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1. Introduction

The solutions of integral equations have a major role in the field of science and engineering. Since few of these equations
can be solved explicitly, it is often necessary to resort to numerical techniques which are appropriate combinations of
numerical integration and interpolation [1, 2]. There are several numerical methods for solving linear Volterra integral
equation [3] and system of nonlinear Volterra integral equations [4], used a collocation method to solve the Volterra-
integral equation numerically, obtained a numerical solution of nonlinear Fredholm integral equations of the second kind.
The concept of fuzzy numbers and fuzzy arithmetic operations were first intro. We refer the reader to [5] for more
information on fuzzy numbers and fuzzy arithmetic. The topics of fuzzy integral [6] and fuzzy integral equations (FIE)
which growing interest for some time, in particular in relation to fuzzy control, have been rapidly developed in recent years.
The fuzzy mapping function was introduced. Later, presented an elementary fuzzy calculus based on the extension
principle also the concept of integration of fuzzy functions was first introduced obtained a numerical solution of linear
Fredholm fuzzy integral equations of the second kind, while finding an approximate solution for the fuzzy nonlinear kinds.

u@x) =fx)+1 f{f k(x, t,u(t)) dt, is more difficult and a numerical method in this case can be found in [7]. In this
paper, we present a novel and very simply numerical method (Modifying decomposition method) for solving fuzzy
nonlinear Volterra integral equation of the second kinds.

Definition 1.1 [8]

e Any functional equation in which the unknown function appears under sign of integration is called an integral
equation.
The general nonlinear integral equation can be presented in the form:

b(x)

h()u(x) = f(x) + A f k(x, t,u(®))de, 1

a(x)

then (1) is called nonlinear integral equation, wherever the indefinite function u(x) to be determined appears under one or
several integral signs. Also, if:

k(x, t,u(t)) = k(x, t)u(t),
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then (1) is called nonlinear integral equation.

Note: suppose A = 1:
b(x)
h(x)ulx) =f(x)+ 2 f k(x,t) u(t)dt, (2)
alx)
here the function h(x), f (x) and k(x,t) are prescribed while u(x) unknown function to be determined and A is a scalar
parameter named the eigenvalue of the integral equation.

e The integral equation (1) is called Homogeneous if f(x) = 0,
b(x)
h(x)u(x) = f k(x, t,u(t))dt,
a(x)
Otherwise, it is non homogenous.

e The integral equation (1) is said to of the first kind if unidentified function u, only appears under the integral sign
that is h(x) = 0, such that:

b(x)
fx) = f k(x,t,u(®))de, (3)
al®
e The integral equation (1) is said to be a second kind if h(x) = 1, hence:
b(x)
u(x) = f(x) + f k(x,t,u(t))dt, 4)
a(x)

e The integral equation (1) is called Fredholm integral equation of the limit of the integral are say that is, such that
b(x) = b and a(x) = a,

b

u(x) = f(x) + f k(x, t,u(®))de, (5)

a

e The integral equation (1) is called Volterra integral equation if the limit b(x) = x and a(x) = 0:
X
uG) = £0O + [ kCu 0, u() de, ©)
0

Definition 1.2 [9]

The membership function of a fuzzy set A is well-defined by uz: X — [0,1], the value of uz(x) is called the membership
degree of x in X, defined by:

A={(x,uz () x €X,0 < pz(x) <1}

The collection of all fuzzy sets in X will be denoted by I%, that is I* = {A: A is a fuzzy set in X}.

Example 1.1 [9]

Let set A = { (x,uz (x),x € X } be a fuzzy set A = {real number near 0} and the membership function pz (x) =
explanted as the following:

A ={(x,uz (x)) ={(0,1),(1,0.5),(2,0.2),(3,0.10), ... ... }

1+x2’

As a memberships function of fuzzy set (real number near 0).

Example 1.2 [9]
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Consider a finite set X = {a, b,c} and uz: X — I. Then A = {(a,0.5) , (b,0.9), (c, 0.8)} is a fuzzy subset of X.

Example 1.3 [9]
We will suppose a possible membership function for the fuzzy set of real numbers close zero as follows, pz:R — [0,1]

where pz(x) = H;W ,Vx € R.

