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Abstract: This study presents four methods for the purpose of adjusting the
estimation ranks of the Kaplan-Meier survival function, wconsidered
alternative non-parametric estimates of the grouped censored data, thus
obtaining estimates that are the rank-adjusted estimator , the Smoothing
survival curves estimator, the Smith-Waterman estimator and the histogram
estimator, in the applied aspect a simulation system is designed for the purpose
of generating controlled aggregated data of three sizes (50 , 80, 100) for the
purpose of calculating the estimate of the survival function for three sample
sizes and comparing with the Kaplan-Meyer estimate, which serves as a
reference model, and then calculating performance measures where it was
found that the graph estimator comes first for all sample sizes followed by the
Smoothing survival curves estimator by increasing the sample size..
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1.Introduction:

Survival analysis is one of the most important branches of statistics that is used in the analysis of
medical data. The main goal of survival analysis is to estimate the probability of survival and
interpret it at a specific point. Medical studies, clinical trials, life science, epidemiology and
diseases in which control and incomplete data appear frequently depend on the field of survival
analysis that plays a pivotal and important role in it (Collett, 2023; etikan, Abubakar, and Al-Qasim,
2017; Joel, Khanna, and kashour, 2010). Censorship occurs when the full time of an event ( e.g.
death or illness ) is not fully observed for all cases, resulting in partial information about survival
times. In such trials or settings, accurately estimating survival function is challenging for clinical
decision-making, evaluating treatment effectiveness, and development (Collett, 2023).

The Kaplan-Meier method or estimate, which is often denoted by (K-M), is still the most common
and widely used non-standard estimate of the survival function given by (Kaplan-Meier, 1958)
because it has simplicity, interpretability and strength under grouped censored data (Itkan et al.,
2017; Joel et al., 2010). The most common concept about the definition of (K-M) is the conditional
probability of survival during certain times of events, which for its frequent use and features is
considered to be the standard model or reference model in estimating the survival function, where it
assumes that lifetimes are continuous through time and does not take into account the real reality
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and what is encountered during the Applied side during practical practices (nematolahi et al., 2020).
Due to the frequent recording of medical data or undergoing interval monitoring and periodic
follow-ups during applied practices, which determines or impairs the efficiency of the method
(Collett, 2023).

From the foregoing, there was a need to propose alternative non-parametric estimates that can deal
with grouped censored data that are collected periodically or take into account periodic monitoring
according to the established routine or administrative protocols during the compilation of monitored
survival data to reduce the amount of bias in sample sizes and thus provide clear and smooth
estimates of the survival function (H. okerdl, 2012; Maron and H. okerdl, 1986). This study
modifies the Kaplan-Meier estimation ranks using four methods : (I) rank-adjusted estimator (Les
and Schumann, 2010; kunitomo and Matsushita, 2008), (II) Smoothing survival curves estimator
(III) The Smith-Waterman estimator (Chen, Ferris, and Turk, 2008; comet et al., 1999; Khajeh said,
Paul, and Piru, 2010; Mott, 1992), and (IV) the graph estimator (Friedman and diakonis, 1981;
Chan and eroldi, 2014; Kontkanen and milim Oshki, 2007; Chen and Kelton, 2001). For the
purpose of addressing the limitations imposed by practical reality on the Kaplan-Meier estimate that
contradicts the assumption of continuous observation time by making adjustments to the contraction
of the denominator or adjustment to the intervals during data aggregation or exponential decay.

This study uses a rigorous simulation framework to generate synthetic survival data under
exponential distributions of both event and control times. By applying each estimator to data sets of
different sample sizes (N = 50, 80, 100), we evaluate and compare their performance relative to the
Kaplan-Meier estimator using multiple statistical measures. These metrics include mean squared
error, mean absolute error, square root error, bias, variance, mean absolute percentage error, and
R2. Through these comprehensive comparisons, the study aims to determine whether any of the
proposed estimators offers superior or comparable performance in estimating the survival function
under combined control conditions.

In the applied aspect, the method of generating controlled medical data was used based on the
design of a simulation system that generates exponential distributions for each of the sample sizes
from the Times of events and control, then applies and calculates the formula of each of the four
estimates in addition to the reference estimate ( Kaplan-Meier) for different sample sizes (N = 50,
80, 100), then we evaluate and compare the performance of each formula of the four methods with
each other — Meyer is a reference model, these metrics include mean squared error, mean absolute
error, square root error, bias, variance, mean absolute percentage error, and R2, so it is easily
possible to determine which of the methods of adjusting the ranks or weights of the Kaplan-Meier
estimate is the best under practical practices facing continuous-time assumptions, especially in
contexts where sample sizes are rather small or medium.

2.Literature Review and Hypotheses

Kaplan-Meier estimation is one of the nonparametric methods used to estimate survival functions
for medical, clinical and epidemiological research (Itkan, Abubakar, & Al-Qasim, 2017; Joel,
Khanna, & Kashour, 2010). Which were identified by researchers to estimate the survival
probabilities of patients in clinical studies over time and during the presence of censored data.
Several studies have shown that the Kaplan-Meier standard estimate often suffers from limitations
when adjusting the rank to improve accuracy, especially when dealing with small sample sizes or a
heterogeneous data set (Morris et al., 2019; nematolahi et al., 2020).

