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ABSTRACT 

Human Activity Recognition (HAR) is the main software component in 
healthcare, sports, and interactive mobile applications. The accuracy of 
HAR component is strongly tied with the sensor used for the motion 
detection and it dictates the overall performance of the application. This 
paper investigates the use of Inertial Measurement Unit (IMU) sensors 
embedded in smartphones to investigate the HAR accuracy through 
machine learning approach. The accelerometer and gyroscope outputs 
are utilized to classify six human activities: going downstairs, going 
upstairs, sitting, standing, walking, and running, using Recurrent Neural 
Network (RNN), Random Forest (RF), and Deep Learning (DL) 
algorithms. A time series dataset comprising XYZ-axis measurements 
from accelerometer and gyroscope sensors across four types of 
smartphones, involving 30 participants is used to train the machine 
learning (ML) models. To enrich the dataset, sensor filtering, and fusion 
techniques are employed to evaluate different scenarios. The findings 
of the study provide significant insights into the capabilities of 
smartphone-embedded IMUs for HAR in mobile applications. 
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1.Introduction 
   In the Artificial intelligence (AI) era, human 
activity detection and recognition is the main 
software component of mobile applications. It 
adds capabilities, functionalities, usability, 
excitement and satisfaction, especially in the 
domain of game, healthcare, sports, virtual reality 
and interactive systems (Haoran Duan 2024). 
Recent advancements in wearable technology 
and Machine Learning (ML) have opened new 
approaches for highly accurate activity 
recognition. ML model's accuracy is directly 
related with the quality of its training data. In the 
context of HAR, data is produced and collected 
from different wearable sensors (Gupta, 
2021;Vincenzo Dentamaro, 2024). 
Inertial Measurement Unit (IMU) is a small device 
that uses a combination of accelerometers, 
gyroscopes, and in some cases magnetometers 
to determine the rigid body’s orientation and 
motion in a three-dimensional space (Hasan et 
al., 2019). IMU is a wearable sensor that can be 
attached to the body so that it can determine 
different movement patterns, helps in 
differentiating between the different types of 
physical activities, and  provides real-time data of 
the user’s movement (Nasrabadi et al., 2022). 
The IMU can be used in robotics, motion 
tracking, and navigation for calculating the 
position, velocity and the orientation of an object 
or body. Nowadays, most smartphones are 
equipped with IMUs to facilitate building context-
aware mobile applications (Aziz et al., 2021). 
IMU can sense the most subtle changes in the 
movement of the body that the device is attached 
to, it is portable and cost-effective in comparison 
to other motion analysis systems, these 
characteristics made IMU a crucial component in 
smartphones and other mobile devices. An IMU 
consists of three types of sensors: the 
accelerometer, which measures linear 
acceleration; the gyroscope, which measures 
angular velocity; and the magnetometer, which 
measures the magnetic field strength (Shkel and 
Wang, 2021). While the accelerometer and 
gyroscope are essential components of the IMU, 
the magnetometer may not be available in all 
IMU devices. In this study, only the readings from 
the accelerometer and gyroscope were used, for 