5 (x)

Fig. 1. Relationship between real numbers and fuzzy set
2. Some fundamental fuzzy set concepts

Let X be space of objects, let A be a fuzzy set in X. Then one can express the concept associated to a
fuzzy subset A of X.

e Let A be a fuzzy set in X, the support of A denoted Supp(A) is the crisp set of X whose
elements all have nonzero membership grades in A such that:

Supp(A) = {x| pz(X) > 0:x € X}

Notation 2.1
A fuzzy set A is said to be a finite fuzzy set if and only if Supp(4) is a finite set.

Proposition 2.1
Let A and B be two fuzzy sets of X and {4;},c, S I* be a family of a fuzzy sets in X then:

a. Supp(AN E} = Supp(4) N Supp(é).
b. SuPP(UjLE/\ Ay) = U)Lg/\ Supp(4).
C. [Supp(A)]° S Supp(A°).

e The set of every point x € X is fuzzy set 4 is core.
pa(x) =1
e A fuzzy set 4 is height is the largest membership grade above X.
hgt(4) = supyexma(x)

e The pointin X is the crossover point of a fuzzy set A and the membership in 4 = 0.5.
e A fuzzy singleton is a fuzzy set with a single point of support in X

pi(x) = a,a € (0,1]

e Fuzzy set A is named the normalized if it is height =1, otherwise it is subnormal such that
hgt(4) < 1.
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Notation 2.2 [8]

A fuzzy set that is not empty A may always be normal by the following:
N Ha(x)
i(x) =———

Ha(x) SUup Uzeo

e Empty fuzzy set (A = @) if and only if uz (x) = 0, for each x € X.
e Universal fuzzy set (A = X ) iff uz(x) = 1, foreach € X.

Example 2.1 [8]
Let X =[-5,1],Y =[-5,12] and A and B be two fuzzy subsets of X and Y respectively with

membership function:

al + > 5<x< -2
— — — x —
i _ 3 3J — — ’
na(x) = —x 1 et
3 3 x
(0, -5=<y<-3
y+3 3<y<4
us() =4 777 y==5
2 2 <
gt =Y
Ha Ui
L 1
5 0 5 -5 0 5 10
Fig. 2. The associated membership function
o A =FRifuz(x)=uz), Vx €X.
e ACBifuz(x) <uz(x), xe€X.
e A€ or A isthe complement of A with membership function

pze(x) =1 —puz(x), Vx€eX

e ( = AUB is a fuzzy set by membership function:

ue (x) = max {pz(x),  pp (O}

C = ANB is a fuzzy set by membership function:

[ ]
ue (x) = minfuz (x),  pp ()}
More generally for a fuzzy subset of I* , A = {4; | i € J, where ] is a set} then the union € = U;4;, and
the intersection C = N;A; are fuzzy sets with the membership functions defined by:

ue (x) = sup;{ psz,(x) :x € X ,i € J}.
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ue (x) = infi{ uz,(x) :x € X ,i €J}.

Example 2.2
Let X = {a, b,c} and 4, B, C are fuzzy subsets of X where:
A =1{(a,0.3),(b,03),(c0.6)},

B = {(a,0.4),(b,0.4),(c,0.5)},
C ={(a,0.3),(b,0.3),(c, 0.3)}.

Then:
A ={(a,0.3),(b,0.3),(c,0.6)} N B = {(a,0.4), (b,0.4), (c,0.5)} = {(a, 0.3), (b,0.3), (c,0.5)}.

And
A =1{(a,0.3),(h,0.3),(c,0.6)} U B ={(a,0.4),(b,0.4),(c,0.6)} = {(a,0.4), (b,0.4),(c,0.6)}.

AC =1 — puy(x), A = {(a,0.7), (b,0.7), (c,0.4)}.

Notation 2.3 [9]
Here are some properties U, N and complementation:
e Commutativity: AUB = BUA and ANB = BNA.
e Associativity: (AUB)UC = AU(BUC) and (ANB)NC = AN(BNC).
e Idempotency: BNB = B and BUB = B.
e Distributivity: AU(BNC) = (AUB)N(AUC) and AN(BUC) = (ANBYU(AND).
e ANG =@ and AUX = X.
o Identity: AU@ = A and ANX = A.
e Absorption: AU(ANB) = A and AN(AUB) = A.
e Demorgans law: (AUB)¢ = A°NB¢ and (ANB)¢ = A°UB°.
e Involution: 4 = A.
e Equivalence formula: (A°UB) N (AUB®) = (A°NB°)U(ANB).
e Symmetrical difference: (A°NB)U(ANB) = (A°UB°)N(AUB).