Many researchers have proposed rank adjustment for survival abilities based on addressing biases
and inefficiencies, where he (mantel, 1966) was the first to introduce the rank adjustment
convention that means rank-dependent statistics in survival analysis and then laid the foundation for
further improvements, more recently he (Lise & Schumann, 2010) conducted a modified rank test
focused on the detection of interaction effects, which are considered nonparametric methods that
are not directly applied to Kaplan-Meier estimates but the principle of rank conversion in these tests
focus on the benefits of rank adjustment to improve survival estimates.

In this context of rank adjustment, several methods of rank adjustment have been proposed. (Jung,
2008) introduced a weighted-rank statistical method designed for paired survival data, which is
ISSN: 2960-1363 Vol. 02 No.03 188
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useful in calculating the reliability between sightings, also (nematolahi et al., 2020) propose and
present an estimation method based on improving the Kaplan-Meier estimate based on taking each
time a partially ordered set (Pros), which has been shown to enhance the efficiency of the estimator
under the specified sampling conditions.

In addition to the above, (Friedman&diakonis, 1981) and (etcherdel, 2012) have shown that graph —
based estimation of the survival function requires non-standard smoothing for density estimation to
achieve a consistent and unbiased estimate, as (kontkanin &milim oschke, 2007) showed that it is
possible to balance the complexity of the model and its accuracy through a graph based on the
minimum description length which is convertible to Kaplan-Meier estimates adjusted for rank.

The above reference review prompted us to present four methods or methods for rank adjustment to
estimate the Kaplan-Meier survival function, which is a reference model, and then make a
comprehensive comparison between these estimates, which are the rank-adjusted estimator (Les &
Schumann, 2010), the Smoothing survival curves estimator (nematolahi et al., 2020), the Smith-
Waterman estimator (Jung, 2008), and the graph estimator (kontkanin&milim oschke, 2007) relying
on performance measures to choose the best method that helps improve or adjust the rank for the
Kaplan-Meier estimate helps to balance efficiency, accuracy, robustness and practicality of
practices where accurate estimates are important in clinical decisions (Collett, 2023).

3.Research Methodology

This paper use methodological form grounded in nonparametric survival function analysis. The
main objective is to estimate the survival function as formula S(t) = Pr(T > t), where T is a non-
negative random variable representing time-to-event, using censored data. In the with right-
censoring, the observed data consist of pairs (V;, §;), where Y; = min(T;, C;) is the observed time, C;
is the censoring time, and &; = I(T; < C;) is the event indicator (Nieto & Coresh, 1996). given a
sample of size n, our objective is to estimate S(t) is nonparametrically ¢« The Kaplan-Meier serves
as the reference or benchmark model (Etikan et al., 2017). Let we ordered observed times as
Yy S Yp) <+ < Yy, hence let t; < t, <--- <) represent distinct event times. At each event
time ¢;, d; represents the number of events and n; the number at risk. The Kaplan-Meier estimator

is computed from :
Skm(tj) = 1_[ 1-d;/ny) €]
tist;

Here (Leys & Schumann, 2010) , we present four methods to adjust the rank of the Kaplan-Meier
estimate of the survival function for three sample sizes generated using the simulation system
according to the method of observation data Rank-Adjusted, Smoothing survival curves, Smith-
Waterman, and Histogram estimators, which are mathematically adjusted or modified based on
adjusting the rank of the estimated Kaplan-Meier survival function, and then choosing the best
method from the above methods to determine it in adjusting the rank of the survival data set based
on performance measures to reduce or control the inconsistency that guides the basis of the
assumption underlying the estimation of the Kaplan-Meier survival function (Goel et al., 2010),
which assumes that the survival time is continuous while not taking into account periodic
monitoring, protocols or inconsistencies during the combined monitoring.

4. Methods

4.1.Rank-Adjusted Estimator

The estimate of the Rank-Adjusted survival function is a non-parametric estimate based on the
subtraction of a constant (usually C) from the Kaplan-Meyer denominator for the purpose of
calculating the amount of bias of a small sample, when this constant is subtracted from the
denominator (Kunitomo & Matsushita, 2008), we enhance the accuracy when calculating the
survival estimate from the collected or highly controlled data and also prevent duplicate risks in
estimating this function Y; = min(T;, C;), 6; = I(T; < C;), where T is a random variable as time-to-
event.
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Where the censoring time is C; , §; € {0,1} We observe data {(Y;,6;), (Y5,85),..., (Y, 6,)} and use
Kaplan-Meier Estimator (Reference Model) , Order distinct event times (Nematolahi et al., 2020) :
t1<t2<'“<tk

Upward bias in S(t) It is used Jackknife bias reduction idea (Efron ,1967) Adjust denominator with
use constant C as C = % then we get n; =n; — % ,Where C is a small positive constant for each
event time t; , (Leys & Schumann, 2010) :

d d
] ]

qj === , (2)
w4

By using Equ.2 , Then a formula have :

