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1. Introduction 

The solutions of integral equations have a major role in the field of science and engineering. Since few of these equations 

can be solved explicitly, it is often necessary to resort to numerical techniques which are appropriate combinations of 

numerical integration and interpolation [1, 2]. There are several numerical methods for solving linear Volterra integral 

equation [3] and system of nonlinear Volterra integral equations [4], used a collocation method to solve the Volterra-

integral equation numerically, obtained a numerical solution of nonlinear Fredholm integral equations of the second kind. 

The concept of fuzzy numbers and fuzzy arithmetic operations were first intro. We refer the reader to [5] for more 

information on fuzzy numbers and fuzzy arithmetic. The topics of fuzzy integral [6] and fuzzy integral equations (FIE) 

which growing interest for some time, in particular in relation to fuzzy control, have been rapidly developed in recent years. 

The fuzzy mapping function was introduced. Later, presented an elementary fuzzy calculus based on the extension 

principle also the concept of integration of fuzzy functions was first introduced obtained a numerical solution of linear 

Fredholm fuzzy integral equations of the second kind, while finding an approximate solution for the fuzzy nonlinear kinds. 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡, 𝑢(𝑡))
𝑥

𝑎
𝑑𝑡, is more difficult and a numerical method in this case can be found in [7]. In this 

paper, we present a novel and very simply numerical method (Modifying decomposition method) for solving fuzzy 

nonlinear Volterra integral equation of the second kinds. 

Definition 1.1 [8]  

 Any functional equation in which the unknown function appears under sign of integration is called an integral 

equation. 

The general nonlinear integral equation can be presented in the form: 

ℎ(𝑥)𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡, 𝑢(𝑡))𝑑𝑡

𝑏(𝑥)

𝑎(𝑥)

,                                                                                                            (1) 

then (1) is called nonlinear integral equation, wherever the indefinite function 𝑢(𝑥) to be determined appears under one or 

several integral signs. Also, if: 

𝑘(𝑥, 𝑡, 𝑢(𝑡)) = 𝑘(𝑥, 𝑡)𝑢(𝑡), 
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then (1) is called nonlinear integral equation. 

Note: suppose 𝜆 = 1: 

ℎ(𝑥)𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡) 𝑢(𝑡)𝑑𝑡

𝑏(𝑥)

𝑎(𝑥)

,                                                                                                             (2) 

here the function ℎ(x), 𝑓(x) and 𝑘(𝑥, 𝑡) are prescribed while 𝑢(𝑥) unknown function to be determined and 𝜆 is a scalar 

parameter named the eigenvalue of the integral equation. 

 The integral equation (1) is called Homogeneous if 𝑓(x) = 0, 

ℎ(𝑥)𝑢(𝑥) = ∫ 𝑘(𝑥, 𝑡, 𝑢(𝑡))𝑑𝑡

𝑏(𝑥)

𝑎(𝑥)

, 

Otherwise, it is non homogenous. 

 The integral equation (1) is said to of the first kind if unidentified function 𝑢, only appears under the integral sign 

that is ℎ(𝑥) = 0, such that: 

𝑓(𝑥) = ∫ 𝑘(𝑥, 𝑡, 𝑢(𝑡))𝑑𝑡

𝑏(𝑥)

𝑎(𝑥)

,                                                                                                                                      (3) 

 The integral equation (1) is said to be a second kind if ℎ(𝑥) = 1, hence: 

𝑢(𝑥) = 𝑓(𝑥) + ∫ 𝑘(𝑥, 𝑡, 𝑢(𝑡))𝑑𝑡

𝑏(𝑥)

𝑎(𝑥)

,                                                                                                                        (4) 

 The integral equation (1) is called Fredholm integral equation of the limit of the integral are say that is, such that 

𝑏(x) = 𝑏 and 𝑎(𝑥) = 𝑎, 

𝑢(𝑥) = 𝑓(𝑥) + ∫𝑘(𝑥, 𝑡, 𝑢(𝑡))𝑑𝑡

𝑏

𝑎

,                                                                                                                            (5) 

 The integral equation (1) is called Volterra integral equation if the limit 𝑏(𝑥) = 𝑥 and a(x) = 0: 

𝑢(𝑥) = 𝑓(𝑥) + ∫𝑘(𝑥, 𝑡), 𝑢(𝑡) 𝑑𝑡

𝑥

0

,                                                                                                                            (6) 

Definition 1.2 [9]  

The membership function of a fuzzy set 𝐴 is well-defined by 𝜇𝐴: 𝑋 → [0,1], the value of 𝜇𝐴(𝑥) is called the membership 

degree of 𝑥 in 𝑋, defined by: 

𝐴̃ = { (𝑥 , 𝜇𝐴 ̃(𝑥)): 𝑥 ∈ 𝑋, 0 ≤ 𝜇𝐴(𝑥) ≤ 1} 

The collection of all fuzzy sets in 𝑋 will be denoted by 𝐼𝑋, that is 𝐼𝑋 = {𝐴̃: 𝐴̃ is a fuzzy set in 𝑋}. 

 

Example 1.1 [9]  

Let set 𝐴̃ = { (𝑥, 𝜇𝐴 ̃(𝑥) , 𝑥 ∈ 𝑋 } be a fuzzy set 𝐴̃ = {𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑛𝑒𝑎𝑟 0} and the membership function 𝜇𝐴 ̃(𝑥) =
1 

1+𝑥2
, 

explanted as the following: 

𝐴 ̃ = { (𝑥, 𝜇𝐴 ̃(𝑥) ) = {(0,1), (1, 0.5), (2, 0.2), (3, 0.10), …… } 

As a memberships function of fuzzy set (𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑛𝑒𝑎𝑟 0). 

 

 

Example 1.2 [9]  
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Consider a finite set 𝑋 = {𝑎, 𝑏, 𝑐} and 𝜇𝐴: 𝑋 → 𝐼. Then 𝐴̃ = {(𝑎, 0.5) , (𝑏, 0.9) , (𝑐, 0.8)} is a fuzzy subset of 𝑋. 

 

Example 1.3 [9]  

We will suppose a possible membership function for the fuzzy set of real numbers close zero as follows, 𝜇𝐴 ̃: ℝ → [0,1] 

where 𝜇𝐴(𝑥) =
1

1+10𝑥2
  , ∀𝑥 ∈ ℝ. 

 

Fig. 1. Relationship between real numbers and fuzzy set 

2. Some fundamental fuzzy set concepts 

Let 𝑋 be space of objects, let 𝐴̃ be a fuzzy set in 𝑋. Then one can express the concept associated to a 

fuzzy subset 𝐴̃ of 𝑋. 

 Let 𝐴̃ be a fuzzy set in 𝑋, the support of 𝐴̃ denoted 𝑆𝑢𝑝𝑝(𝐴̃) is the crisp set of 𝑋 whose 

elements all have nonzero membership grades in 𝐴̃ such that:  

𝑆𝑢𝑝𝑝(𝐴̃) = {𝑥| 𝜇𝐴̃(𝑋) > 0: 𝑥 ∈ 𝑋} 

Notation 2.1 

A fuzzy set 𝐴̃ is said to be a finite fuzzy set if and only if 𝑆𝑢𝑝𝑝(𝐴̃) is a finite set. 

  

Proposition 2.1 

Let 𝐴̃ and 𝐵̃ be two fuzzy sets of 𝑋 and {𝐴̃𝜆}𝜆∈∧ ⊆ 𝐼
𝑋 be a family of a fuzzy sets in 𝑋 then: 

a. 𝑆𝑢𝑝𝑝(𝐴̃ ⋂ 𝐵̃) = 𝑆𝑢𝑝𝑝(𝐴̃) ⋂ 𝑆𝑢𝑝𝑝(𝐵̃). 

b. 𝑆𝑢𝑝𝑝(⋃𝜆∈∧ 𝐴̃𝜆) = ⋃𝜆∈∧ 𝑆𝑢𝑝𝑝(𝐴̃𝜆). 
c. [𝑆𝑢𝑝𝑝(𝐴̃)]𝑐 ⊆ 𝑆𝑢𝑝𝑝(𝐴̃𝑐). 

 

 The set of every point 𝑥 ∈ 𝑋 is fuzzy set 𝐴̃ is core. 

  𝜇𝐴̃(𝑥) = 1 

 A fuzzy set 𝐴̃ is height is the largest membership grade above 𝑋. 

ℎ𝑔𝑡(𝐴̃) = 𝑠𝑢𝑝𝑥∈𝑋𝜇𝐴̃(𝑥) 

 The point in 𝑋 is the crossover point of a fuzzy set 𝐴̃ and the membership in 𝐴̃ = 0.5. 