Notation 2.4 [9]

The only lower for the contradiction, AUA® = X, and the lower of A NA¢ = @. Both laws are broken
for the fuzzy set because AUAC =X and A N A€ # @ in deed Vx € 4 such that pz (x) = o, then
according to the point (7), we have Uivg(x) =max{a,l —a} #1 and pznz (x) =
min{a,1 —a} # 0.

e The cartesian product of a fuzzy set is well-defined by, suppose 4, 4, , ... , 4, be a fuzzy set in

X.,X,,..,X,. The cartesian product is then a fuzzy set in the product space X; X X, X ... X
X,, with the membership function:

M, x .xay) =min{uz, ()| x= (%1, ., %, )ox; €X; 3.

e The m®™ power for the fuzzy set Ais a fuzzy set by membership function pgm (x) =
[uz(x) "V x€X.
e Thealgebraic sum C = A + B the defined by:

C={(x,pa+5() |Ix€X},

then:
20
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na+g () =puz(x) + pg (x) — pg (x) pg ().

e Theboundedsum, C = A @ B is defined as:

C ={(x,,ug@g(x)) | xX€EX},

where:

tags (x) =min{l,uz (x) + pg (0)}.
e The bounded difference C = A ® B is defined by:
¢ = { (x.ug@g (x)) |x € X}

Then:
ties (x) =max{0,uz (x) + uz (x) — 1}

e Two fuzzy sets' algebraic product C = A © B is defined as:
C={(xuz)uz ) |xeXx}.

Example 2.3 [9]

Let A = {(3,0.4),(5,2),(7,0.5)}and B = {(3,2),(5,0.5)}.

Then:

Ax B =1{((33),0.4),((53).2),((7,3),0.5),((3,5),0.4), ((5,5),0.5), ((7,5),0.5)}.

A% ={(3,0.16),(5,2),(7,0.25)}.
A+B ={32),(52),(7,05)}
ADB =1{(3,2),(52),(7,0.5)}.

A ®B ={(3,04),(5,0.5).

A.B=1{(3,04),(5,0.5)}.

a_cut or o_level [10]

The among the basic notions of a fuzzy set is the concept of the a —level or a —level set. And its
variant strong a —level or (strong a —level set). Given a fuzzy set A defined on X, and any number
a € [0,1] the @ —cut A, is (the crisp set) that the contain all the elements of the universal set X whose
the membership grades in A are greater than or equal to the specified value of 4, = {x € X: uz (x) >
a},VxeXwhile A+ = {xeX : uz(x) > a}vx € Xis the called "strong a_cuts". The following
properties, are satisfied for all « € [0,1]:

o Ifa;,a, €[0,1]and a; < ay,then 4,, 2 A, if A is convex.
(AU B)a =Aq UB,.

(4 nl:?)a = Ay NB,.

(A< B),0ives A, € B,.

A =Bifandonlyif A, = B,, ¥ a € [0,1].

Notation 2.5

If Ay, = By, then it is not necessary that A = B, for different a; and a,.
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Notation 2.6 [10]

e The set of all level a € [0, 1], that represent distinct & — cuts of a given fuzzy set 4 is named
a level set of A.

A(A) ={aluz(x) = a, for some x € X}

e The support for A is just like the strong a —cut of A4 for & = 0,
Ao+ = Supp (4).
e The core of 4 'is exactly, the same as the a —cut of A4 for a = 1, that is:
A; = core (A).
e Itis also possible to view the height of A as the supermom of the a —level for which A, # @A.

e The membership function of a fuzzy set A might be described in terms of the quality function
for is a —cuts of based on the formula:

pz (x) = SuPae[0,1]Min{ a,pqa(x)},

where:

(1 if x€A,
Haa(X) = {0, otherwise.