R d;
SRA(t):l_[(l—CIj):n 1- jd]_ A3)

tht tht n] 2

4.2. Smoothing survival curves Estimator
This means the Rank Adjustment of the estimated survival function, that the Smoothing survival
curves estimate divides the survival time into separate periods such as intervals (bins) (Wu &
Kolassa, 2024), thus smoothers the survival curve, thereby reducing the variance in order to reduce
the amount of bias by adjusting the order, that interval grouping leads to a decrease in variance
(Kim et al., 2003) , divides the timeline into periods (bins):
I = [by, by+1) 4)

Can be defined as b, and by, are the interval boundaries of I}, and the k = 1,2,..., m is number
of intervals (bins) to determine m (number of intervals) using Sturges’ Rule:

m = [log,(n) + 1]
where n is the sample size , for each interval in Equ.4, The quantities are calculated n; the number
of patients initially at risk at I, this is the count of individuals whose observed time Y; = by, (i.e.,
they are still under observation just before by,).

dj = Number of failures (events ) that occurred within [,

This is dj the count of individuals whose event time Y; € [by, bi4,) and 6; = 1 (i.e., the event
occurred within this interval and it was not censored) , we apply the adjustment rank to factors
(0.5) as constant ¢, similar to event probability within I, the interval in Equ.4 (Jung, 2008) :

Bay using q;, as corrected factors in Equ.5 to determined Survival estimate up to interval k:
k k
.00 =[ Ja-a=] [(1-7255)
LtUg) = qa.) = n, — 0.5
-[]1(-755) :
B n, — 0.5 ( )
Ii<t

In Equ.6 include all intervals I; that is end b; 1 < t.

4.3. Smith-Waterman Estimator

The Smith-Waterman Estimator is a nonparametric survival estimator that applies sequence
analysis-based local alignment notions to survival functions (Chen et al., 2008). It improves
robustness to irregular event distributions by focusing local survival regions. It computes survival
probabilities using weighted local risk sets, addressing the bias-variance trade-offs in both sparse
and heterogeneous censored datasets. T is a time-to-event random variable. Observed data using
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censored data {(Y;, §;)}{L,; Arrange observed times and distinct event times (failures) For each event
time t;, define a local neighbourhood (window), (Mott, 1992) is :

W, = [t; —h,t; + h] (7
Can be defined h as the bandwidth or also called the window size , which determines the local area

for the time of the event t;, thus calculating the set of possible risks and events during the time for
each window in Equ.7 , (Hérdle, 2012) as :

n

" =ZI(Y1 € W)

i=1
The number of events in window w;:
n

d" = 1(% ew, 8 =1)

i=1
Now, the probability of a local event can be calculated (adjusted for window) :
d™
(swW) j
94 = o ®
: nj(w) - 0.5
The constant 0.5 is adjustment to bias reduction, and define Smith-Waterman Estimator using

Equ.8 as estimated survival function is:

o (SW) 4"
SSW(t)=1_[(1_qj )=H<1—m> )

st st j
4.4. Histogram Estimator
The Histogram Estimator can be defined as a non-parametric approach designed for the purpose of
presenting a survival function that by taking advantage of the behaviour of grouped (binned) data,
as a result, the survival function is calculated as an Empirical Cumulative Distribution Function
(ECDF) over predefined periods (Hérdle, 2012), since the available data is grouped or interval-
censored data, this estimator gives a smoother and more stable estimate of the survival function
through projections of events within boxes of equal width ( fixed bandwidth) all events are separate
in Kaplan-Meyer because he processed the notes Separately censored data by density estimates
within each container and also the summation of contributions, therefore, this method mitigates the
effect of local fluctuations and sharp jumps in the estimated curve, which is useful in smaller
samples, to partition the time into m , as I, = [by, by4+1) whenk =1,2,...,m and b; < b, < -+ <
b;n41 , and bin width:

A = byq — by (10)
Now we can have obtained the observed events in each bin, (Kontkanen & Myllymaiki, 2007) :
Cp = #{lYl € Ik, 6i = 1} (11)
From Equ.10 and Equ., we get an estimate of the probability density function in each bin k as :
;o Ck
k= n- Ak
The estimated Empirical Cumulative Distribution Function (ECDF) at time t is the sum of f:
FO =) fi e (12)
by<t

From (Freedman & Diaconis, 1981) , we substituting Equ.10 and £, :

~ Ck Ck
F(t):Zn-A A = n
by<t k by<t

Now the formula of estimate the survival function, by (Marron & Hérdle, 1986) have :
c n-— c
_k — ZTI;k<t k (13)

Sy(t) =1-

bp<t
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5. Simulation Design and Medical Dataset Generation

In The simulation part will be presented in this part of the study, by designing simulations to
generate experimental medical survival data under different control. The basis is to evaluate
the performance of various survival estimates under realistic medical conditions , Survival
times were simulated based on the Weibull distribution with the figure parameter =1.5 and the
scale parameter =12, which gives a picture of the survival patterns observed in breast cancer
patients as reported in (Allen et al., 2009),the survival function is derived as follows:

S(t) =exp (— G)K) (14)

The independent control time was assumed based on a uniform distribution C; ~
U(5,20),which represents the follow-up periods in typical clinical studies. Then calculate the
observed time for each subject as follows:

T; = min(S;, G;), 6; = 1(S; < ()
where §; is the event indicator (1 = event occurred, 0 = censored).