 A fuzzy singleton is a fuzzy set with a single point of support in 𝑋 

𝜇𝐴̃(𝑥) = 𝛼, 𝛼 ∈ (0,1] 

 Fuzzy set 𝐴̃ is named the normalized if it is height =1, otherwise it is subnormal such that 

ℎ𝑔𝑡(𝐴̃) < 1. 
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Notation 2.2 [8]  

A fuzzy set that is not empty 𝐴̃ may always be normal by the following: 

𝜇𝐴̃
∗ (𝑥) =

𝜇𝐴̃(𝑥)

𝑠𝑢𝑝 𝜇𝐴̃(𝑥)
. 

 Empty fuzzy set (𝐴̃ = Ø̃ ) if and only if 𝜇𝐴 ̃(𝑥) = 0, for each 𝑥 ∈ 𝑋. 

 Universal fuzzy set (𝐴̃ = 𝑋 ) iff  𝜇𝐴 ̃(𝑥) = 1, for each ∈ 𝑋. 

 

Example 2.1 [8]  

Let 𝑋 = [−5,1], 𝑌 = [−5,12] and 𝐴̃ and 𝐵̃ be two fuzzy subsets of 𝑋 and 𝑌 respectively with 

membership function: 

𝜇𝐴̃(𝑥) = {

𝑥

3
+
5

3
,               − 5 ≤ 𝑥 ≤ −2,

−𝑥

3
+
1

3
,               − 2 ≤ 𝑥 ≤ 1.

 

𝜇𝐵̃(𝑥) =

{
 
 

 
 
0,               − 5 ≤ 𝑦 ≤ −3,
𝑦

7
+
3

7
,        − 3 ≤ 𝑦 ≤ 4,

−𝑦

8
+
12

8
,        4 ≤ 𝑦 ≤ 12.

 

  

Fig. 2. The associated membership function 

 

 𝐴 ̃ = 𝐵 ̃if 𝜇𝐴 ̃(𝑥) = 𝜇𝐵 ̃(𝑥), ∀𝑥 ∈ 𝑋. 

 𝐴 ̃ ⊆ 𝐵 ̃ if 𝜇𝐴 ̃(𝑥) ≤ 𝜇𝐵̃(𝑥),  𝑥 ∈ 𝑋 . 

 𝐴 ̃𝑐 𝑜𝑟 𝐴̃˴ is the complement of 𝐴̃  with membership function 

𝜇𝐴 ̃𝑐 (𝑥) = 1 − 𝜇𝐴 ̃(𝑥), ∀ 𝑥 ∈ 𝑋 

 𝐶̃ = 𝐴̃⋃𝐵̃ is a fuzzy set by membership function: 

𝜇𝐶 ̃(𝑥) = 𝑚𝑎𝑥  { 𝜇𝐴̃(𝑥), 𝜇𝐵 ̃ (𝑥)}. 

 𝐶̃ = 𝐴̃⋂𝐵̃ is a fuzzy set by membership function: 

𝜇𝐶 ̃(𝑥) = 𝑚𝑖𝑛 {𝜇𝐴 ̃(𝑥), 𝜇𝐵 ̃(𝑥)} 

More generally for a fuzzy subset of 𝐼𝑥 , 𝐴̃ = {𝐴̃𝑖 | 𝑖 ∈ 𝐽, where 𝐽 is a set} then the union 𝐶̃ = ⋃𝑖𝐴̃𝑖, and 

the intersection        𝐶̃ = ⋂𝑖𝐴̃𝑖 are fuzzy sets with the membership functions defined by: 

 𝜇𝐶 ̃(𝑥) = 𝑠𝑢𝑝𝑖{ 𝜇𝐴̃𝑖(𝑥) ∶ 𝑥 ∈ 𝑋 , 𝑖 ∈ 𝐽}. 
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𝜇𝐶 ̃(𝑥) = 𝑖𝑛𝑓𝑖{ 𝜇𝐴̃𝑖(𝑥) ∶ 𝑥 ∈ 𝑋 , 𝑖 ∈ 𝐽}. 

Example 2.2 

Let 𝑋 = {𝑎, 𝑏, 𝑐} and 𝐴̃, 𝐵̃, 𝐶̃ are fuzzy subsets of 𝑋 where: 

𝐴̃ = {(𝑎, 0.3) , (𝑏, 0.3) , (𝑐, 0.6)}, 

𝐵̃ = {(𝑎, 0.4), (𝑏, 0.4), (𝑐, 0.5)}, 

𝐶 ̃ = {(𝑎, 0.3), (𝑏, 0.3), (𝑐, 0.3)}. 

Then: 

𝐴̃ = {(𝑎, 0.3), (𝑏, 0.3), (𝑐, 0.6)} ⋂ 𝐵̃ = {(𝑎, 0.4), (𝑏, 0.4), (𝑐, 0.5)} = {(𝑎, 0.3), (𝑏, 0.3), (𝑐, 0.5)}. 

And 

𝐴̃ = {(𝑎, 0.3), (𝑏, 0.3), (𝑐, 0.6)} ⋃ 𝐵̃ = {(𝑎, 0.4), (𝑏, 0.4), (𝑐, 0.6)} = {(𝑎, 0.4), (𝑏, 0.4), (𝑐, 0.6)}. 

𝐴̃𝑐 = 1 − 𝜇𝐴(𝑥), 𝐴̃
𝑐 = {(𝑎, 0.7), (𝑏, 0.7), (𝑐, 0.4)}. 

Notation 2.3 [9]  

Here are some properties ⋃,⋂ and complementation: 

 Commutativity: 𝐴̃⋃𝐵̃ = 𝐵̃⋃𝐴̃ and 𝐴̃⋂𝐵̃ = 𝐵̃⋂𝐴̃. 

 Associativity: (𝐴̃⋃𝐵̃)⋃𝐶̃ = 𝐴̃⋃(𝐵̃⋃𝐶̃) and (𝐴̃⋂𝐵̃)⋂𝐶̃ = 𝐴̃⋂(𝐵̃⋂𝐶̃). 

 Idempotency: 𝐵̃⋂𝐵̃ = 𝐵̃ and 𝐵̃⋃𝐵̃ = 𝐵̃. 

 Distributivity: 𝐴̃⋃(𝐵̃⋂𝐶̃) = (𝐴̃⋃𝐵̃)⋂(𝐴̃⋃𝐶̃) and 𝐴̃⋂(𝐵̃⋃𝐶̃) = (𝐴̃⋂𝐵̃)⋃(𝐴̃⋂𝐶̃). 

 𝐴̃⋂∅̃ = ∅̃ and 𝐴̃⋃𝑋̃ = 𝑋̃. 

 Identity: 𝐴̃⋃∅̃ = 𝐴̃ and 𝐴̃⋂𝑋̃ = 𝐴̃. 

 Absorption: 𝐴̃⋃(𝐴̃⋂𝐵̃) = 𝐴̃ and 𝐴̃⋂(𝐴̃⋃𝐵̃) = 𝐴̃.  

 Demorgans law: (𝐴̃⋃𝐵̃)𝑐 = 𝐴̃𝑐⋂𝐵̃𝑐 and (𝐴̃⋂𝐵̃)𝑐 = 𝐴̃𝑐⋃𝐵̃𝑐. 

 Involution: 𝐴̃𝑐
𝑐
= 𝐴̃. 

 Equivalence formula: (𝐴̃𝑐⋃𝐵̃) ⋂ (𝐴̃⋃𝐵̃𝑐) = (𝐴̃𝑐⋂𝐵̃𝑐)⋃(𝐴̃⋂𝐵̃). 

 Symmetrical difference: (𝐴̃𝑐⋂𝐵̃)⋃(𝐴̃⋂𝐵̃𝑐) = (𝐴̃𝑐⋃𝐵̃𝑐)⋂(𝐴̃⋃𝐵̃). 
 

Notation 2.4 [9]  

The only lower for the contradiction, 𝐴⋃𝐴𝑐 = 𝑋, and the lower of A ⋂𝐴𝑐 = Ø. Both laws are broken 

for the fuzzy set because A ̃⋃𝐴 ̃𝐶 ≠ 𝑋  and 𝐴 ̃ ∩ 𝐴 ̃𝐶 ≠ Ø̃ in deed ∀𝑥 ∈ 𝐴̃ such that μ𝐴 ̃(𝑥) = α, then 

according to the point (7), we have            𝜇𝐴̃∪𝐵̃(𝑥) = 𝑚𝑎𝑥{𝛼 , 1 − 𝛼} ≠ 1 and 𝜇𝐴̃∩𝐵̃ (𝑥) =
𝑚𝑖𝑛{𝛼 , 1 − 𝛼} ≠ 0. 

