimator ranks third, as it shows moderate 

improvements in performance measures that are adopted in comparison with the grade-adjusted 

estimator, but it is less efficient with the above estimators. It registers MSE of 0.02786, MAE of 

0.15855, and RMSE of 0.16692, which reflects high estimated errors. The bias (-0.15726) reflects a 
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significant tendency to systematic underestimation, while the variance (0.05063) is moderate. The 

R2 value of 0.59718 indicates that only 59.7% of the differences in the data are explained. 

The Rank Adjusted Estimator shows us poor performance metrics. The highest recorded are MSE 

(0.5041), MAE (0.21644), and RMSE (0.22453), which indicates the presence of significant errors 

in the estimate. Its bias -0.21644 is the largest in magnitude, which indicates the strongest trend of 

systematic reduction. The variance (0.05711) is the lowest, and the variance has been reduced at the 

expense of the high amount of bias. With an R2 value of 0.27112, it explains about 11 percent of the 

variance in the lifetimes data. 

7.Conclusions 

1.It turned out from the results of simulation experiments and for all sample sizes the histogram 

estimate outperformed all other estimates for the adjustment of the rank of the survival function 

estimator, which yielded the lowest error measures (MSE, MAE, RMSE) with the least amount of 

bias and moderate and stable variance, high explanatory power R2 which nominated it to be the 

most accurate and reliable. 

2.The Smith-Waterman estimator is considered to come in second place in terms of the best 

performance, as it gives significant improvements in accuracy and explanatory power over the Rank 

Adjusted and Smoothing survival curves method with a reduction in the size of error and an 

acceptable and balanced trade-off between bias and variance. 

3.The results showed that the Rank Adjusted and the Smoothing survival curves estimator were 

poor performance measures with high estimation errors, also the magnitude of the bias is large and 

the lowest values of R2 in different sample sizes which made them the least effective estimates in 

this comparison. 

4.The increase in sample sizes leads to an improvement in the performance of estimates, which led 

to a reduction in error measures, and this is fully consistent with the statistical theory (MSE, MAE, 

RMSE), as well as the obvious increase in R2 when the sample size moves from 50 to 100. 

5.The histogram method maintained its overall superiority compared to the rest of the other 

estimates, despite its relatively high variance, which came in line with the trade-off that favors low 

bias over variance, which leads to better prediction accuracy. 

6.We note that the performance advantage gap between the histogram estimate and the Smit-

Waterman estimates begins to narrow at large sample sizes (N=100), where increasing the sample 

size leads to the achievement of both estimates to similar accuracy and explanatory power. This 

indicates that by increasing the sample size or at large sample sizes, the estimators are strong 

competitors. 
8.Recommendations 
1.The priority of the histogram estimate is the applied aspect that requires high accuracy in 

estimating the survival function, due to its superior performance in reducing error performance 

measures errors (MSE, MAE, RMSE) and maximizing the explanatory power of differences in the 

lifetime data generated in the simulation aspect, so here we recommend using histogram estimate in 

case there is a need for more accurate estimates with a trade-off of less bias and relatively greater 

variance. 

2.We take into account the Smith-Waterman estimator as it gives balanced performance measures 

with different sample sizes, as Smith-Waterman provides a good balance between stability and 

accuracy, and this is indicated by the trade-off between bias and variance, especially at medium and 

large sample sizes in applied medical. 

3.The selection of large sample sizes in clinical trial applications for the purpose of achieving high 

accuracy and efficiency, where it is recommended to use sample sizes of 100 and larger as 

explained in the analysis where the histogram estimates match with the Smith-Waterman. 
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