a detailed overview of the structure and 
functionality of IMUs. 
The combination of ML and IMU provides an 
efficient technique for HAR, when the IMU is 
used for data collection and an appropriate ML 
algorithm can accurately use these data to 
classify physical activities.  This integration of ML 
and IMU provides real-time processing and 
analysis; this property is essential in many 
industrial, social, and healthcare environments 
as it provides immediate and direct feedback on 
the person’s activity. It can also process and 
analyze data from multiple sources 
simultaneously which makes it efficient to be 
used in larger populations.  
As smartphones are widely available, they 
present a feasible option for HAR since 
smartphones are equipped with IMUs (Friedl De 
Groote, 2021;Gu et al., 2023). However, it is 
important to determine whether smartphone-
embedded IMUs are sufficient for classifying and 
recognizing human activities to meet healthcare 
standards. This paper utilizes a feature-rich 
dataset to evaluate various scenarios involving 
smartphone-embedded IMU measurements for 
HAR. Following this introduction, the paper is 
organized as follows: the second section reviews 
some related work on HAR and IMUs; the third 
section describes the methodology used to 
prepare the dataset and the ML algorithms 
applied; the fourth section discusses the results 
of the training models and prediction accuracy; 
and the final section provides the conclusion. 
2.Related Works 
During the Fourth Industrial Revolution (IR4), 
automation and technological solutions based on 
Information Technology (IT) have become 
priorities across various industries, including 
healthcare systems that require HAR. Many 
healthcare systems and devices with HAR 
component currently uses Machine Learning 
(ML) for motion and activity classification and 
data analysis. In this section, the application of 
IMU in HAR in both academic research and 
industrial sector is reviewed. 
Traditional methods such as individual self-
reporting, video monitoring, wearing pedometers 
and heart rate monitors for HAR are often 
unreliable and inaccurate. These HAR systems 
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sometimes struggle to fully differentiate between 
Activities, and using multiple sensors has proven 
uncomfortable for aged adults (Biagetti et al., 
2018;Mannini et al., 2013;Pantelopoulos and 
Bourbakis, 2008). 
The HARMamba architecture was proposed. It is 
a lightweight and resource-efficient architecture 
that is designed for the purpose of recognizing 
human activities using the data collected from 
wearable sensors. In this architecture, selective 
bidirectional state space models (SSM) are 
combined with hardware design principles to 
optimize accuracy and resource utilization. The 
SSM allows for efficient processing for long 
sequences while simultaneously maintaining 
performance. The purpose of this architecture is 
to minimize computational load and minimize the 
number of parameters (Li et al., 2025). 
A novel fall detection device was designed to 
help elderly individuals and those with mobility 
issues. The methodology utilizes a single sensor 
to capture acceleration and angular velocity data 
along with a multi-feature approach, allowing for 
more accurate identification of falls during daily 
activities and reducing false alarms. The SVM 
was employed, it was capable of differentiating 
between falls and other daily activities, 
maintaining two important factors: precision and 
sensitivity (Zhang et al., 2025). 
Patients suffering from stroke and Parkinson’s 
disease often face challenges with gait and 
balance. An approach was proposed for 
estimating ground reaction force (GRF) using two 
IMUs placed on the shank of patients. This 
method, which combines a four-link walking 
model simplified with Newton's Euler equations, 
estimates GRF while minimizing motion 
interference. Additionally, a virtual elastic force 
unit on the shanks and thighs adapts to different 
gait performances (Liu et al., 2024).  
Another study validated the use of three IMU 
sensors by comparing their measurements to 
those from the Camera-Based Motion Capture 
(CBMC) system, which is the golden standard for 
motion analysis. The findings demonstrated a 
strong correlation between IMU and CBMC data, 
indicating that IMUs are a reliable source for 
long-term measurement of knee and hip angles. 
Calibrating (Zeroing) the sensors before taking 

measurements was shown to increase the 
accuracy of IMU data (Oliveira et al., 2023). 
Researchers have also proposed systems for 
monitoring and improving rehabilitation both at 
home and in clinical settings. These systems use 
IMUs worn on the wrist, which provide six data 
channels: three for orthogonal acceleration and 
three for rotational rates  for capturing gestures   
(Gomez-Arrunategui et al., 2022). Additionally, 
another approach involves wearing the IMU as a 
necklace for fall detection (Dastan, 2023).  
For stroke patients, predicting post-stroke 
walking abilities has traditionally required clinic 
visits and demographic information, a time-
consuming process. Researchers used ML and 
IMUs to collect detailed motion data, classifying 
patients as either household or community 
ambulatory in a time-efficient manner, without 
extensive resources (O’Brien et al., 2022). 
Children with Idiopathic Toe Walking (ITW) face 
abnormalities such as poor balance, increased 
risk of falling, and delays in motor development. 
Researchers used ML to classify gait patterns, A 
wearable IMU sensor was used for continuous 
monitoring. These techniques identified whether 
the initial foot contact during walking was a heel 
or toe strike and quantified the number of toe 
walking steps (Soangra et al., 2022). 
Recently, energy-efficient, low-cost microsensors 
have been integrated into glasses, shoes, 
smartwatches, and smartphones, or directly 
affixed to the body. These sensors collect huge 
amount of data on body position, orientation, and 
movement, which can be used to analyze human 
activities by extracting relevant and effective 
movement features. In this study, the ML-based 
HAR using accelerometer and gyroscope data 
from IMUs embedded in smartphones was 
explored, evaluating different scenarios including 
data filtering and sensor fusion. 
3.Methodology 
It is well known that not all ML algorithms perform 
equally well across different feature 
combinations, as they are sensitive to factors 
such as data types, the number of features, 
target labels, and the nonlinear correlation 
between features and the target variable.  
This study aims to evaluate HAR by presenting a 
comprehensive analysis of data from various 
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combinations of accelerometer and gyroscope 
sensors in different types of smartphones, 
considering a diverse range of individuals in 
terms of age, sex, and body index, and applying 
different ML algorithms and scenarios with 
hyperparameters tuning. 
3.1. The Dataset 
In this study, A Wild-SHARD dataset was used, 
which provides data gathered in uncontrolled, 
real-world environments at the National Institute 
of Technology Silchar (AminChoudhury and 
BadalSoni, 2024). The dataset includes time 
series data on human activities gathered using 
different smartphone brands and models, such 
as the Samsung Galaxy F62 and A30s, Poco X2, 
OnePlus 9 Pro, etc. These smartphones, 
equipped with accelerometers and gyroscopes, 
were mounted vertically in the front pockets of 
the participants during the tests. The 40 