 The cartesian product of a fuzzy set is well-defined by, suppose 𝐴̃1, 𝐴̃2 , … , 𝐴̃𝑛 be a fuzzy set in 

𝑋̃1 , 𝑋̃2 , … , 𝑋̃𝑛. The cartesian product is then a fuzzy set in the product space 𝑋1 × 𝑋2  ×  … ×
𝑋𝑛 with the membership function: 

  𝜇(𝐴 ̃1 ×  … × 𝐴 ̃𝑛)(𝑥) = 𝑚𝑖𝑛{ 𝜇𝐴 ̃𝑖   (𝑥𝑖)|  𝑥 = ( 𝑥1 ,… , 𝑥𝑛 ), 𝑥𝑖 ∈ 𝑋𝑖 }. 

 The  𝑚𝑡ℎ power for the fuzzy set 𝐴 ̃is a fuzzy set by membership function 𝜇 R ̃m  (𝑥) =
[ 𝜇 𝐴 ̃(𝑥) ]

𝑚, ∀  𝑥 ∈ 𝑋. 
 The algebraic sum 𝐶 ̃ = 𝐴 ̃ + 𝐵 ̃ the defined by: 

𝐶̃ = {(𝑥 , 𝜇𝐴 ̃+ 𝐵 ̃(𝑥) |𝑥 ∈ 𝑋}, 

then: 
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𝜇 𝐴 ̃+ 𝐵 ̃(𝑥) = 𝜇𝐴̃(𝑥) + 𝜇𝐵 ̃(𝑥) − 𝜇𝐴 ̃(𝑥) 𝜇𝐵̃(𝑥).   

 The bounded sum, 𝐶 ̃ =  𝐴 ̃ ⊕ 𝐵̃ is defined as: 

𝐶 ̃ = { ( 𝑥, 𝜇𝐴 ̃⊕𝐵 ̃(𝑥)) |  𝑥 ∈ 𝑋 }, 

where: 

𝜇𝐴 ̃⊕ 𝐵 ̃(𝑥) = 𝑚𝑖𝑛 {1, 𝜇𝐴 ̃(𝑥) + 𝜇𝐵 ̃(𝑥)}. 

 The bounded difference 𝐶 ̃ = 𝐴̃ ⊛ 𝐵 ̃is defined by: 

   𝐶 ̃ = { (𝑥, 𝜇 𝐴̃ ⊛ 𝐵 ̃ (𝑥)) | 𝑥 ∈ 𝑋} 

Then: 

𝜇𝐴 ̃⊛ 𝐵 ̃(𝑥) = 𝑚𝑎𝑥{ 0, 𝜇𝐴 ̃(𝑥) + 𝜇𝐵 ̃ (𝑥) − 1}. 

 Two fuzzy sets' algebraic product 𝐶 ̃ = 𝐴 ̃ ⊙ 𝐵 ̃ is defined as:  

𝐶̃ = { ( 𝑥, 𝜇𝐴 ̃(𝑥) 𝜇𝐵 ̃(𝑥)) | 𝑥 ∈ 𝑋 }.  

Example 2.3 [9]  

Let 𝐴̃ = {(3, 0.4), (5, 2), (7, 0.5)} and 𝐵 ̃ = {(3, 2), (5,0.5)}. 

Then: 

𝐴̃ × 𝐵̃ = {((3,3),0.4) , ((5,3),2) , ((7, 3),0.5), ((3,5),0.4 ), ((5,5),0.5), ((7,5), 0.5)}. 

 𝐴̃2 = { (3, 0.16), (5, 2), (7, 0.25 )}. 

𝐴 ̃ + 𝐵 ̃ = { (3, 2), (5, 2), (7, 0.5)}. 

𝐴̃ ⊕ 𝐵̃ = {(3, 2), (5, 2), (7, 0.5)}.  

𝐴 ̃ ⊛ 𝐵 ̃ = { (3, 0.4), (5, 0.5)}. 

𝐴 ̃. 𝐵̃ = { (3, 0.4), (5, 0.5)}. 

𝛂_cut or 𝛂_level [10]  

The among the basic notions of a fuzzy set is the concept of the 𝛼 −level or 𝛼 −level set. And its 

variant strong 𝛼 −level or (strong 𝛼 −level set). Given a fuzzy set 𝐴̃ defined on 𝑋, and any number 

𝛼 ∈ [0,1] the 𝛼 −cut 𝐴𝛼  is (the crisp set) that the contain all the elements of the universal set 𝑋 whose 

the membership grades in 𝐴 ̃are greater than or equal to the specified value of 𝐴𝛼 = { 𝑥 ∈ 𝑋: 𝜇𝐴 ̃(𝑥) ≥
𝛼 }, ∀ 𝑥 ∈ 𝑋 while 𝐴𝛼+ = { 𝑥𝜖 𝑋 ∶  𝜇𝐴 ̃(𝑥) > 𝛼 }∀ 𝑥 ∈ 𝑋 is the called "strong 𝛼_cuts". The following 

properties, are satisfied for all 𝛼 ∈ [0,1]: 

 If 𝛼1, 𝛼2 ∈ [0,1] and 𝛼1 ≤ 𝛼2, then 𝐴𝛼1 ⊇ 𝐴𝛼2 if 𝐴 is convex. 

 (𝐴̃⋃ 𝐵̃)𝛼 = 𝐴𝛼  ⋃𝐵𝛼. 

 (𝐴̃ ⋂ 𝐵̃ )𝛼 = 𝐴𝛼  ⋂𝐵𝛼. 

 (𝐴̃ ⊆ 𝐵̃ )𝛼 gives 𝐴𝛼 ⊆ 𝐵𝛼. 

 𝐴 ̃ = 𝐵̃ if and only if 𝐴𝛼 = 𝐵𝛼 , ∀ 𝛼 ∈ [0,1]. 
 

Notation 2.5 

If 𝐴𝛼1 = 𝐵𝛼2 then it is not necessary that 𝐴̃ = 𝐵̃, for different 𝛼1 and 𝛼2. 
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Notation 2.6 [10]  

 The set of all level 𝛼 ∈ [0, 1], that represent distinct 𝛼 − 𝑐𝑢𝑡𝑠 of a given fuzzy set 𝐴 ̃ is named 

a level set of 𝐴. 

∧ (𝐴 ̃) = {𝛼 |𝜇𝐴 ̃(𝑥) = 𝛼, 𝑓𝑜𝑟  𝑠𝑜𝑚𝑒 𝑥 ∈ 𝑋}. 

 The support for 𝐴̃ is just like the strong 𝛼 −cut of 𝐴 ̃ for 𝛼 = 0, 

𝐴0+ = 𝑆𝑢𝑝𝑝 (𝐴̃). 

 The core of 𝐴 ̃is exactly, the same as the 𝛼 −cut of 𝐴 ̃ for 𝛼 = 1, that is:  

𝐴1 = 𝑐𝑜𝑟𝑒 (𝐴̃). 

 It is also possible to view the height of 𝐴̃ as the supermom of the 𝛼 −level for which 𝐴𝛼 ≠ ∅𝐴. 

 The membership function of a fuzzy set 𝐴̃ might be described in terms of the quality function 

for is 𝛼 −cuts of based on the formula: 

𝜇𝐴 ̃(𝑥) = 𝑠𝑢𝑝𝛼∈[0,1]𝑀𝑖𝑛{ 𝛼 , 𝜇𝐴𝛼 (𝑥) }, 

where: 

 𝜇𝐴𝛼(𝑥) = {
1       𝑖𝑓  𝑥 ∈ 𝐴𝛼,
 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

If the universal set 𝑋 is specified in 𝑅, then we can generalize the notion of convexity to fuzzy set. The 

fuzzy set with these 𝛼 _cut sets is convex if all 𝛼 _ cuts are convex. 

Definition 2.1 [10]  

A fuzzy set 𝐴̃ on ℝ is convex if 𝜇𝐴 ̃(𝜆 𝑥1 + (1 − 𝜆)𝑥2) ≥ 𝑚𝑖𝑛{ 𝜇𝐴 ̃(𝑥1), 𝜇𝐴 ̃(𝑥2)}, for all 𝑥1, 𝑥2 ∈ ℝ 

and 𝜆 ∈ [0, 1]. 

 

Notation 2.7 [8]  

𝐴𝛼 is a convex for any 𝛼 ∈ [0, 1]. 