If the universal set X is specified in R, then we can generalize the notion of convexity to fuzzy set. The
fuzzy set with these a _cut sets is convex if all @ _ cuts are convex.
Definition 2.1 [10]

A fuzzy set A on R is convex if puz (Ax; + (1 — D)xy) = min{ uz (x;), pz(xy)}, forall x;,x, € R
and 1 € [0,1].

Notation 2.7 [8]
A, isaconvex forany a € [0, 1].

Definition 2.2 [11]

Let f: X — Y and B be a fuzzy set definite on X, after that can obtain a fuzzy set B in Y by f and B for
all y € Y that’s:

o (suplug)if fTM() #0,vx€X,  y=f(x)},
B ) = { 0 iffie =0

The generalization of the per explained extension of fuzzy set in above definition as follows, let
X =X, X,, .., X, and By, B,, ..., B, be r_fuzzy set in the universal, f is a function form X to a universe
Y(y = f(x1, x5, ..., %)), then a fuzzy set € in Y is defined by:

C~ = {(y'.u(?(y)) |y = f(xlixZ' ""xr)'f(xlith ---’xr € X};

Where:

SUD (31,52, %)EF L () min{.uc"(xl)r ---uué(xr) if f_l(y) + 0},

He(y) = { 0 if f~1 (y) = 0.
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Where f~1is an inverse of f.

Definition 2.3 [12]

The fuzzy function if F: X — P (x), with uz (x): X — I for any a € [0,1]. So can define the a_cut of
F denoted, by F, as:

Vx€X,F, (x) = ‘b’lﬂﬁ(x)(y) = a}.

For a fuzzy set of function F with uz (x): R* — I, the a —cut of F, F, is as:

E,={f:X>R,x€X,f(x)€F,(x)}
and

{f:X->R |InfxEXUF'(x) (f(x)) = HUF (f) = CZ}.

Notation 2.8 [13]

e A fuzzy function having a one curve named normalized fuzzy mapping.

e A continuous fuzzy function is a fuzzy function F(x) that is pz, () is a continuous Vx € I €
RandVy €R.

e The concept of fuzzy interval is a convex normalized fuzzy set of R whose membership
function is a continuous.

Fuzzy Number 2.1 [5]
A fuzzy number N is the convex normalized, fuzzy set N for the realline R, that is:

e There exist exactly one x, € R with ug (x,) = 1 (x, is named mean value of N).
e uy(x) is continuous function.

Definition 2.4 [14]

A fuzzy number N is called positive (negative) if it is membership function define by: ug(x) =
0,Vvx<O.

Definition 2.5 [15]
A fuzzy number is a fuzzy set which is a map ii: R — [a, b], that satisfies:

e i is upper semi continuous function.

e ii(x) = 0 outside some interval [a, d].

e There are real numbers b,c suchthata < b < ¢ < d thatis:
a. 1i(x) isa monotonic increasing function on [a, b].

b. {i(x) is a monotonic decreasing function on [c, d].

c. i(x)=1Vxe]bc]

Definition 2.6 [16]

A fuzzy number 7 is a parametric form is a pair (u,u) of function u(a),u (a), 0 < a <1 the
following conditions by:

e u(a) is abounded left continuous nondecreasing function on [0,1].
e u(a) is a bounded left continuous nonincreasing function on [0,1].
e u(a)u(a), 0sa<l.
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Definition 2.7 [16]

For any arbitrary fuzzy number @i = (g(a),ﬁ(a)) and 7 = (g(a),? (a)) and K is scalar. The ensuing
characteristics are met for all « € [0, 1].

e (u+v)(a)= (g(a) + z(a)) and (u +v) (a) = (ﬁ(a) + E(a)).
o Ki = (ku(a), ku(a)).
o 7.7 = {ul@) v (@)u(@ 7 (@)1 v (@),5) @a)}

Definition 2.8 [17]
For any arbitrary, a fuzzy number @, ¥ € E*

D (&, %) = max{subaeo 11 [u (@) — v ()|, supaepo 11 [2(@) — v(@)|}

Denoted the distance between @ and 7, also (E*, D) is a complete metric space.

Theorem 2.1 [18]

(E1, D) is a metric space.