Three different sample sizes (N = 50, 80, 100) were used to find out the effect of sample size on the
performance of estimates . The Kaplan-Meyer estimator has been used as a reference model due to
its wide application in survival analysis. It was compared with four alternative estimators: the rank-
adjusted estimator, the Smoothing survival curves estimator, the Smith-Waterman estimator, and
the graph-based estimator. These estimators represent modifications of the estimation of the
standard survival function, these simulations are designed using Python programming language
algorithms for the purpose of simulating realistic medical survival scenarios.

Histogram of Simulated Survival Times (n=50) Histogram of Simulated Survival Times (n=100) Histogram of Simulated Survival Times (n=100)
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Figure 1: Represents The Histogram For Generating Data For Various Sample sizes
6.Discussion of Results
6.1. Overview Results
The results of calculating the four estimates will be presented, which are the rank-adjusted
estimator, the Smoothing survival curves estimator, the Smith-Waterman estimator and the
Histogram Estimator compared with the true value of the survival function, which is the Kaplan-
Meier estimate, which was assumed as a reference model whose rank was adjusted by four
methods. Here in this part of the study, visual comparison according to the graph and curve is very
important for the purpose of knowing the behavior and correspondence of the estimates of the
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Figure 2: Represents the Comparison Curve of Benchmark Model with the Others Estimators at n=50
We note from the above Figure that the Histogram method of adjusting the rank of the Kaplan-
Meier survival function was closer than the other three estimates, because the rank-adjusted
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estimate moved significantly away from the true value, followed by the Smoothing survival curves
estimate, with Smith-Waterman approaching significantly in the average values while decreasing by
a lower level, finally it turned out that the Histogram estimate gives a clearer proximity of all the
true values+at-thettep and bottom¢e-estiate the survivarfimetronrowith a noticeable-deviation in the
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Figure 3: Represents the Comparison Curve of Benchmark Model with the Others Estimators at n= 80
Figure 2 shows a comparison of the Kaplan-Meier survival function using four proposed methods
for adjusting the rank of survival times, we note that the rank adjustment method moved away a lot
and began to be consistent with the Kaplan-Meier curve estimate for Time 20 and above (the tail of
the curve) while it turned out that the Smoothing survival curves estimate followed the behavior of
the Kaplan-Meier curve gradually at the tail of the curve, at the other end of the figure, we are
shown the estimate of the graph, which significantly follows the curve of the true value of the
model A reference that is considered more and gives a more impression of follow-up and
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Figure4: Represents the Comparison Curve of Benchmark Model with the Others Estimators at n= 100

Finally, after assuming that the estimate of the survival function represented by the Kaplan-Meier
(KM) estimate as a standard model on the basis of which the curve and consistency of those four
estimates that were indicated earlier are compared, Figure 3 showed that the rank adjustment
method for the graph is excellent by tracing the curve of the real survival function (reference
model) the opposite of the estimates of the real survival function at the top of the curve until it
decreases at the bottom ( at times 20 and above ) and this is what I show Also, the curve estimated
using Smith-Waterman for the lower part while slightly improved and increased in the upper part to
match the average of the real curve, but that the Histogram method of adjusting the rank of the
survival function was quite consistent in the upper part at small survival times to remain optimistic
and increasing from the real survival estimates while following the same method.

6.2. Discussion
In this part, the results of estimating four methods for adjusting the rank of the reference model are
discussed, specifically the Kaplan-Meyer survival function estimation, we rely here in determining
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the best method for adjusting the rank after reviewing and evaluating those methods using different
performance measures ( MSE, AME, RMSE, Bias, Variance, MAPE, and R?) for different sizes n.

Table 1 Represents the Comparison of Estimates Based on Benchmark model (K-M) at a sample size of 50

Estimator MSE MAE RMSE Bias Variance MAPE R2
Rank Adjusted Estimator 0.063183005 | 0.233691 | 0.251362 | -0.23369 | 0.035849 | 42.20489 0.153247
Smoothing survival curves 0.037006793 | 0.171026 | 0.192371 | -0.17103 | 0.037427 | 28.68557 0.50405
Smith-Waterman Estimator 0.020245 0.117203 | 0.142284 -0.1019 0.032611 | 21.91385 0.728689
Histogram Estimator 0.007745 0.06804 0.088007 | -0.06665 | 0.097301 | 19.41115 0.896202

Table 1 shows that the estimate of the Rank Adjusted Estimator was weak across all scales, MSE
scores from 0.0632, MAE from 0.2337, and RMSE from 0.2514, which indicated high results in
estimation errors compared to the rest of the other three estimates, as the bias showed negative by -
0.2337, while the moderate variance by 0.0358 reflects the moderate variance, however, the MAPE
amounted to 42.20%, and R? is 0.1532, these indicate that the first in rank adjustment explains only
about 15% of the differences in lifetimes, which puts it in last place in terms of efficiency compared
to the rest of the methods.

While it turned out that the Smoothing survival curves estimation method gives better performance
than the rank-adjusted estimator, which achieved errors of less MSE than 0.0370, MAE from
0.1710, and RMSE from 0.1924, and that the bias of -0.1710 shows the least systematic
underestimation in comparison with the rank-adjusted estimator, while the moderate variance was
0.0374 and MAPE improves to 28.69% and R? increases to 0.5041, which means that almost 50%
of the variability and prevalence of the lifetime data have been interpreted and calculated, but the
Smoothing survival curves estimate is still less efficient than other methods with the exception of
the rank-adjusted estimator.