 

Definition 2.2 [11]  

Let 𝑓: 𝑋 → 𝑌 and B̃ be a fuzzy set definite on 𝑋, after that can obtain a fuzzy set B̃ in 𝑌 by 𝑓 and 𝐵̃ for 

all 𝑦 ∈ 𝑌 that’s: 

𝜇𝑓(𝐵)̃(𝑦) = {
𝑠𝑢𝑝{ 𝜇𝐵̃(𝑥) 𝑖𝑓 𝑓

−1(𝑦) ≠ 0 , ∀𝑥 ∈ 𝑋, 𝑦 = 𝑓(𝑥)} ,

0              𝑖𝑓 𝑓−1(𝑦) = 0.
 

The generalization of the per explained extension of fuzzy set in above definition as follows, let 

𝑋 = 𝑋1, 𝑋2, … , 𝑋𝑟 and 𝐵̃1, 𝐵̃2, … , 𝐵̃𝑟 be 𝑟_fuzzy set in the universal, 𝑓 is a function form 𝑋 to a universe 

𝑌(𝑦 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑟)), then a fuzzy set 𝐶̃ in 𝑌 is defined by: 

𝐶̃ = {(𝑦, 𝜇𝑐̃(𝑦)) | 𝑦 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑟), 𝑓(𝑥1, 𝑥2, … , 𝑥𝑟 ∈ 𝑋}, 

Where: 

𝜇𝑐̃(𝑦) = {
𝑠𝑢𝑝(𝑥1,𝑥2,…,𝑥𝑟)∈𝑓−1(𝑦)𝑚𝑖𝑛{𝜇𝑐̃(𝑥1),… , 𝜇𝑐̃(𝑥𝑟)      𝑖𝑓  𝑓

−1(𝑦) ≠ 0} ,

 0                      𝑖𝑓 𝑓−1 (𝑦) = 0.
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Where 𝑓−1 is an inverse of 𝑓. 

 

Definition 2.3 [12]  

The fuzzy function if 𝐹̃: 𝑋 → 𝑃 ̃(𝑥), with 𝜇𝐹 ̃(𝑥): 𝑋 → 𝐼 for any 𝛼 ∈ [0,1]. So can define the  𝛼_cut of 

𝐹̃ denoted, by 𝐹𝛼 as: 

∀ 𝑥 ∈ 𝑋 , 𝐹𝛼  (𝑥) = {𝑦 | 𝜇𝐹 ̃(𝑥)(𝑦) ≥ 𝛼}. 

For a fuzzy set of function 𝐹 ̃with 𝜇𝐹 ̃(𝑥): 𝑅
𝑥 → 𝐼, the 𝛼 −cut of 𝐹, 𝐹𝛼 is as: 

𝐹𝛼 = {𝑓 ∶ 𝑋 → 𝑅 , 𝑥 ∈ 𝑋 , 𝑓( 𝑥) ∈ 𝐹̃𝛼(𝑥)}  
and 

{𝑓: 𝑋 → 𝑅 |𝐼𝑛𝑓𝑥∈𝑋𝜇 𝐹 ̃(𝑥) (𝑓(𝑥)) = 𝜇𝐹 (𝑓) ≥ 𝛼 }. 

Notation 2.8 [13]  

 A fuzzy function having a one curve named normalized fuzzy mapping. 

 A continuous fuzzy function is a fuzzy function 𝐹̃(𝑥) that is 𝜇𝐹̃(𝑥)(𝑦) is a continuous ∀ 𝑥 ∈ 𝐼 ⊂

𝑅 and ∀ 𝑦 ∈ 𝑅. 

 The concept of fuzzy interval is a convex normalized fuzzy set of 𝑅 whose membership 

function is a continuous. 

 

Fuzzy Number 2.1 [5]  

A fuzzy number 𝑁̃ is the convex normalized, fuzzy set 𝑁̃ for the realline ℝ, that is: 

 There exist exactly one 𝑥0 ∈ ℝ with 𝜇𝑁̃ (𝑥0) = 1 (𝑥0 is named mean value of 𝑁̃). 
 𝜇𝑁̃(𝑥) is continuous function. 

 

Definition 2.4 [14]  

A fuzzy number 𝑁̃ is called positive (negative) if it is membership function define by: 𝜇𝑁̃(𝑥) =
0, ∀ 𝑥 < 0. 

 

Definition 2.5 [15]  

A fuzzy number is a fuzzy set which is a map 𝑢̃: 𝑅 → [𝑎, 𝑏], that satisfies: 

 𝑢̃ is upper semi continuous function.  

 𝑢̃(𝑥) = 0 outside some interval [𝑎, 𝑑].  
 There are real numbers 𝑏, 𝑐 such that 𝑎 ≤ 𝑏 ≤ 𝑐 ≤ 𝑑 that is:  

a. 𝑢̃(𝑥) is a monotonic increasing function on [𝑎, 𝑏].  
b. 𝑢̃(𝑥) is a monotonic decreasing function on [𝑐, 𝑑]. 
c. 𝑢̃(𝑥) = 1, ∀ 𝑥 ∈ [𝑏, 𝑐]. 

  

Definition 2.6 [16]  

A fuzzy number 𝑢̃ is a parametric form is a pair (𝑢 , 𝑢) of function 𝑢(𝛼), 𝑢 (𝛼), 0 ≤  𝛼 ≤ 1 the 

following conditions by: 

 𝑢(𝛼) is a bounded left continuous nondecreasing function on [0,1]. 

 𝑢(𝛼) is a bounded left continuous nonincreasing function on [0,1]. 
 𝑢 (𝛼) ≤ 𝑢(𝛼), 0 ≤ 𝛼 ≤ 1. 
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Definition 2.7 [16] 

For any arbitrary fuzzy number 𝑢̃ = (𝑢(𝛼), 𝑢(𝛼)) and 𝑣̃ = (𝑣(𝛼), 𝑣 (𝛼)) and 𝐾 is scalar. The ensuing 

characteristics are met for all 𝛼 ∈ [0, 1]. 

 (𝑢 + 𝑣) (𝛼) = (𝑢(𝛼) + 𝑣(𝛼)) and (𝑢 + 𝑣) (𝛼) = (𝑢(𝛼) + 𝑣(𝛼)). 

 𝐾𝑢 ̃ = (𝑘𝑢(𝛼), 𝑘 𝑢(𝛼)). 

 𝑢 ̃. 𝑣 ̃ = { 𝑢(𝛼) 𝑣 (𝛼), 𝑢(𝛼) 𝑣 (𝛼), 𝑢(𝛼) 𝑣 (𝛼), 𝑣(𝛼) 𝑢(𝛼)}. 
 

Definition 2.8  [17] 

For any arbitrary, a fuzzy number 𝑢,̃ 𝑣̃ ∈ 𝐸1 

𝐷(𝑢̃, 𝑣̃) = 𝑚𝑎𝑥{𝑠𝑢𝑝𝛼∈[0 ,1] |𝑢 (𝛼) − 𝑣 (𝛼)|, 𝑠𝑢𝑝𝛼∈[0 ,1] |𝑢(𝛼) − 𝑣(𝛼)|} 

Denoted the distance between 𝑢 ̃and 𝑣̃, also (𝐸1, 𝐷) is a complete metric space. 

 

Theorem 2.1 [18]  

(𝐸1, 𝐷) is a metric space. 

 

Definition 2.9 [18]  

Let {𝑎̃𝑛} ⊂ 𝐸
1 and 𝑎̃ ∈ 𝐸1 the sequence {𝑎̃𝑛} is said to be convergence to 𝑎̃ in distance denoted by if 

lim𝑛→∞ 𝑎̃𝑛 = 𝑎̃ if any given 𝜀 > 0 there’s for integral 𝑁 > 0 such that 𝐷(𝑎̃𝑛, 𝑎̃) < 𝜀 for 𝑛 ≥ 𝑁. A 

sequence {𝑎̃𝑛 } in 𝐸1 is said to be a Cauchy sequence if for every 𝜀 > 0, there exists an integral 𝑁 >
0 such that 𝐷 (𝑎̃𝑛, 𝑎̃𝑚) < 𝜀 for 𝑛,𝑚 > 𝑁. A fuzzy metric space (𝐸1, 𝐷) is called the complete metric 

space if every Cauchy sequence in 𝐸1 is a convergence. 

 

Theorem 2.2 [18]  

The sequence {𝑎̃𝑛} in 𝐸1 is a convergence in the metric 𝐷 iff {𝑎̃𝑛} is a cauchy sequence. 

