Hadi and Khalid Iraqi Journal of Science, 2025, Vol. 66, No. 7, pp: 2917-2923
DOI: 10.24996/ij5.2025.66.7.21

/-\—/
]’mqi
Journal of

Science

ISSN: 0067-2904
On Rad.-GP*property

Reham Hadi*, Wasan Khalid
Mathematics Department, Collage of Science, University of Baghdad, Baghdad, Iraq

Received: 21/3/2024 Accepted: 1/8/2024 Published: 30/7/2025

Abstract

Throughout this paper we depend on the concept of p- small submodule to
generalized the Jacobson radical called p-Radical that lead us to present a
generalization of (GP*) property.
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1. Introduction
In this work every module is a unital left R-module, and all rings are associative with the
identity element. The sets K and U are submodules of X, where X is an R-module. A sub
module U is said to be small submodule of X if whenever K+ U = X for some submodule K
of X, then X = K,indicates that U << X, see [1]. Let U and W be submodules of X, U is a
supplement of W in X if U is minimal with respect to the property X = U + K. Equivalently,
X = U+ Kand U N K << U, [1]. The module X is called @-supplemented module if each
submodule of X has a supplement of a direct summand of X [2, 3]. There are many
generalizations of @-supplemented module were presented, see [4-6].

Many authors generalized small submodule see [7-11]. In [12] it was defined the submodule
Z* (X) as a dual of singular submodule to be the set of all elements x in X such that Rx is a
small module. The set Z* (X) = {x inX:Rx <, E (X)}, where E(X) is an injective hull of
X. The set X is called cosingular (non-cosingular) module if Z*(X) = X, (Z*(X) = 0). W.
Khalid and E. Mustafa presented the notion of p- small submodules in [7] as a generalization
of small submodules. Any submodule U of X that has X/L cosingular whenever X=U+L and
X =L is referred to as p-small submodule of X (denoted by UK, X). If there is a L < X such
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that X=U+L and U N L «, K, then X is said to be p- supplemented. If L is a direct summand
of X, then X is called a @ .- supplemented module [13]. If for each submodule U of X, there
exists direct summand L of X such that L <U and U/L <« X/L, then M is said to be lifting
[14].

A module X is called p- lifting if for each submodule U of X there exists H of U such that X=
H@H’, where H’ in X and U N H” &, H’. Equivalently, for each submodule U of X there

exists L <® X such that L. < U, and U/L &, X/L [15]. A module X is called has the property

(P*) if for each submodule U of X , 3 L <® X such that L < U and U/L << (X/L), [16]. A
module X is said to has property (GP*) if every A € Endy (X) there exists a direct summand

H of X suchthat H € Im(A) and % << Rad(g) , see [17].
According to the property (GP*) and p- lifting module we generalize p- lifting module to be
(Rp-P*) and (N- Ru-GP*) properties. We present a generalization to Rad (X) called Rad, (X),
to define (Ru-P*) property. It is evident that the pu- lifting module possesses the property (Ru-
P*), and each module that possesses this feature is Rad, - @- supplemented.

In our work we learn some information on the properties (Ru-GP*) with (N- Ru-GP*). We
demonstrate that each direct summand of a module with (Ru-GP*) has also the property (Ru-

GP*) by proving various results on these properties.

2. n-Radical of X:

This section defines and establishes some of the fundamental features of X is p-maximal
submodule and p-Radical. Among many generalizations of Rad (X) [18], we present the
following:

Definition2.1: Let X be an R-module and let K be submodule of X, then K is called p-maximal

submodule of X if K is maximal and Z*(E)Z % .

Examples and remarks 2.2:
1-  While every p-maximal is maximal, this is not always the case.

For example, Zs as Zs -module <2> is maximal but not p-maximal since Z* (<Z;>) = 7* (20)
_ Ze
=0+ <2>"

2- IfZ* (X) =X, then every maximal is p-maximal. To show that, let N be maximal and N#
X and consider the neutral epimorphism.

X . . . (X . (X X
fiXo Tsincef(22X) < 2 (5).f 0z (5)butfx) = =

X

Then Z* (ﬁ) = (%) . Hence, N is p-maximal.

3- The module Zs as Z — module, by (2) <2> is p-maximal.

4- The module Z as Z — module: since Z*(Z) = Z, then by (2) for all P prime, < P >is
maximal if and only if <P>is p-maximal.