individuals represent a range of ages, genders, 
and body indices. Participants performed 
activities naturally to provide data on daily 
activities including going downstairs, going 
upstairs, sitting, standing, walking, and running, 
both indoors and outdoors. The dataset has the 
activity type as the only target variable.  
The accelerometers and gyroscopes measure 
acceleration and rotational rate along the XYZ 
axes in a spatial space, respectively. The dataset 
includes the features; linear acceleration (Acc), 
gravity (gravity), acceleration due to gravity (AG), 
rotational rate (RR), rotational vector (RV), and 
cosine of the rotational rate(cos). The dataset 
contains 483,896 observations with a 100 Hz 
recording rate. A sample of the Wild-SHARD 
dataset is shown in Table 1. 

Table 1. Sample data from the Wild-SHARD dataset 

 

3.2 Data Preprocessing 
The Wild-SHARD is a raw dataset with no 
missing values, and all record observations are 
complete. The features are numerical, while the 
target is categorical and has been converted to 
numerical values in this study. There are six 
types of targets, downstairs, upstairs, sitting, 
standing, jogging and walking which has been 
mapped into numerical values 1, 2,3 ,4 ,5 and 6 
respectively. The features related to gravity, 
directly or indirectly, have magnitudes greater 
than 1, including both positive and negative 
values, while the acceleration features are less 
than unity. To avoid underfitting, the gravity  
features have been normalized. The 
normalization process has been done through 
Max-Min Normalization approach. This approach 
ensures that the features are on the same scale, 
preventing the features with larger values from 

dominating the learning process, each new value 
is obtained through the equation of Max-Min 
Normalization, the value is subtracted by the 
minimum value of the feature, then its result is 
divided by the difference between the maximum 
value of the feature and the minimum value of 
the feature. Additionally, due to the relatively 
slow appearance of activities compared to the 
high original sampling frequency, which is 100 
Hz, the data was segmented using a step size of 
50. This adjustment is based on the 
understanding that a lower sampling rate can still 
adequately capture the dynamics of the activities 
while reducing data volume and computational 
load. Consequently, the dataset sampling at a 
reduced 50 Hz frequency, which indicates that 
the data is being collected at a rate of 50 
samples per second. The dataset went from 
having 483,896 observations to 9,677 
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observations. this improves efficiency without 
affecting the quality of the data as it reduces the 
volume of the data and reduces power 
consumption.  
3.3 Human Activity Recognition (HAR) 
Currently, there are two approaches to HAR: 
vision-based and wearable-based sensors. 
Vision-based HAR utilizes video cameras to 
capture activity features, while wearable-based 
HAR employs sensors worn on the body or 
embedded in clothing to detect motion and 
movement features (ChenKaixuan et al., 2021). 
The sensor data are processed for HAR in two 

primary methods: threshold-based analysis 
measurements and training on historical data 
using ML. In this study, the wearable approach is 
used, while ML data processing is applied for the 
motion detection and recognition. Our technique 
includes data collection from accelerometer and 
gyroscope embedded in smartphones, 
preprocessing the dataset, using ML algorithms 
to train the dataset, which is then used practically 
to predict unseen new data for classification. The 
study phases is shown in Figure 1 (Gupta, 2021).   