 

Definition 2.10 [18]  

The distance between two fuzzy numbers 𝑎̃, 𝑏̃ ∈ 𝐸1 is given by: 

𝐷(𝑎̃, 𝑏̃) = 𝑠𝑢𝑝
0≤𝛼≤1

{𝑚𝑎𝑥 { 𝑠𝑢𝑝
𝑎∈[𝑎−𝛼 ,𝑎+𝛼]    

𝐼𝑛𝑓 
𝑏∈[𝑏−𝛼 ,𝑏+𝛼]

|𝑎 − 𝑏| , 𝑠𝑢𝑝
𝑏∈[𝑏−𝛼 ,𝑏+𝛼]

𝐼𝑛𝑓
  𝑎∈[𝑎−𝛼 ,𝑎+𝛼]

|𝑎 − 𝑏| } } 

𝐷(𝑎̃, 𝑏̃) = 𝑠𝑢𝑝
0≤𝛼≤1

{𝑚𝑎𝑥  {|𝑎−𝛼  − 𝑏
−
𝛼|  , |𝑎

+
𝛼  − 𝑏

+
𝛼|} }. 

 

Definition 2.11 [18]  

A fuzzy function 𝑓:̃ 𝑋 × 𝑋 → 𝐸1 is a called level wise continuous at point (𝑥0, 𝑡0) ∈ 𝑋 × 𝑋 provided 

for any fixed 𝛼 ∈ [0,1] and for any arbitrary 𝜀 > 0 there’s 𝛿(𝜀, 𝛼) > 0 then:  

𝐷(|𝑓(𝑥, 𝑡)|𝛼 , |𝑓(𝑥0, 𝑡0)|𝛼) < 𝜀, 

whenever |𝑡 − 𝑡0| < 𝛿 and |𝑥 − 𝑥0| < 𝛿 ∀ 𝑥, 𝑡 ∈ 𝑋. 

 

Definition 2.12 [8]  
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Let 𝑅 be the set of real number and 𝑃̃(𝑅) all a fuzzy subset defined on 𝑅 defined the fuzzy number 

𝑎̃ ∈ 𝐸1 as follows by: 

 𝑎̃ is a normal that is there exists 𝑥 ∈ 𝑅 that is 𝜇𝑎̃(𝑥) = 1. 

 For every 𝛼 ∈ [0,1], 𝑎𝛼 = {𝑥: 𝜇𝑎̃(𝑥) ≥ 𝛼} is a closed interval denoted by [𝑎−𝛼, 𝑎
+
𝛼]. 

 

Using Zadeh notation 𝑎̃ ∈ 𝐹(𝑅) is the fuzzy set on 𝑅 defined by:  

𝑎̃ =∪𝛼∈[0,1]  𝑎𝛼 =∪𝛼𝜖[0,1]  𝛼[𝑎
−
𝛼 , 𝑎

+
𝛼]. 

 

Definition 2.13 [11]  

A function 𝐹: 𝐼 → 𝐸𝑛 is called a bounded if there exists a constant 𝑀 > 0 that is 𝐷(𝐹(𝑥), 0̃) ≤ 𝑀 for 

all ∈ I. 

 

Definition 2.14 [19]  

Let 𝐴̃ ⊂ 𝐹(𝑅),   

 If there is 𝑀̃ ∈ 𝐸1 that is 𝑎̃ ⊆ 𝑀̃ for all 𝑎̃ ∈ 𝐴̃ then 𝐴̃ is said to have an upper bound 𝑀̃. 

 If there is 𝑀̃ ∈ 𝐸1 that is 𝑚̃ ⊆ 𝑎̃ for all 𝑎̃ ∈ 𝐴̃ then 𝐴̃ is called lower bound 𝑚̃. 

 𝐴̃ is said to be bound if 𝐴̃ has both upper and lower bounds.  

 A sequence {𝑎̃𝑛} ⊆ 𝐸
1 is said to be bound if the set {𝑎̃𝑛|𝑛 ∈ 𝑁} is bound. 

 

Definition 2.15 [20]   

The family of 𝐸𝑛 denotes nonempty compact, the convex a fuzzy subset of 𝑅𝑛. Let 𝐼 = [𝑎, 𝑏] be 

compact interval               𝐸𝑛 = {𝑝: 𝑅𝑛 → 𝐼}. That is 𝑝 satisfies the following: 

 𝑝 is " normal ". 

 𝑝 is " fuzzy convex ". 

 𝑝 is " upper semi continuous" such that the 𝛼_ cuts sets [𝑝]𝛼 are closed for each 𝛼 ∈ [0, 1]. 
 [𝑝]0 = 𝑐𝑙{ 𝑥 ∈ 𝑅𝑛 |𝑝(𝑥) > 0} the is compact where 𝛼_cut sets [𝑝]𝛼 is defined by                                                 

[𝑝]𝛼 = { 𝑥 ∈ 𝑅𝑛 |𝑝(𝑥) ≥ 𝛼 } for 0 < 𝛼 < 1 and [𝑝]0 for 𝛼 = 0. 

 

Then from (1)-(4) it is follows that is [𝑝]𝛼 ∈ 𝐸𝑛 for all 0 ≤ 𝛼 ≤ 1. 

 

Definition 2.16 [11]  

A function 𝐹: I → 𝐸𝑛 is said to be continuous if 𝑥0 ∈ I and 𝜀 > 0 there exists 𝛿 > 0 such that                                                 

|𝑥 − 𝑥0| < 𝛿 then 𝐷( 𝐹(𝑥) , 𝐹(𝑥0)) < 𝜀. 

 

 

Definition 2.17 [18]  

Let 𝑓(𝑥) be a closed and bounded a fuzzy function on [𝑎, 𝑏] suppose the 𝑓𝛼
𝐿(𝑥) and 𝑓𝛼

𝑅(𝑥) are the 

Riemann integral on [𝑎, 𝑏] for every 𝛼 ∈ [0,1]. Let:  

𝐵𝛼 = [ ∫𝑓𝛼
𝐿

𝑏

𝑎

(𝑥)𝑑𝑥 , ∫ 𝑓𝛼
𝑅

𝑏

𝑎

(𝑥)𝑑𝑥 ] 

Then we say that 𝑓(𝑥) is a fuzzy Riemann integral of [𝑎, 𝑏] and the membership function of 

∫ 𝑓
𝑏

𝑎
(𝑥)𝑑𝑥 is defined by: 
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𝑀
∫ 𝑓̃(𝑥)𝑑𝑥 
𝑏
𝑎

(𝛼) = 𝑠𝑢𝑝
0≤𝛼≤1

𝛼 . 1𝐵𝛼(𝑟), 𝑓𝑜𝑟 ∈ 𝐵0. 

 

Definition Triangular Fuzzy Number 2.18 [18]  

It is fuzzy number represented with three points as follows by: 𝐵̃ = [𝑏1, 𝑏2, 𝑏3]. This representation is 

interpreted as in the following membership function:  

𝜇𝐵̃(𝑥) =

{
  
 

  
 

     0                         , 𝑥 < 𝑏1,

 
𝑥 − 𝑏1
𝑏2 − 𝑏1

              , 𝑏1 ≤ 𝑥 ≤ 𝑏2,

 
𝑏3 − 𝑥

𝑏3 − 𝑏2
                ,    𝑏2 ≤ 𝑥 ≤ 𝑏3,

0                        ,     𝑥 > 𝑏3.

 

Now, if we get crisp interval by 𝛼_cut operation interval 𝐵𝛼 shall be obtained as follows for every 

𝛼 ∈ [0,1] 

𝐵𝛼 = [𝑏1
(𝛼) , 𝑏3

(𝛼)] = [ (𝑏2 − 𝑏1)𝛼 + 𝑏1 , −(𝑏3 − 𝑏2)𝛼 + 𝑏3 ]. 

 

Definition Trapezoidal Fuzzy Number 2.19 [8]  

We can explain the trapezoidal fuzzy number 𝐵 as follows: 𝐵̃ = [𝑏1, 𝑏2, 𝑏3, 𝑏4]. The membership 

function of this fuzzy number will be interpreted as follows: 

𝜇𝐵̃(𝑥) =

{
  
 

  
 
     0              𝑖𝑓      𝑥 < 𝑏1 𝑜𝑟 𝑥 > 𝑏4,

 
𝑥 − 𝑏1
𝑏2 − 𝑏1

       𝑖𝑓       𝑏1 ≤ 𝑥 ≤ 𝑏2,

 
𝑏4 − 𝑥

𝑏4 − 𝑏3
           𝑖𝑓        𝑏3 ≤ 𝑥 ≤ 𝑏4,

1          𝑖𝑓   𝑏2 ≤   𝑥 ≤ 𝑏3.