It also turned out that the Smith-Waterman estimate showed a significant improvement in the
adjustment of the rank of the survival function estimator, where the performance measures
indicated a significant decrease with MSE from 0.0202, MAE from 0.1172, and RMSE from
0.1423, which reflects how low these measures are compared with the rank-adjusted estimator and
Smoothing survival curves, while the bias shows a negative that reflected a low systematic error at
values of -0.1019, and the variance of 0.0326 indicates the MAPE index is stable while falling to
21.91%, while the R? index rises significantly to 0.7287, which indicates the explanation of
approximately 73% of the differences in lifetimes, which was put by the second best method for
adjusting the rank of a function Stay compared with the estimates above.

The results showed that the Histogram Estimator in the rank adjustment of the survival function
estimator has an advantage in performance compared with all the methods used in this study, it
gives the lowest MSE of 0.0077, MAE of 0.0680, and RMSE of 0.0880, which indicates these
scales indicate the smallest estimation errors and the highest accuracy. While the bias of -0.0667 is
the lowest among all the estimates, which leads to the lowest systematic error, but we note that the
variance is relatively higher than 0.0973, but on the other hand, it gives high accuracy, as the chart
gives the best value by 19.41% and R? reaches 90%, which indicated its explanation for differences
in life times is captured and explained by the Histogram Estimator, so the Histogram is considered
the best in terms of rank adjustment of the estimated Kaplan-Meier survival function at the first
sample size n=50.

Table 2 Represents the Comparison of Estimates Based on Benchmark model (K-M) at a sample size of 80

Estimator MSE MAE RMSE Bias Variance MAPE R2
Rank Adjusted Estimator 0.058992 0.215176 0.242882 -0.21518 0.021755 33.75655 | 0.112309
Smoothing survival curves 0.034918 0.155507 0.186864 -0.15362 0.024363 22.61983 0.474562
Smith-Waterman Estimator 0.020808 0.117454 0.144251 -0.09196 0.022866 19.69515 | 0.686882
Histogram Estimator 0.011809 0.097942 0.108668 -0.0963 0.085482 24.12105 | 0.822304

It turns out from the above table No. 2 that the Histogram Estimator is the most powerful and
accurate compared to all other methods, as it achieves the lowest error scales of 0.0118, MAE of
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0.0979, and RMSE of 0.1087 which shows that it has the minimum deviation from the truth values
of the Benchmark model of survival function, although it records a high variance at 0.0855 with the
result corresponding to the lowest amount of bias at (-0.0963), also records the highest R? scale at
0.8223, which leads to the interpretation of approximately 83% of the magnitude of the differences
in the lifetime data, this means that it can be said here that the Histogram Estimator is the best at the
second sample size n=80.

While Smith — Waterman rating in terms of performance was ranked second. Which gave us a
strong balance between low error and stable variance, with MSE of 0.0208, MAE of 0.1175, and
RMSE of 0.1443. Its bias of -0.0920 is smaller compared to other estimates, while the variance of
0.0229 reflects that the estimation process is consistent to stability. The R? value of 0.6869 indicates
that 69% of the differences or variation in life times are explained by this estimator, which indicates
a significant improvement over the adjusted rank and Smoothing survival curves estimators.
Smoothing survival curves estimators, this estimate shows rather moderate improvements, which
put it in third place, but does not exceed in its advantage the Smith-Waterman estimates and the
histogram estimate. It turns out that the error scale is — MSE (0.0349), MAE (0.1555), and RMSE
(0.1869) — are significantly high, which indicates less accurate estimates. The bias at -0.1536
indicates a systematic reduction, while its divergence (0.0244) is still moderate. The R? value of
0.4746 reflects that 47.5% of the variations can be explained which shows how poorly this method
modifies the rank of the Benchmark model estimate of the survival function.

The Rank Adjusted Estimator shows us poor performance metrics. The highest recorded are MSE
(0.0590), MAE (0.2152), and RMSE (0.2429), which indicates the presence of significant errors in
the estimate. Its bias -0.2152 is the largest in magnitude, which indicates the strongest trend of
systematic reduction. The variance (0.0218) is the lowest, and the variance has been reduced at the
expense of the high amount of bias . With an R? value of 0.1123, it explains about 11 percent of the
variance in the lifetimes data.

Table 3 Represents the Comparison of Estimates Based on Benchmark model (K-M) at a sample size of 100

Estimator MSE MAE RMSE Bias Variance MAPE R2
Rank Adjusted Estimator 0.050412| 0.216444 0.224526 -0.21644 0.057111 40.08293| 0.271116
Smoothing survival curves 0.027861| 0.15855 0.166915 -0.15726 0.050628 28.09493| 0.597178
Smith-Waterman Estimator 0.014235| 0.10766 0.11931 -0.09757 0.04136 21.04068| 0.794185
Histogram Estimator 0.014154| 0.096193 0.118971 -0.07607 0.108044 24.37327| 0.795353

Finally, in Table No. 3 it is shown that the histogram estimate is the best compared with the rest of
the estimates and records the lowest MSE (0.01415), MAE (0.09619), and RMSE (0.11897) which
indicates high estimation accuracy and minimal deviation from the truth values of the survival
function estimate, also indicated the highest R? (0.79535), dividing approximately 79.5% of the
differences in the data — the strongest explanatory ability among the rest estimates. However, also
the variance for this estimate is 0.10804 which resulted in a lower bias which was (-0.07607) and
gave the lowest error measures which proved its prestige and efficiency among other methods.