 

 

Fig. 1 Human Activity Recognition Approaches modified from (Gupta, 2021) 

While many ML algorithms are available in the 
Artificial Intelligence (AI) and ML literature, but 
their effectiveness can vary significantly 
depending on the specific problem. For the HAR 
problem, three algorithms were examined, 
evaluating their suitability for HAR specific 
challenges.  
3.3.1 Recurrent Neural Networks (RNN) 
The RNN algorithm is well known for good 
performance with sequential data (Safwan 
Mahmood Al-Selwi 2024). For HAR problem, it is 
considered a good choice because of its ability to 
effectively model time-series data, capturing the 
dynamic patterns and correlations appears in 
human activity sequences. 
The RNN algorithm processes the input 
sequences one step at a time, maintaining a 
hidden state that grasp information about 
previous steps (Anwar, 2021). This hidden state 
is updated at each time step based on the 
current input and the previous hidden state, 
allowing the network to remember important 
features from the past. The output at each time 
step is affected by both the current input and the 
accumulated knowledge from previous inputs, 

making RNNs particularly suited for tasks where 
context and order matter, such as HAR.  For the 
detailed description of the RNN algorithm, refer 
to (Salem, 2022).  
3.3.2 Deep Learning (DL) 
Deep learning is a neural network algorithm with 
more than three layers. It can model complex 
patterns and relationships in datasets (Haider & 
Ali, 2022). We have selected DL for  the HAR 
problem because of its ability to automatically 
learn and extract high-level patterns from sensor 
data, leading to better accuracy in recognizing 
and classifying human activities (Saputra et al., 
2024). The details of this algorithm are well 
documented in the literature, see (Goodfellow et 
al., 2016).  
3.3.3 Random Forest (RF)  
Random Forest algorithm starts by constructing a 
multitude of decision trees during training and 
outputting the mode of the classes of the 
individual trees. RF is good to be used in the 
HAR problem because of its good performance 
with high-dimensional data and its robustness to 
overfitting. RF is also well-suited for processing 
the diverse and noisy sensor data typically 
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involved in HAR datasets. The RF algorithm is 
very mature and well documented in the ML 
literature, for the detailed steps refer to 
(Moshood A. Hambali, 2022).  
4.Results and Discussion 
The Wild-SHARD dataset is a rich and 
comprehensive, containing nine directly recorded 
features from smartphone’s accelerometer and 
gyroscope and seven indirectly additional 
calculated features, and a multi target variable 
with six objectives. In the context of HAR, it is 
necessary to examine and evaluate these 
features both individually and in combination to 
identify the optimal feature set that yields the 
highest accuracy and performance.  
The three algorithms, RNN, DL, and RF were 
tested on different combinations of features, 
including linear acceleration (Acc), acceleration 
with gravity effect (AG), a combination of 
acceleration and gravity (Acc-Gravity), AG and 
gravity (AG-Gravity), AG with a cosine 
transformation (AG-cos), RR and Acc-RR. All 
tests were conducted using Python 3.12 with the 
scikit-learn, Keras and TensorFlow libraries. The 
dataset was randomly split into 80% for training 
and 20% for testing, with different 
hyperparameter tunings and various k-fold cross-
validation techniques applied to prevent 
overfitting or underfitting and to minimize bias. 
The performance of the tests was evaluated 
using precision, recall, F1-score and Accuracy. 
For the definition and equations of these metrics 
refer to (Varoquaux and Colliot, 2023). 
Precision is the ratio of correctly predicted 
positive observations to the total number of 
positively predicted observations. Table 2 
presents the results of the precision for the three 
algorithms across all designed feature 
combinations. The results show that RNN is the 
most precise algorithm across the board, 
especially with the Acc alone, and Acc-Gravity 
and Acc-RR feature combinations, indicating its 
strong suitability for tasks involving time-series 
data. The precision ranges from 81.93% for AG 
alone and 99.37% for Acc-Gravity combination. 
DL, while having some potential with specific 
feature combinations, underperforms compared 
to RNN and RF, suggesting that further model 
tuning, or different network architectures might 

be required. RF offers a balance between 
stability and precision, performing well across 
most feature combinations but with the best 
case, 80%, is not reaching the peak precision of 
RNN. 
Table 2 The precision of the ML algorithms against 
different feature combination 