 

The 𝛼 −level interval for this shape is written as: 

∀𝛼 ∈ [0,1], 𝐵𝛼 = [(𝑏2 − 𝑏1)𝛼 + 𝑏1, −(𝑏4 − 𝑏3)𝛼 + 𝑏4]. 

 

Definition 2.20 [21]  

Let 𝑢̃ be a fuzzy set on 𝑅 then 𝑢̃ is called a fuzzy interval if it satisfies: 

 𝑢̃ is normal there exsist 𝑥0 ∈ 𝑅 .i.e. 𝑢(𝑥0) = 1. 

 𝑢̃ is convex for every 𝑥, 𝑡 ∈ 𝑅, 0 ≤ 𝜆 ≤ 1 it holds that 𝜇(𝜆𝑥 + (1 − 𝜆)𝑦 ≥ 𝑚𝑖𝑛{𝑢(𝑥), 𝑢(𝑦)}.  
 𝑢̃ is upper semi continuous.  

 [𝑢]0 = 𝑐𝑙{𝑥 ∈ 𝑅: 𝑢(𝑥) > 0} is a compact subset of 𝑅 the 𝛼_cuts of a fuzzy interval 𝑢 with 

0 ≤ 𝛼 ≤ 1 is the crisp set [𝑢]𝛼 = {𝑥 ∈ 𝑅, 𝑢(𝑥) ≥ 𝛼}. For a fuzzy interval 𝑢̃ is 𝛼_cuts are 

closed interval in 𝑅 let denoted by                        [𝑢]𝛼 = [𝑢(𝛼) , 𝑢(𝛼)].  
 

Definition 2.21 [20]   

A fuzzy number 𝑁̃ is of 𝐿𝑅 −type if there’s functions 𝐿(named the left-function) and 𝑅(named the 

right-function) so        𝐿(𝑥) ≤ 𝜇𝑁̃ (𝑥) ≤ 𝑅(𝑥), ∀ 𝑥 ∈ 𝑋, and scalars 𝑎 > 0, 𝑏 > 0 with:                    

  

𝜇𝑁̃ (𝑥) = {
𝐿 (

𝑛 −𝑥

𝑎
) ,   𝑓𝑜𝑟 𝑥 ≤ 𝑛,

𝑅 (
𝑥−𝑛

𝑏
) , 𝑓𝑜𝑟 𝑥 ≥ 𝑛.
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The mean value of 𝑁̃ is denoted by 𝑛, while the left and right spreads of 𝑛 are denoted by 𝑎 and 𝑏, 

respectively. 𝑁̃ is represented symbolically as (𝑛, 𝑎, 𝑏)𝐿𝑅. 

𝜇𝐵(𝑥) = {
𝑥 − 1     𝑎 ≤ 𝑥 ≤ 𝑏,

−1

2
𝑥 + 2    𝑏 ≤ 𝑥 ≤ 𝑐.  

 

𝜇𝐵(𝑥) =

{
 
 

 
 

 0,                  𝑥 ≤ 𝑎,    
𝑥 − 𝑎

𝑏 − 𝑎
,            𝑎 ≤  𝑥 ≤ 𝑏,    

 
𝑐 − 𝑥

𝑑 − 𝑐
,               𝑐 ≤ 𝑥 ≤ 𝑑.     

 

 

Fig. 3. The triangular membership function 

 

Fig. 4. The trapezoidal function 

Definition 2.22 [20]    

Any fuzzy number can be described by: 

𝜇𝑁̃(𝑥) =

{
 
 

 
 𝐿 (

𝑎 − 𝑥

𝛼
) ,        𝑓𝑜𝑟 𝑥 ∈ [𝑎 − 𝛼 , 𝑎],

1,               𝑓𝑜𝑟 𝑥 ∈ [𝑎, 𝑏],

𝑅 (
𝑥 − 𝑏

𝛽
) ,     𝑓𝑜𝑟 𝑥 ∈ [𝑏 , 𝑏 + 𝛽],

 0,                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

Where [𝑎, 𝑏] is the core of 𝐴 and [𝑎, 𝑏] → [0,1], 𝑅: [0,1] → [0,1] are shape function (named briefly 𝑆 

shape) that is continuous and nonincreasing so, 𝐿(0) = 𝑅(0) = 1, 𝐿(1) = 𝑅(1) = 0. 

When the fuzzy function is considered to be of the LR type, determining the integration becomes 

somewhat easier. We shall assume that fuzzifying function 𝑓(𝑢) = (𝑓(𝑢), 𝑠(𝑢), 𝑡(𝑢))𝐿𝑅 is a fuzzy 

number in 𝐿𝑅 −typr for every 𝑥 ∈ [𝑎, 𝑏] which mean that there exists a reference functions 𝐿: 𝑅+ →
[0,1] and 𝑅: 𝑅+ → [0,1], 𝑓: I → R and 𝑠: I → R+ and 𝑡: I → 𝑅+ that is for every 𝑢 ∈ [𝑎, 𝑏]: 
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𝜇𝑓̃(𝑢)(𝑣) =

{
 
 

 
 𝐿 (

𝑓(𝑢) − 𝑣

𝑠(𝑢)
) ,      𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ≤ 𝑓(𝑢),

𝑅 (
𝑣 − 𝑓(𝑢)

𝑡(𝑢)
 ) ,       𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ≥ 𝑓(𝑢).

 

Where 𝑓(𝑢) is the mean value of 𝑓(𝑢) and 𝑠(𝑢), 𝑡(𝑢) are the spread functions and the reference 

functions 𝐿 and 𝑅 are such that 𝐿(0) = 𝑅(0) = 1 and 𝐿(1) = 𝑅(1) = 0 for each 𝑥 ∈ I. 

 

Definition 2.23 [8]  

Let 𝐹: 𝐼 → 𝐸𝑛 be an integral of 𝐼 which is levelwise continuous is denoted by ∫
𝐼
𝐹(𝑥)𝑑𝑥 or ∫ 𝐹(𝑥)𝑑𝑥

𝑏

𝑎
 

also [∫
𝐼
𝐹(𝑥)𝑑𝑥]𝛼  = ∫

𝐼
𝐹(𝑥)𝛼𝑑𝑥 {∫𝐼𝑓(𝑥)𝑑𝑥| 𝑓: 𝐼 → 𝑅𝑛 is a measurable function for 𝐹(𝑥)𝛼 for every 

0 ≤ 𝛼 ≤ 1}. 

 

Notation 2.9 [20]   

 For any a fuzzy function 𝑓 ̃we have ∫
𝐼
𝑓 ̃ = ∫ 𝑓 ̃

𝑏

𝑎
= −∫ 𝑓 ̃

𝑎

𝑏
, with the membership function 

𝜇
∫ 𝑓 ̃
𝑏
𝑎

(𝑢) = 𝜇
∫ 𝑓 ̃
𝑏
𝑎

(−𝑢). 

 To integrate of 𝐿𝑅 fuzzifying Func over a non-fuzzy interval [𝑎, 𝑏], it is a sufficient to integrate 

the mean value and spread function over [𝑎, 𝑏], the result is an 𝐿𝑅 a fuzzy number. 

 Commutative condition for ∫
𝐼
 𝑓 ̃ if for all 𝛼 ∈ [0,1] is (∫

𝐼
𝑓)𝛼 = ∫𝐼𝑓 ̃𝛼.  

 

Fuzzy Integral Equation 2.1 [8]  

The fuzzy nonlinear Volterra in integral equation of the second kind may be represented as follows by: 

𝑈̃(𝑥) = 𝑓(𝑥) + 𝜆∫𝑘

𝑥

𝑎

(𝑥, 𝑡, 𝑢̃(𝑡))𝑑𝑡,                                                                            (7) 

Where 𝜆 > 0 and 𝑘 is arbitrary given kernel function 𝑓 is given function of 𝑥 ∈ [𝑎, 𝑏]. If 𝑓(𝑥) is a 

crisp function then the solution of above equation is crisp as well. If 𝑓(𝑥) is a fuzzy function this 

equation only possesses fuzzy solving the sufficient condition for the existence of the solving of the 

equation of the second kind, for solution (7) we may replace (7) by the equivalent system: 

𝑈(𝑥) = 𝑓(𝑥) + 𝜆∫𝑘

𝑥

𝑎

(𝑥, 𝑡, 𝐹(𝑢(𝑡))𝑑𝑡, 

𝑈(𝑥) = 𝑓(𝑥) + 𝜆∫𝑘

𝑥

𝑎

(𝑥, 𝑡, 𝐹(𝑢(𝑡))𝑑𝑡.                                                         (8) 

Which possesses a unique solving (𝑈,𝑈) ∈ 𝐵, which is a fuzzy function, such that for each 𝑥. The pair 