The Smith-Waterman estimator turns out to be the second best performer, as the performance
metrics approach the performance of the histogram estimate. It achieves MSE from 0.01424, MAE
from 0.10766, and RMSE from 0.11931, which are low and marginally higher than the chart
estimate. Its bias (-0.09757) is slightly larger, but it is offset by a significantly lower divergence
(0.04136), which indicates more stable fluctuations. Its R? value (0.79419) is almost identical to the
value of the histogram estimate, explaining approximately 79.4% of the difference in the data.
Notably, both the histogram and Smith-Waterman estimators provide robust, nearly convergent
estimates, while maintaining a slight advantage at most scales.

It turned out that the Smoothing survival curves estimator ranks third, as it shows moderate
improvements in performance measures that are adopted in comparison with the grade-adjusted
estimator, but it is less efficient with the above estimators. It registers MSE of 0.02786, MAE of
0.15855, and RMSE of 0.16692, which reflects high estimated errors. The bias (-0.15726) reflects a
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significant tendency to systematic underestimation, while the variance (0.05063) is moderate. The
R? value of 0.59718 indicates that only 59.7% of the differences in the data are explained.

The Rank Adjusted Estimator shows us poor performance metrics. The highest recorded are MSE
(0.5041), MAE (0.21644), and RMSE (0.22453), which indicates the presence of significant errors
in the estimate. Its bias -0.21644 is the largest in magnitude, which indicates the strongest trend of
systematic reduction. The variance (0.05711) is the lowest, and the variance has been reduced at the
expense of the high amount of bias. With an R? value of 0.27112, it explains about 11 percent of the
variance in the lifetimes data.

7.Conclusions

L.It turned out from the results of simulation experiments and for all sample sizes the histogram
estimate outperformed all other estimates for the adjustment of the rank of the survival function
estimator, which yielded the lowest error measures (MSE, MAE, RMSE) with the least amount of
bias and moderate and stable variance, high explanatory power R?> which nominated it to be the
most accurate and reliable.

2.The Smith-Waterman estimator is considered to come in second place in terms of the best
performance, as it gives significant improvements in accuracy and explanatory power over the Rank
Adjusted and Smoothing survival curves method with a reduction in the size of error and an
acceptable and balanced trade-off between bias and variance.

3.The results showed that the Rank Adjusted and the Smoothing survival curves estimator were
poor performance measures with high estimation errors, also the magnitude of the bias is large and
the lowest values of R? in different sample sizes which made them the least effective estimates in
this comparison.

4.The increase in sample sizes leads to an improvement in the performance of estimates, which led
to a reduction in error measures, and this is fully consistent with the statistical theory (MSE, MAE,
RMSE), as well as the obvious increase in R* when the sample size moves from 50 to 100.

5.The histogram method maintained its overall superiority compared to the rest of the other
estimates, despite its relatively high variance, which came in line with the trade-off that favors low
bias over variance, which leads to better prediction accuracy.

6.We note that the performance advantage gap between the histogram estimate and the Smit-
Waterman estimates begins to narrow at large sample sizes (N=100), where increasing the sample
size leads to the achievement of both estimates to similar accuracy and explanatory power. This
indicates that by increasing the sample size or at large sample sizes, the estimators are strong
competitors.

8.Recommendations

1.The priority of the histogram estimate is the applied aspect that requires high accuracy in
estimating the survival function, due to its superior performance in reducing error performance
measures errors (MSE, MAE, RMSE) and maximizing the explanatory power of differences in the
lifetime data generated in the simulation aspect, so here we recommend using histogram estimate in
case there is a need for more accurate estimates with a trade-off of less bias and relatively greater
variance.

2.We take into account the Smith-Waterman estimator as it gives balanced performance measures
with different sample sizes, as Smith-Waterman provides a good balance between stability and
accuracy, and this is indicated by the trade-off between bias and variance, especially at medium and
large sample sizes in applied medical.

3.The selection of large sample sizes in clinical trial applications for the purpose of achieving high
accuracy and efficiency, where it is recommended to use sample sizes of 100 and larger as
explained in the analysis where the histogram estimates match with the Smith-Waterman.

9. References
1. Allen, J. D., Savadatti, S., & Gurmankin Levy, A. (2009). The transition from breast cancer
‘patient’to ‘survivor’. Psycho-Oncology: Journal of the Psychological, Social and Behavioral
Dimensions of Cancer, 18(1), 71-78. https://doi.org/10.1002/pon.1380.