Definition 2.9 [18]

Let {G,} c E! and @ € E?! the sequence {d,} is said to be convergence to @ in distance denoted by if
lim,,_,, @, = da if any given € > 0 there’s for integral N > 0 such that D(@,,a) <& forn>N. A
sequence {d, } in E! is said to be a Cauchy sequence if for every £ > 0, there exists an integral N >
0 such that D (a,, d,,) < ¢ for n,m > N. A fuzzy metric space (E%,D) is called the complete metric
space if every Cauchy sequence in E?! is a convergence.

Theorem 2.2 [18]
The sequence {a@,} in E* is a convergence in the metric D iff {d,,} is a cauchy sequence.

Definition 2.10 [18]
The distance between two fuzzy numbers @, b € E* is given by:
D(c’i,E) = sup {max{ sup Inf |la—b|, sup Inf |la—b|}}

0<as1 a€la=q,aty]l bE[b™g,bT4] beE[b~™¢ ,bT o] a€la"q,at 4]

D(d,E) = sup {max{la g —b 4| ,la*y —b .|} }

O<a<1

Definition 2.11 [18]

A fuzzy function f:X x X — E' is a called level wise continuous at point (x,,t,) € X X X provided
for any fixed a € [0,1] and for any arbitrary € > 0 there’s §(¢g, @) > 0 then:

D(|f(x, 0)|a,|f (xo, to)|a) < &,

whenever |t —t,| < §and |x — xy| < SV x,t € X.

Definition 2.12 [8]
24
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Let R be the set of real number and P(R) all a fuzzy subset defined on R defined the fuzzy number
d € E? as follows by:

e disanormal that is there exists x € R that is uz(x) = 1.
e Foreverya € [0,1],a, = {x: uz(x) = a} is a closed interval denoted by [a™,, a*,].

Using Zadeh notation @ € F(R) is the fuzzy set on R defined by:

a =Uger0,1] @a =Yaelo,1] ala” g, a+a]-

Definition 2.13 [11]

A function F:1 — E™ is called a bounded if there exists a constant M > 0 that is D(F(x),0) < M for
all e L.

Definition 2.14 [19]
Let A c F(R),

If there is M € E* thatis @ M for all @ € A then A is said to have an upper bound M.
If there is M € E* that is 71 € a for all @ € A then 4 is called lower bound 7.

A is said to be bound if 4 has both upper and lower bounds.

A sequence {@,} € E* is said to be bound if the set {@,|n € N} is bound.

Definition 2.15 [20]
The family of E™ denotes nonempty compact, the convex a fuzzy subset of R™. Let I = [a, b] be

compact interval E™ = {p: R™ — I}. That is p satisfies the following:
e pis"normal "
e pis"fuzzy convex "
e pis ™ upper semi continuous" such that the a_ cuts sets [p], are closed for each @ € [0, 1].
e [p]°=cl{x€eR"|p(x) >0} the is compact where a cut sets [p]* is defined by

[p]* ={x €R™ |p(x) = a}for0 < a < 1and[p]° fora = 0.

Then from (1)-(4) it is follows that is [p]* € E" forall 0 < a < 1.

Definition 2.16 [11]

A function F:1— E™ is said to be continuous if x, €1 and &€ > 0 there exists § > 0 such that
|x — xo] < 6 then D( F(x) ,F(xo)) <&

Definition 2.17 [18]

Let f(x) be a closed and bounded a fuzzy function on [a, b] suppose the £(x) and fR(x) are the
Riemann integral on [a, b] for every a € [0,1]. Let:

b b
Be= | [ 7 @ax, [ 7 Gax

Then we say that f(x) is a fuzzy Riemann integral of [a,b] and the membership function of
f:f(x)dx is defined by:
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(a) = sup a.1lp (r),for € B,.

Mf;f(x)dx 0<as<1
Definition Triangular Fuzzy Number 2.18 [18]

It is fuzzy number represented with three points as follows by: B = [by, b,, b3]. This representation is
interpreted as in the following membership function:

( O ,x<b1,
X—bl
,by < x < by,
b, — b,
ﬂﬁ(x)=< ba — x
3 b, <x<b
b; — b, R ET e
\ 0 , X > bs.

Now, if we get crisp interval by a_cut operation interval B, shall be obtained as follows for every
a € [0,1]

By = [bga) :béa)] = [ (b, —by)a + by ,—(bs — by)a + b3 ].