(𝑈(𝑥, 𝛼), 𝑈(𝑥, 𝛼)) is a fuzzy number. Let 𝐹(𝑥, 𝑡, 𝑢, 𝑣) be the function 𝐹 of (8), where 𝑢 and 𝑣 are 

constants and 𝑢 ≤ 𝑣. In other word 𝐹(𝑥, 𝑡, 𝑢, 𝑣) are obtained by substituting 𝑈 = (𝑢, 𝑣) in (8). The 

domain where 𝐹 indeed by: 

∆= {(𝑥, 𝑡, 𝑢, 𝑣)|𝑎 ≤ 𝑥, 𝑡 ≤ 𝑏,−∞ ≤ 𝑣 ≤ ∞ , −∞ ≤ 𝑢 ≤ 𝑣 } 

The parametric form of (8) is given by: 

𝑈(𝑥, 𝛼) = 𝑓(𝑥, 𝛼) + 𝜆 ∫ 𝑘
𝑥

𝑎
( 𝑥, 𝑡, 𝐹 (𝑈(𝑡, 𝛼)) ) 𝑑𝑡,  
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𝑈(𝑥, 𝛼) = 𝑓(𝑥, 𝛼) + 𝜆 ∫ 𝑘
𝑥

𝑎
(𝑥, 𝑡, 𝐹 (𝑈(𝑡, 𝛼)) ) 𝑑𝑡.                                                       (9)  

For 𝛼 ∈ [0,1]. In most cases, however analytic solution to (9) may not be found and a numerical 

approach must be considered.  

3. The modified decomposition method (MDM)   

As shown before the Adomian decomposition method provides the solution in an infinite series of 

components. The components 𝑢𝑗 , 𝑗 ≥ 0 are easily computed if the inhomogenous term 𝑓(𝑥) in the 

Volterra integral equation: 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡 
𝑥

0
                                                                      (10)  

Consists of a polynomial. However, if the function 𝑓(𝑥) consists of a combination of two or more of 

polynomials, trigonmetric functions, hyperbolic function, and others, the evaluation of the components 

𝑢𝑗 , 𝑗 ≥ 0 requires cumbersome work. A reliable modification of the Adomian decomposition method 

was developed by Wazwaz and presented. The modified decomposition method will facilitate the 

computational process and further accelerate the convergence of the series solution. The modified 

decomposition method will be applied, wherever it is appropriate, to all integral equation and 

differential equation of any order. It is interesting to note that the modified decomposition method 

depends mainly on splitting the function 𝑓(𝑥) into two parts, therefore it cannot be used if the function 

𝑓(𝑥) consists of only one term. The modified decomposition method will be outlined and employed in 

this section and in other chapters as well. To give a clear description of the technique, we recall that 

the standard Adomian decomposition method admits use of the recurrence relation:    

𝑢0(𝑥) = 𝑓(𝑥), 

𝑢𝑘+1(𝑥) = 𝜆∫ 𝑘(𝑥, 𝑡) 𝑢𝑘(𝑡)𝑑𝑡,   𝑘 ≥ 0,
𝑥

0

                                            (11) 

Where the solution 𝑢(𝑥) is expressed by an infinite sum of components defined before by: 

𝑢(𝑥) = ∑𝑢𝑛

∞

𝑛=0

(𝑥).                                                                                                                                  (12) 

In view of (8), the components 𝑢𝑛(𝑥), 𝑛 ≥ 0 can be easily evaluated. The modified decomposition 

method introduces a slight variation to the recurrence relation (8) that will lead to the determination of 

the components of 𝑢(𝑥) in an easier and faster manner. For many cases, the function 𝑓(𝑥) can be set 

as the sum of two partial functions, namely 𝑓1(𝑥) and 𝑓2(𝑥). In other words, we can set  

𝑓(𝑥) = 𝑓1(𝑥) + 𝑓2(𝑥).                                                                             (13) 

In view of (10), we introduce a introduce a qualitative change in the formation of the recurrence 

relation (7). To minimize the size of calculations, we identify the zeroth component 𝑢0(𝑥) by one part 

of 𝑓(𝑥), namely 𝑓1(𝑥) or 𝑓2(𝑥). The other part of 𝑓(𝑥) can be added to the component 𝑢1(𝑥) among 

other terms. In other words, the modified decomposition method introduces the modified recurrence 

relation: 

𝑢0(𝑥) = 𝑓1(𝑥), 

𝑢2(𝑥) = 𝑓2(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡) 𝑢0
𝑥

0
(𝑡) 𝑑𝑡,                                                                   (14)  

𝑢𝑘+1(𝑥) = 𝜆∫ 𝑘(𝑥, 𝑡)𝑢𝑘

𝑥

0

(𝑡)𝑑𝑡, 𝑘 ≥ 1. 

This shows that the difference between the standard recurrence relation (10) and the modified 

recurrence relation (14) rests only in the formation of the first two components 𝑢0(𝑥) and 𝑢1(𝑥) only. 

The other components 𝑢𝑗  , 𝑗 ≥ 2 remain the same in the two recurrence relations. Although this 

variation in the formation of 𝑢0(𝑥) and 𝑢1(𝑥) is slight, however it plays a major role in accelerating 
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the convergence of the solution and in minimizing the size of computational work. Moreover, reducing 

the number of terms in 𝑓1(𝑥) affects not only the component 𝑢1(𝑥), but also the other components as 

well. This result was confirmed by several research works. 

Two important remarks related to the modified method can be made here. First, by proper selection of 

the functions 𝑓1 (𝑥) and 𝑓2(𝑥), the exact solution 𝑢(𝑥) may be obtained by using very few iterations, 

and sometimes by evaluating only two components. The success of this modification depends only on 

the proper choice of 𝑓1(𝑥) and 𝑓2(𝑥), and this can be made through trials only. A rule that may help for 

the proper choice of 𝑓1(𝑥) and 𝑓2(𝑥) could not be found yet. Second if 𝑓(𝑥) consists of one term only, 

the standard decomposition method can be used in this case.  

It is worth mentioning that the modified decomposition method will be used for Volterra and Fredholm 

integral, equations linear and nonlinear equation. The modified decomposition method will be 

illustrated by discussing the following examples. 

 

Example:  

Solve fuzzy Volterra nonlinear integral equation: 

𝑢(𝑥, 𝛼) = 𝑓(𝑥, 𝛼) + ∫𝑡2 𝑢(𝑡, 𝛼)2 𝑑𝑡 

𝑥

0

 

𝑥2𝛼 = 𝑓(𝑥, 𝛼) + ∫𝑡2  (𝑡2 𝛼)2 𝑑𝑡

𝑥

0

 

𝑥2𝛼 = 𝑓(𝑥, 𝛼) + ∫𝑡6  𝛼2  𝑑𝑡

𝑥

0

 

𝑥2𝛼 = 𝑓(𝑥, 𝛼) + |
   𝑡7   

7
   𝛼2|0

𝑥 

𝑥2𝛼 = 𝑓(𝑥, 𝛼) +
   𝑥7   

7
   𝛼2 

𝑓(𝑥, 𝛼) = 𝑥2𝛼 −
   𝑥7   

7
   𝑥2 

𝑢1(𝑥, 𝛼) = −
   𝑥7   

7
   𝑥2 +∫𝑡2 𝑢0

𝑥

0

(𝑡, 𝛼) 𝑑𝑡 

𝑢1(𝑥, 𝛼) = −
   𝑥7   

7
   𝑥2 +∫𝑡2 

𝑥

0

(𝑡2𝛼)2𝑑𝑡 

𝑢1(𝑥, 𝛼) = −
   𝑥7   

7
   𝑥2 +∫𝑡2 

𝑥

0

(𝑡4𝛼2)𝑑𝑡 

𝑢1(𝑥, 𝛼) = −
   𝑥7   

7
   𝑥2 + |

   𝑡7   

7
   𝑥2|0

𝑥 

𝑢1(𝑥, 𝛼) = −
   𝑥7   

7
   𝑥2 +

   𝑥7   

7
   𝑥2 = 0 

𝑓1(𝑥, 𝛼) + 𝑓2(𝑥, 𝛼) = 𝑥
2𝛼 
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𝑢(𝑥, 𝛼) = 𝑓(𝑥, 𝛼)    + ∫ 𝑡2 

𝑥

0

𝑢(𝑡, 𝛼)2𝑑𝑡 

𝑢0(𝑥, 𝛼) = 𝑓(𝑥, 𝛼)    + ∫ 𝑡
2 

𝑥

0

𝑢(𝑡, 𝛼)2𝑑𝑡 

𝑥2(2 − 𝛼) = 𝑓(𝑥, 𝛼) + ∫ 𝑡2(𝑡2 (2 − 𝛼)2) 𝑑𝑡
𝑥

0

 