ISSN: 2960-1363 Vol. 02 No.03 196



https://doi.org/10.1002/pon.1380

IRHQI KHAZAYIN OF ECONOMIC

Academic Scientific Journals

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

AND ADMINISTRATIVE SCIENCES (2025) (02) (03): P(187-198)

Chan, S., & Airoldi, E. (2014). A consistent histogram estimator for exchangeable graph models.
Proceedings of the 31st International Conference on Machine Learning, 32, 208-216. PMLR.
https://proceedings.mlr.press/v32/chan14.htmlProceedings of Machine Learning
Research+1Proceedings of Machine Learning Research+1

Chen, E. J., & Kelton, W. D. (2001). Quantile and histogram estimation. Proceedings of the 2001
Winter Simulation Conference, 1, 451-459. IEEE. https://informs-
sim.org/wsc01papers/059.PDFINFORMS SIM

Chen, L., Feris, R., & Turk, M. (2008). Efficient partial shape matching using Smith-Waterman
algorithm. 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Workshops, 1-6. IEEE. https://rogerioferis.com/publications/FerisNordia08.pdfRogerio Feris

Collett, D. (2023). Modelling survival data in medical research (4th ed.). Chapman and Hall/CRC.
https://www.routledge.com/Modelling-Survival-Data-in-Medical-
Research/Collett/p/book/9781032252858Routledge

Comet, J. P., Aude, J. C., Glémet, E., Risler, J. L., Hénaut, A., Slonimski, P. P., & Codani, J. J.
(1999). Significance of Z-value statistics of Smith—Waterman scores for protein alignments.
Computers & Chemistry, 23(3-4), 317-331.
https://www.sciencedirect.com/science/article/pii/S009784859900008 X ScienceDirect

Etikan, 1., Abubakar, S., & Alkassim, R. (2017). The Kaplan-Meier estimate in survival analysis.
Biometrics & Biostatistics International Journal, 5(2), 55-59. https://medcraveonline.com/BB1J/the-
kaplan-meier-estimate-in-survival-analysis.htmISCIRP+2MedCrave Onlinet+2MedCrave Online+2
Efron, B. (1967). The Jackknife, the Bootstrap and Other Resampling Plans. SIAM (Society for
Industrial and Applied Mathematics). DOI: https://doi.org/10.1137/1.9781611970319

Freedman, D., & Diaconis, P. (1981). On the histogram as a density estimator: L? theory. Zeitschrift
fiir Wahrscheinlichkeitstheorie und Verwandte Gebiete, 57(4), 453-476.
https://link.springer.com/article/10.1007/BF01025868SpringerLink

Goel, M. K., Khanna, P., & Kishore, J. (2010). Understanding survival analysis: Kaplan-Meier
estimate. International Journal of Ayurveda Research, 1(4), 274.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059453/

Hardle, W. (2012). Smoothing techniques: With implementation in S. Springer Science & Business
Media. https://link.springer.com/book/10.1007/978-1-4612-4432-5SpringerLink

Jung, S. H. (2008). Sample size calculation for the weighted rank statistics with paired survival data.
Statistics in Medicine, 27(17), 3350-3365. https://pubmed.ncbi.nlm.nih.gov/18205148/PubMed
Khajeh-Saeed, A., Poole, S., & Perot, J. B. (2010). Acceleration of the Smith—Waterman algorithm
using single and multiple graphics processors. Journal of Computational Physics, 229(11), 4247—
4258. https://www.sciencedirect.com/science/article/pii/S0021999110000823

Kontkanen, P., & Myllymaiki, P. (2007). MDL histogram density estimation. Proceedings of the 11th
International Conference on Artificial Intelligence and Statistics, 2, 219-226. PMLR.
https://proceedings.mlr.press/v2/kontkanen07a.htmlProceedings of Machine Learning
Research+1Proceedings of Machine Learning Research+1

Kunitomo, N., & Matsushita, Y. (2008). Improving the rank-adjusted Anderson-Rubin test with
many instruments and  persistent heteroscedasticity = (No. CIRJE-F-588). CIRIJE.
https://ideas.repec.org/p/tky/fseres/2008cf588.htmIIDEAS/RePEc

Kim, C., Park, B. U., Kim, W., & Lim, C. (2003). Bezier curve smoothing of the Kaplan-Meier
estimator. Annals of the Institute of Statistical Mathematics, 55(2), 359-367.

Lehto, A., Cherikh, L., Susi, A., Shvartsman, K., Peterson, L., Nylund, C. M., & Brown, J. (2025).
Female permanent contraception in the Military Health System after the Dobbs v. Jackson Women’s
Health Organization decision. 0&G Open, 2(3), e079.
https://journals.lww.com/ogopen/fulltext/2025/06000/female _permanent contraception_in_the_ milit
ary.2.aspxLippincott Journals

Leys, C., & Schumann, S. (2010). A nonparametric method to analyze interactions: The adjusted
rank transform test. Journal of Experimental Social Psychology, 46(4), 684—688.
https://www.sciencedirect.com/science/article/pii/S002210311000034XScienceDirect

Mantel, N. (1966). Evaluation of survival data and two new rank order statistics arising in its
consideration. Cancer Chemotherapy Reports, 50(3), 163-170.
https://pubmed.ncbi.nlm.nih.gov/5910392/