ML 
Algorit
hms 

Feature combinations 

Acc AG Acc-
Gra
vity 

AG-
Gra
vity 

AG-
cos 

RR Acc
-RR 

RNN 0.97
87 

0.81
93 

0.99
37 

0.90
56 

0.83
82 

0.91
25 

0.96
20 

DL 0.56
18 

0.65
83 

0.75
05 

0.75
73 

0.66
00 

0.56
15 

0.62
66 

RF 0.64 0.71 0.80 0.80 0.74 0.63 0.76 

Recall measures the ability of a ML model to 
correctly identify all relevant instances in the 
dataset. Mathematically, it is the ratio of correctly 
predicted positive observations to all 
observations in the actual positive class. Table 3 
shows the recall for the three algorithms for all 
feature combinations. The results show that RNN 
consistently high recall across all feature 
combinations, with values ranging from 82.12% 
for AG alone and 99.36 % for Acc-Gravity 
combination. The highest recall is achieved with 
the Acc-Gravity feature combination, similar to 
the precision results, indicating that RNN is very 
effective at correctly identifying positive instances 
when these features are used together. 

Table 3 The Recall of the ML algorithms against different 
feature combination 

ML 
Algorit
hms 

Feature combinations 

Acc AG Acc-
Gra
vity 

AG-
Gra
vity 

AG-
cos 

RR Acc
-RR 

RNN 0.97
85 

0.82
12 

0.99
36 

0.90
41 

0.83
31 

0.90
37 

0.96
11 

DL 0.55
37 

0.67
20 

0.75
36 

0.76
03 

0.67
15 

0.56
15 

0.61
26 

RF 0.64 0.71 0.80 0.80 0.75 0.63 0.76 

The F1-score is another metric which have been 
used in this evaluation. It is the weighted average 
of recall and precision. This index provides a 
balanced measure of a model's performance, 
especially where there is an uneven class 
distribution.  
Table 4 presents the results of F1-score. It shows 
that the highest F1 score is achieved with the 
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Acc-Gravity feature combination 99.36%, 
indicating that RNN excels when these specific 
features are used.  The DL model exhibits 
moderate F1-scores across the board, ranging 
from 54.92% for Acc to 0.7574 for AG-Gravity. 
The RF values show stable F1 scores across all 
feature combinations, ranging from 64% Acc to 
80% Acc-Gravity and AG-Gravity. These values 
of the F1-score for RNN, DL and RF suggests 
that RNN is very effective in capturing the 
relevant patterns in the data, leading to an 
excellent balance between precision and recall. 

Table 4 The F1-score of the ML algorithms against 
different feature combination 

ML 
Algorit
hms 

Feature combinations 

Acc AG Acc-
Gra
vity 

AG-
Gra
vity 

AG-
cos 

RR Acc
-RR 

RNN 0.97
86 

0.81
90 

0.99
36 

0.90
41 

0.83
30 

0.90
12 

0.96
10 

DL 0.54
92 

0.65
99 

0.75
02 

0.75
74 

0.65
60 

0.54
08 

0.61
14 

RF 0.64 0.71 0.80 0.80 0.74 0.63 0.76 

Accuracy is the percentage of correct (i.e. true) 
predictions metrics which is a major index for ML 
model evaluation. The accuracy results for all 
cases are shown in Table 5. The peak accuracy 
of 99.36% with the Acc-Gravity combination 
indicates that RNN is highly effective at utilizing 
both acceleration and gravity in combination to 
make accurate predictions. The highest accuracy 
for DL is observed with the AG-Gravity feature 

combination, which is 75.15%, indicating that this 
combination provides better information for the 

DL model to make accurate predictions. While 
RF does not reach the high accuracy levels of 
RNN, its consistency makes it a strong candidate 
when stability across different feature sets is 
important. 

Table 5 The accuracy of the ML algorithms against 
different feature combination 

ML 
Algori
thms 

Feature combinations 

Acc AG Acc-
Gra
vity 

AG-
Gra
vity 

AG-
cos 

RR Acc-
RR 

RNN 97.5
0% 

82.1
2% 

99.3
6% 

90.4
1% 

83.3
1% 

90.3
7% 

96.1
1% 

DL 55.3
7% 

67.0
5% 

74.9
5% 

75.1
5% 

67.7
2% 

56.1
5% 

61.2
6% 

RF 64.0
5% 

71.4
4% 

80.1
7% 

80.2
2% 

74.6
4% 

63.2
2% 

75.7
7% 

The RNN outperformed both DL and RF due to 
its ability to handle sequential data and the 
capability of capturing temporal dependencies, 
while RF relies on fixed-size features resulting in 
not considering temporal dynamics. The dataset 
is time-dependent as each data point is reliant on 
the previous data point. RNN can process data 
with varying lengths, while DL can process fixed-
length data.  
Dimensionality reduction (DR) in sensor-based 
datasets is an important preprocessing step for 
developing hardware-based ML systems 
because it simplifies the circuitry and 
computation, reducing both cost and complexity 
while enhancing reliability. There are many 