𝑥2(2 − 𝛼) = 𝑓(𝑥, 𝛼) + ∫ 𝑡6(2 − 𝛼)2 𝑑𝑡
𝑥

0

 

𝑥2(2 − 𝛼) = 𝑓(𝑥, 𝛼) + |
𝑡7

7
  (2 − 𝛼)2 |0

𝑥 

𝑓(𝑥, 𝛼) = 𝑥2(2 − 𝛼) −
𝑥7

7
(2 − 𝛼)2 

𝑢0(𝑥, 𝛼) = 𝑥
2(2 − 𝛼) 

𝑢1(𝑥, 𝛼) = −
𝑥7

7
(2 − 𝛼)2 +∫ 𝑡2  𝑢0 (𝑡, 𝛼)𝑑𝑡

𝑥

0

 

𝑢1(𝑥, 𝛼) = −
𝑥7

7
(2 − 𝛼)2 +∫ 𝑡2 (𝑡2(2 − 𝛼)2

𝑥

0

 𝑑𝑡 

𝑢1(𝑥, 𝛼) = −
𝑥7

7
(2 − 𝛼)2 +∫ 𝑡6 (𝑡2(2 − 𝛼)2

𝑥

0

 𝑑𝑡 

𝑢1(𝑥, 𝛼) = −
𝑥7

7
(2 − 𝛼)2 +|

𝑡7

7
(2 − 𝛼)2|0

𝑥 

𝑢1(𝑥, 𝛼) = −
𝑥7

7
(2 − 𝛼)2 +

𝑥7

7
(2 − 𝛼)2 

𝑢1(𝑥, 𝛼) = 0 

𝑓
1
(𝑥, 𝛼) + 𝑓

2
(𝑥, 𝛼) = 𝑥2(2 − 𝛼) 

 

 

 

Table 1. Comparison between the Exact Solution and the Modified Decomposition Method for Upper 

with Different Level 𝛼 and Finding the Absolute Error, 𝑓1(𝑥, 𝛼) + 𝑓2(𝑥, 𝛼) = 𝑥2𝛼 

𝑢( 𝑥, 𝛼) MDM 𝑢 Absolute error 𝑢 

𝑋          𝛼 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7 

0 0 0 0 0 0 0 0 0 0 0 0 0 

0.2 0.004 0.012 0.02 0.028 0.004 0.012 0.02 0.028 0 0 0 0 

0.4 0.016 0.048 0.08 0.112 0.016 0.048 0.08 0.112 0 0 0 0 

0.6 0.036 0.108 0.18 0.252 0.036 0.108 0.18 0.252 0 0 0 0 

 

Table 2. Comparison between the Exact Solution and the Modified Decomposition Method for Upper 

with Different Level 𝛼 and Finding the Absolute Error, 𝑓
1
(𝑥, 𝛼) + 𝑓

2
(𝑥, 𝛼) = 𝑥2(2 − 𝛼) 

𝑢(𝑥 , 𝛼) MDM 𝑢 Absolute error 𝑢 
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𝑥          𝛼  0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7 

0 0 0 0 0 0 0 0 0 0 0 0 0 

0.2 0.076 0.068 0.06 0.052 0.076 0.068 0.06 0.052 0 0 0 0 

0.4 0.304 0.272 0.24 0.208 0.304 0.272 0.24 0.208 0 0 0 0 

0.6 0.684 0.612 0.54 0.408 0.684 0.612 0.54 0.468 0 0 0 0 

 

 

Fig. 5. Comparison between the exact solution and the modified decomposition method for upper and 

lower with different level alpha 

4. Conclusion 

This work presents the use of the reliable modified decomposition method for solving non-linear fuzzy 

Volterra integral equations of second kind. The modified decomposition method is implemented in a 

straight forward manner and provided significant improvement by requiring only two iterations to 

obtain the exact solution. Accelerating convergence of the modified Admian method requires that the 

exact solution must be a part of 𝑓(𝑥, 𝑟).   

 Reference  

[1] C. T. Baker, "A perspective on the numerical treatment of Volterra equations," Journal of 

Computational and Applied Mathematics, vol. 125, no. 1-2, pp. 217-249, 2000. 

[2] P. Linz, Analytical and numerical methods for Volterra equations. SIAM, Philadelphia, 1985. 

[3] J.-P. Kauthen, "Continuous time collocation methods for Volterra-Fredholm integral 

equations," Numerische Mathematik, vol. 56, pp. 409-424, 1989. 

[4] M. I. Berenguer, D. Gámez, A. Garralda-Guillem, M. R. Galán, and M. S. Pérez, "Biorthogonal 

systems for solving Volterra integral equation systems of the second kind," Journal of 

Computational and Applied Mathematics, vol. 235, no. 7, pp. 1875-1883, 2011. 

[5] A. Kaufmann and M. Gupta, Introduction to fuzzy arithmetic : theory and applications. New 

York, NY: Van Nostrand Reinhold, 1991. 

[6] T. Allahviranloo and M. Otadi, "Gaussian quadratures for approximate of fuzzy multiple 

integrals," Applied Mathematics and Computation, vol. 172, no. 1, pp. 175-187, 2006. 



Hassan, MJPAS, Vol. 3, No. 4, 2025 

 

33 

[7] A. M. Bica, "Error estimation in the approximation of the solution of nonlinear fuzzy Fredholm 

integral equations," Information Sciences, vol. 178, no. 5, pp. 1279-1292, 2008. 

[8] D. Dubois and H. Prade, "Towards fuzzy differential calculus part 1: Integration of fuzzy 

mappings," Fuzzy sets and Systems, vol. 8, no. 1, pp. 1-17, 1982. 

[9] P. Diamond and P. Kloeden, Metric Spaces of Fuzzy Sets: Theory and Applications. World 

Scientific, 1994, p. 188. 

[10] G. Klir and B. Yuan, Fuzzy sets and fuzzy logic: Theorey and applications. Prentice Hall New 

Jersey, 1995, p. 591. 

[11] D. Dubois and H. Prade, Fuzzy Numbers: An Overview. CRC Press, Boca Raton, 1987. 

[12] A. Bratsos, M. Ehrhardt, and I. T. Famelis, "A discrete Adomian decomposition method for 

discrete nonlinear Schrödinger equations," Applied Mathematics and Computation, vol. 197, 

no. 1, pp. 190-205, 2008. 

[13] F. Subhi, "About Fuzzy Fixed Point Theorem," PhD Thesis, Al-Nahrain University, 1998.  

[14] H. Zimmermann, Fuzzy Set Theory — and Its Applications. Springer Dordrecht, 1991, p. 420. 

[15] A. Kandel, Fuzzy mathematical techniques with applications. Addison-Wesley Longman 

Publishing Co., Inc., 1986, p. 274. 

[16] D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and Applications. Academic Press, 

Boston, 1980. 

[17] J.-H. He, "A coupling method of a homotopy technique and a perturbation technique for non-

linear problems," International Journal of Non-Linear Mechanics, vol. 35, no. 1, pp. 37-43, 

2000. 

[18] M. Ghanbari, "Numerical solution of fuzzy linear Volterra integral equations of the second 

kind by homotopy analysis method," International Journal of Industrial Mathematics, vol. 2, 

no. 2, pp. 73-87, 2010. 

[19] M. Mareš, "Weak arithmetics of fuzzy numbers," Fuzzy Sets and Systems, vol. 91, no. 2, pp. 

143-153, 1997. 

[20] O. Kaleva, "Fuzzy differential equations," Fuzzy Sets and Systems, vol. 24, no. 3, pp. 301-317, 

1987. 

[21] G. Kllr, U. St Clair, and B. Yuan, Fuzzy Set Theory, Foundations and Applications. Prentice 

Hall, Inc, 1997. 

[22] E.F.Mohommed, "On Some New Types of Partitions Associated with es - Abacus" 

,Mustansiriyah journal of pure and  Applied and Sciencec, Vol.1, ,No.2,pp. 117-130 ,2023 .  

[23] Bushra Joudah Hussein ,Dhuha S. Abdul-Majeed, Enas Ahmed Jawad, Ebtisam Mohammed 

Taki Salman, "Numerical Solutions of V an Der Pol-Mathieu Type Nonlinear Ordinary 

Differential Equation in Complex Plasma", Mustansiriyah journal of pure and  Applied 

Sciencec, Vol.2, No.3, pp.63-74, 2024. 

 

 

 

 