ISSN: 2960-1363 Vol. 02 No.03 197


https://proceedings.mlr.press/v32/chan14.html
https://proceedings.mlr.press/v32/chan14.html?utm_source=chatgpt.com
https://proceedings.mlr.press/v32/chan14.html?utm_source=chatgpt.com
https://informs-sim.org/wsc01papers/059.PDF
https://informs-sim.org/wsc01papers/059.PDF
https://informs-sim.org/wsc01papers/059.PDF?utm_source=chatgpt.com
https://rogerioferis.com/publications/FerisNordia08.pdf
https://rogerioferis.com/publications/FerisNordia08.pdf?utm_source=chatgpt.com
https://www.routledge.com/Modelling-Survival-Data-in-Medical-Research/Collett/p/book/9781032252858
https://www.routledge.com/Modelling-Survival-Data-in-Medical-Research/Collett/p/book/9781032252858
https://www.routledge.com/Modelling-Survival-Data-in-Medical-Research/Collett/p/book/9781032252858?srsltid=AfmBOorAQqzn6m0Jf_siFIA0vVFPCsjSERP9S0nBsBCl29YmVNqBkovQ&utm_source=chatgpt.com
https://www.sciencedirect.com/science/article/pii/S009784859900008X
https://www.sciencedirect.com/science/article/pii/S009784859900008X?utm_source=chatgpt.com
https://medcraveonline.com/BBIJ/the-kaplan-meier-estimate-in-survival-analysis.html
https://medcraveonline.com/BBIJ/the-kaplan-meier-estimate-in-survival-analysis.html
https://medcraveonline.com/BBIJ/the-kaplan-meier-estimate-in-survival-analysis.html?utm_source=chatgpt.com
https://link.springer.com/article/10.1007/BF01025868
https://link.springer.com/article/10.1007/BF01025868?utm_source=chatgpt.com
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059453/
https://link.springer.com/book/10.1007/978-1-4612-4432-5
https://link.springer.com/book/10.1007/978-1-4612-4432-5?utm_source=chatgpt.com
https://pubmed.ncbi.nlm.nih.gov/18205148/
https://pubmed.ncbi.nlm.nih.gov/18205148/?utm_source=chatgpt.com
https://www.sciencedirect.com/science/article/pii/S0021999110000823
https://proceedings.mlr.press/v2/kontkanen07a.html
https://proceedings.mlr.press/v2/kontkanen07a.html?utm_source=chatgpt.com
https://proceedings.mlr.press/v2/kontkanen07a.html?utm_source=chatgpt.com
https://ideas.repec.org/p/tky/fseres/2008cf588.html
https://ideas.repec.org/p/tky/fseres/2008cf588.html?utm_source=chatgpt.com
https://journals.lww.com/ogopen/fulltext/2025/06000/female_permanent_contraception_in_the_military.2.aspx
https://journals.lww.com/ogopen/fulltext/2025/06000/female_permanent_contraception_in_the_military.2.aspx
https://journals.lww.com/ogopen/fulltext/2025/06000/female_permanent_contraception_in_the_military.2.aspx?utm_source=chatgpt.com
https://www.sciencedirect.com/science/article/pii/S002210311000034X
https://www.sciencedirect.com/science/article/pii/S002210311000034X?utm_source=chatgpt.com
https://pubmed.ncbi.nlm.nih.gov/5910392/

IRHGI KHAZAYIN OF ECONOMIC

Academic Scientific Journals

AND ADMINISTRATIVE SCIENCES (2025) (02) (03): P(187-198)

20.

21.

22.

23.

24.

25.

Marron, J. S., & Hirdle, W. (1986). Random approximations to some measures of accuracy in
nonparametric curve estimation. Journal of Multivariate Analysis, 20(1), 91-113.
https://doi.org/10.1016/0047-259X(86)90021-7

Morris, T. P., Jarvis, C. L., Cragg, W., Phillips, P. P., Choodari-Oskooei, B., & Sydes, M. R. (2019).
Proposals on Kaplan—Meier plots in medical research and a survey of stakeholder views: KMunicate.
BMJ Open, 9(9), €030215. https://doi.org/10.1136/bmjopen-2019-030215

Mott, R. (1992). Maximum-likelihood estimation of the statistical distribution of Smith-Waterman
local sequence similarity scores. Bulletin of Mathematical Biology, 54(1), 59-75.
https://doi.org/10.1016/S0092-8240(05)80176-4

Nematolahi, S., Nazari, S., Shayan, Z., Ayatollahi, S. M. T., & Amanati, A. (2020). Improved
Kaplan-Meier estimator in survival analysis based on partially rank-ordered set samples.
Computational and Mathematical Methods in  Medicine, 2020, Article 7827434,
https://doi.org/10.1155/2020/7827434

Nieto, F. J., & Coresh, J. (1996). Adjusting survival curves for confounders: A review and a new
method. American Journal of Epidemiology, 143(10), 1059-1068.
https://pubmed.ncbi.nlm.nih.gov/8629613/

Wu, Y., & Kolassa, J. (2024). Interval-specific censoring set adjusted Kaplan—-Meier
estimator. Journal  of  Applied  Statistics, 51(12), 2436-2456. DOI: 10.1111/7.0006-
341x.2002.00439.x

ISSN: 2960-1363 Vol. 02 No.03 198


https://pubmed.ncbi.nlm.nih.gov/8629613/
https://doi.org/10.1111/j.0006-341x.2002.00439.x
https://doi.org/10.1111/j.0006-341x.2002.00439.x