dimensionality reduction algorithms in the 
literature (Schneider and Xhafa, 2022).The 
Principal Component Analysis (PCA) algorithm 
was selected and applied it DR to the Wild-Shard 
to create a new dataset that retains only two and 
three features in two separate cases. The new 
dataset preserves the influence of all original 
features.  
PCA is a transformation algorithm, when applied 
to a dataset, it projects an existence dataset to a 
new one with less features called Principal 
Components. The PCA is summarized in 
Algorithm 1 (Anowar et al., 2021), where  𝑤 ∈
𝑅𝑥∗𝑦   is the transformation matrix, d is the 
dimension of the original X space and k is the 
dimension of the new mapped space Y.  
The three ML algorithms were then tested on 

Algorithm 1: PCA Algorithm 

Input: The features X, X∈Rn*d 

Output: The new subspace (the feature set) Y,  
Y∈Rn*k 

1.Organise the covariance matrix X.XT 
2.Apply Eigenvalue decomposition to the 
covariance matrix X.XT to calculate Eigenvalues 
and Eigenvectors 
3.Sort Eigenvalues in descending order, select 
the k top correspondent Eigenvectors. 
4.Construct the transformation matrix W,  
W∈Rd*k 
5.Obtain the new subspace Y=X.W 
6.End 
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these new transformed datasets with k-features. 
The results are presented in Table 6, where it 
shows that RNN performs very well when 
features are integrated into two 
(accuracy=94.55%) or three (accuracy=96.59%) 
new features that combines the effects of all 
original features. 

Table 6 The performance of the ML algorithms against 
modified datasets 

ML 
Algorithms 

Modified feature structure 

Two PCA Three PCA 

RNN 94.55% 96.59% 

DL 51.50% 61.16% 

RF 65.08% 70.40% 

The RNN performs better with three PCA rather 
than two PCA given that the additional 
component offers a more detailed and in-depth 
understanding of the data, capturing a larger 
portion of its variation. The two PCA puts a risk in 
losing crucial information, especially in scenarios 
in which the data is complex and high-
dimensional but the three PCA protects the 
variability that might be lost, leading to an 
improvement in the performance.    

5.Conclusion 
The performance of accelerometer and 
gyroscope sensors in smartphones in the HAR 
were evaluated. A dataset called Wild-Shard has 
been used in the evaluation process. The dataset 
included the readings of an embedded 
accelerometer and gyroscope sensors in 
different smartphone models by recording six 
main human activities of 30 volunteers. Many 
combinations of features have been tested with a 
variety of variable justifications and k-folding 
cross sections and hyperparameter tunings to 
check the applicability of these sensors in HAR. 
Also, dimensionality reduction analysis (PCA) 
algorithm has been used to transform the input 
feature to just two or three features while 
retaining the essence of the original data. This 
reduction not only optimizes the computational 
load but also significantly reduces the complexity 
and cost of potential hardware implementations.  
The findings indicate outstanding performance of 

RNN algorithm in the Acc-Gravity, Acc-Gravity-
RR feature combinations (99.36% and 96% 
respectively). This demonstrates that RNN is 
able to capture temporal dependencies and 
complex patterns effectively when the data 
integrates motion, gravitational and angular 
velocity influences. In this problem, DL models 
displayed moderate success, with the best 
results in the feature combination AG-Gravity and 
Acc-Gravity combinations (75.15% and 74.95%, 
respectively). This moderate performance 
indicates that while DL can process complex 
features from sensor data, achieving high 
accuracy depends on DL architecture. RF in the 
other side, offers consistent, though not superior, 
results across different feature combinations, 
with the highest accuracy in the combinations 
AG-Gravity and Acc-Gravity (80.22% and 
80.17%, respectively). RF is capable to process 
mixed sensor data but lacks good performance 
seen in temporal pattern-focused models like 
RNNs. The tests underscore the robustness of 
RNNs in processing datasets with temporal 
sequences typical in HAR tasks. The 
comparative underperformance of DL models 
suggests a need for further tuning and possibly 
exploring more customized network structures 
tailored for HAR problem. RF, while it is reliable 
and easier to implement, falls short in handling 
sequences like HAR datasets. 
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