Definition Trapezoidal Fuzzy Number 2.19 [8]

We can explain the trapezoidal fuzzy number B as follows: B = [by, by, bs, b,]. The membership
function of this fuzzy number will be interpreted as follows:

( O if x<bjorx>b,,
x—b1 .
- if by<x<b,,
,ng(X)=< bZ !
4 — X .
b4—b3 lf b3£X£b4;

\ 1 if by < x<bs.
The a —level interval for this shape is written as:
Va € [0,1], B, = [(b, — by)a + by, —(bsy — b3)a + by].

Definition 2.20 [21]
Let i be a fuzzy set on R then # is called a fuzzy interval if it satisfies:

i is normal there exsist x, € R .i.e. u(xy) = 1.

i is convex forevery x,t € R,0 < A < 1 it holds that u(1x + (1 — A)y = min{u(x),u(y)}.

i is upper semi continuous.

[u]® = cl{x € R:u(x) > 0} is a compact subset of R the a_cuts of a fuzzy interval u with
0<a<1is the crisp set [u]* = {x € R,u(x) = a}. For a fuzzy interval i is a_cuts are
closed interval in R let denoted by [u]® = [u(a) , u(@))].

Definition 2.21 [20]

A fuzzy number N is of LR —type if there’s functions L(named the left-function) and R(named the
right-function) so L(x) <uy (x) <R(x),vVxeX, and scalars a>0,b >0 with:

L (%), forx <n,

R (%), for x = n.

uy (x) =

26
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The mean value of N is denoted by n, while the left and right spreads of n are denoted by a and b,
respectively. N is represented symbolically as (n, a, b) ..

x—1 a<x<h,
pg(x) =41

0, x<a,
X —a < <b
7 as x )
up(x) =4 b—a
cC— X <x<d
kd—c' €=
1
0

a Xq b

Fig. 3. The triangular membership function

a b c d
Fig. 4. The trapezoidal function

Definition 2.22 [20]
Any fuzzy number can be described by:

(L(a—x), forx € [a—a,al],

a
1, for x € [a,b],
=1
R( 3 ), forxel[b,b+p],
\ 0, otherwise.

Where [a, b] is the core of Aand [a, b] — [0,1],R:[0,1] — [0,1] are shape function (named briefly S
shape) that is continuous and nonincreasing so, L(0) = R(0) = 1,L(1) = R(1) = 0.

When the fuzzy function is considered to be of the LR type, determining the integration becomes
somewhat easier. We shall assume that fuzzifying function f(u) = (f(u),s(w), t(w)).z is a fuzzy

number in LR —typr for every x € [a, b] which mean that there exists a reference functions L: R* —
[0,1] and R: R* - [0,1], f:1 > Rand s:1 » R* and t:1 - R™ that is for every u € [a, b]:
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[L(f(:()u; > forallv < f(w),
Hia (V) = {

| (V—f (u)

7w

Where f(u) is the mean value of f(u) and s(u),t(u) are the spread functions and the reference
functions L and R are such that L(0) = R(0) = 1 and L(1) = R(1) = 0 foreach x € L.

), forallv = f(u).

Definition 2.23 [8]

Let F: 1 — E™ be an integral of I which is levelwise continuous is denoted by fIF(x)dx or f: F(x)dx
also [[,F(x)dx]* = [ ,F(x)qdx {[,f(x)dx| f:1 - R™ is a measurable function for F(x), for every
0<a<1}

Notation 2.9 [20]

e For any a fuzzy function fwe have [, f = f:f = —fbaf, with the membership function
o (W) = ppp ().
e To integrate of LR fuzzifying Func over a non-fuzzy interval [a, b], it is a sufficient to integrate

the mean value and spread function over [a, b], the result is an LR a fuzzy number.
e Commutative condition for [, 7 if forall @ € [0,1] is (/,/)e = [ ,f a-

Fuzzy Integral Equation 2.1 [8]
The fuzzy nonlinear Volterra in integral equation of the second kind may be represented as follows by:

Ulx)=f(x)+2 f k (x,t,@(t))dt, (7

Where 1 > 0 and k is arbitrary given kernel function f is given function of x € [a, b]. If f(x) is a
crisp function then the solution of above equation is crisp as well. If f(x) is a fuzzy function this
equation only possesses fuzzy solving the sufficient condition for the existence of the solving of the
equation of the second kind, for solution (7) we may replace (7) by the equivalent system:

X

U@ = f(x) +,1fg(x, t, F(u(t))dt,

a

X

U(x) = f(x) + 2 f k (x,t, F(u(®))dt. (8)

a

Which possesses a unique solving (U, U) € B, which is a fuzzy function, such that for each x. The pair
(Q(x, a),U(x, a)) is a fuzzy number. Let F(x,t,u,v) be the function F of (8), where u and v are

constants and u < v. In other word F(x, t,u, v) are obtained by substituting U = (u,v) in (8). The
domain where F indeed by:

A={(x,t,u,v)|la<x,t <b,—o0<v<00,—00<uU<UV}
The parametric form of (8) is given by:

Ux, @) = f(x,a) +Af(fk(x,t,F(Q(t,a)))dt
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Ulx,a) = f(x,a) + 4 f(f k (x, t,F (ﬁ(t, a)) ) dt. (9)

For a € [0,1]. In most cases, however analytic solution to (9) may not be found and a numerical
approach must be considered.

3. The modified decomposition method (MDM)

As shown before the Adomian decomposition method provides the solution in an infinite series of
components. The components u;,j = 0 are easily computed if the inhomogenous term f(x) in the
Volterra integral equation:

u(x) = f(x) + 1 f, k(x, tu(t)dt (10)

Consists of a polynomial. However, if the function f(x) consists of a combination of two or more of
polynomials, trigonmetric functions, hyperbolic function, and others, the evaluation of the components
uj,j = 0 requires cumbersome work. A reliable modification of the Adomian decomposition method
was developed by Wazwaz and presented. The modified decomposition method will facilitate the
computational process and further accelerate the convergence of the series solution. The modified
decomposition method will be applied, wherever it is appropriate, to all integral equation and
differential equation of any order. It is interesting to note that the modified decomposition method
depends mainly on splitting the function f(x) into two parts, therefore it cannot be used if the function
f(x) consists of only one term. The modified decomposition method will be outlined and employed in
this section and in other chapters as well. To give a clear description of the technique, we recall that
the standard Adomian decomposition method admits use of the recurrence relation:

uO(x) = f(X),
Uppr(x) = Aka(x, t) u,(t)dt, k=0, (11)
0

Where the solution u(x) is expressed by an infinite sum of components defined before by:

o)

u(x) = Z u, (x). (12)

n=0
In view of (8), the components u,(x),n = 0 can be easily evaluated. The modified decomposition
method introduces a slight variation to the recurrence relation (8) that will lead to the determination of
the components of u(x) in an easier and faster manner. For many cases, the function f(x) can be set
as the sum of two partial functions, namely f; (x) and £, (x). In other words, we can set

f) = f1(x) + fo (). (13)

In view of (10), we introduce a introduce a qualitative change in the formation of the recurrence
relation (7). To minimize the size of calculations, we identify the zeroth component u,(x) by one part
of f(x), namely f;(x) or f,(x). The other part of f(x) can be added to the component u, (x) among
other terms. In other words, the modified decomposition method introduces the modified recurrence
relation:

up(x) = f;(x),
up(x) = f,(0) + A f, k(x,0) ug (1) dt, (14)

X

U (x) = /1[ k(x,t)u, (t)dt, k = 1.
0

This shows that the difference between the standard recurrence relation (10) and the modified
recurrence relation (14) rests only in the formation of the first two components u,(x) and u, (x) only.
The other components u;,j = 2 remain the same in the two recurrence relations. Although this

variation in the formation of uy(x) and u, (x) is slight, however it plays a major role in accelerating
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the convergence of the solution and in minimizing the size of computational work. Moreover, reducing
the number of terms in f; (x) affects not only the component u, (x), but also the other components as
well. This result was confirmed by several research works.

Two important remarks related to the modified method can be made here. First, by proper selection of
the functions f; (x) and f,(x), the exact solution u(x) may be obtained by using very few iterations,
and sometimes by evaluating only two components. The success of this modification depends only on
the proper choice of f; (x) and f,(x), and this can be made through trials only. A rule that may help for
the proper choice of f; (x) and f,(x) could not be found yet. Second if f(x) consists of one term only,
the standard decomposition method can be used in this case.

It is worth mentioning that the modified decomposition method will be used for Volterra and Fredholm
integral, equations linear and nonlinear equation. The modified decomposition method will be
illustrated by discussing the following examples.

Example:
Solve fuzzy Volterra nonlinear integral equation:

X

u(x, @) = f(x,a) + j t2 u(t,a)? dt
0

x?a = f(x,a) +]t2 (t? a)? dt

0
X

xzoczf(x,oc)+ft6 a? dt

0
7

t
xla = f(x,a) + | 7 a?|¥

x7
xta = f(x,a) + 7 a?

x7
flx,a) = x*a — 7 x?
X
x7
wlna) = ——— ¥+ [ Cu () de
0
X
7
w(x @) = ——— x° +ft2 (t2a)?dt
0
X
x7
u (x,a) = — 7 x? +ft2 (t*a?)dt
0
x7 t?
wxa) =—-——— x*+|— 2’
7 x7
2 2
) = — =0
Uy (x, a) - X + - X

ﬁ(x' a) +/i2(x, a) = x’a
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X

u(x, @) = f(x,a) +.[t2 u(t, a)?dt
0

U(x,a) = f(x,a) + f t2 u(t, a)?dt

0

x22—a) = f(x,a) + J.xtz(t2 2—a)?)dt
0

x22—a) = f(x,a) + fxt6(2 —a)?dt
0

22— =fra+5 C-a

_ 7

frm =@ -0 -5 @-a)?

Uy(x, @) =x*(2—a)

x7 X
Uy a)=——2—a)? 2 ,a)d
uq (x, ) 7( Q) +f0t ug (t, a)dt

_ x7 X
u (x,a) = —7(2 - a)? +f t2 (t*(2 — a)? dt
0

x7 X
u(x,a) = —7(2 - a)? +f té (t?(2 — a)? dt
0
v x7 2 t7 21x
Uy (x, @) = —7(2—05) +|7(2—“) o

_ x’ x’
u(x,a) = —7(2 — a)? +7(2 — a)?

u,(x,a) =0

f. @) +f,(xa) =x%(2 —a)

Table 1. Comparison between the Exact Solution and the Modified Decomposition Method for Upper
with Different Level a and Finding the Absolute Error, f;(x, @) + f>(x, @) = x*a

u(x, a) MDM u Absolute error u

X a 01 0.3 0.5 0.7 0.1 0.3 0.5 0.7 01 03 05 07
0 0 0 0 0 0 0 0 0 0
0.2 0.004 0.012 0.02 0.028 0.004 0.012 0.02 0.028 0
0.4 0.016 0.048 0.08 0.112 0.016 0.048 0.08 0.112 O
0.6 0.036 0.108 0.18 0.252 0.036 0.108 0.18 0.252 O

o O O o
o O O o
o O O o

Table 2. Comparison between the Exact Solution and the Modified Decomposition Method for Upper
with Different Level « and Finding the Absolute Error, f, (x,@) + f,(x, @) = x2(2 — )

u(x,a) MDM u Absolute error u
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X
0

0.2
0.4
0.6

a 01 0.3 0.5 0.7 0.1 0.3 0.5 0.7 01 03 05 0.7

0 0 0 0 0 0 0 0
0.076 0.068 0.06 0.052 0.076 0.068 0.06 0.052
0304 0272 024 0.208 0.304 0.272 0.24 0.208

0
0
0
0.684 0.612 054 0408 0684 0612 054 0468 O

0
0
0
0

o O O o
O O oo

Fig. 5. Comparison between the exact solution and the modified decomposition method for upper and

lower with different level alpha

4. Conclusion

This work presents the use of the reliable modified decomposition method for solving non-linear fuzzy
Volterra integral equations of second kind. The modified decomposition method is implemented in a
straight forward manner and provided significant improvement by requiring only two iterations to
obtain the exact solution. Accelerating convergence of the modified Admian method requires that the
exact solution must be a part of £(x, 7).
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