5- If 0 is maximal and M is cosingular, then 0 is p-maximal, by (2).

6- The module QO as Z- module since Q has no maximal. So, by (2) O has no p-maximal
submodule.

Definition 2.3: If X is an R-module, then the intersection of all of its p-maximal submodules
is known as X i1s p-Radical, and it is represented as (Rad, (X)). The Rad, (X) = X if there is no
p-maximal submodule for X.

Note: The fact that Rad (X) < Rad, (X), is obvious, but the inverse is typically not the case.
The Rad, (Zs) = Z¢ as Z¢ - module, but Rad (Ze) = 0.

Proposition 2.4: Let X be R — module and a € Rad,, (X) if and only if Ra <<, X.
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Proof: Let Ra <<, X and suppose that a € Radp (X), then there exists p - maximal L and a &
L, so Z* (%) = % , and Ra + L = X. Since Ra <<, X, then X = L, which is a contradiction.

Therefore, a € Rad, (M).
Conversely, suppose that a € Rad, (X) and Ra is not p-small in X.

Let F = {N c X such that Z*(>) =~ and N + Ra= X} # ¢.
Since Ra is not p- small in X, then let {Cqy} en be chain in F. To show that Ugen Cq € F, let Cq
€ F, for each o € A. Since C, € F, then Z* %: % and Ra+ C, = X, for all a€EA. Since Z* (%):

X N X\ X _ .
( c)’ then Z (UaE/\ = ) (UaE/\ = ), by [3] and Ra + Ugen Co =X. To show Ugen Co & X, if

Ugen Co = X =Ra + H, a EUqen C,, then there exists oo € A such that o € Cyg, (since {Cy}qenls
chain). Then Ra < Ca and Ra + Cqo = Coo = X, which is a contradiction, then User Co C F. By

Zorn’s Lemma, F has a maximal element say No. Since No € X and Z*(N1)= Ni and Ra + Np
0 0

= X. To show Ny is a maximal submodule suppose that No € N, then Ra+ N = X, and since
Z*(NL) = Ni, then by [7], we get Z*(%)Z %, then N € F, a contradiction with the maximality
0 0

of No, a € No, hence a € Rad, (X), and that is a contradiction. Therefore, Ra<<, X.

Corollary 2.5: Radu(X) = ZAq <<u X Aq.

Proof: A,<<, X, then V 4 € Aa, Ra <<a X, by Proposition 2.4, a € Rad,(X), for all a € A, ,
which leads to Aq < Rady (X) , then Xaq <<u M Aq < Rad, (X).

Conversely, let a € Rad,(X), then Ra <<, X, thus a € Xaq <<y M Aq.

So, Radu(X) < Zaa<<u x Ag, hence Rad, (X) = Zag <<u x A

Theorem 2.6:

Let @: X— N be an R- homomorphism, then ®(Rad,(X)) < Rad,(N).

Proof: Let U <<, X, then by [7], ®(U) <<, N, and ®(U) <Rad, (N), for all U <<, X. Therefore,
® (Rad, (X)) < Radu(N).

Corollary 2.7:

Let X be any R- module:

a. If C <X, then Radu(C) < Radu(X).

b. Let {X;}ic; be a family of R- modules, so if X=&®;X;, then Rad,(X)=
®iEI Radu(Xi),i €l
c. If X = @ye/X;, then — d’: 5 = e ﬁ

Proof:
a. Leti: C = X be the Inclusion map, then by Corollary 2.5, we have i (Radu(C)) < Rad, (X).

Therefore Rad, (C) < Rad,(X).
b. For all i € [,X; <X, by (a) we have Rad,(X;) Rad,(X),Vi €I, then 0
@icRad, (X;) < Rad,(X).
Foralli € I, let P; : @;¢;X; — X;, defined by P,(X [, X;) = X;.
Letx € Rad,(X) X,thenx = }i,; m;, m; € X; ,m; # 0 for at most a finite number of i € I.
For alli € I,P,(x) = P; Xig;m;) = m;,P; (Rad,(X;)) Rad,(X;), then m; € Rad,(X;),
then

n
X = z m; € @ Rad,,(X,).
i€l

Then,
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Rad, (X) (Radu(Xi)). )
Form (1) and (2) we get Rad, (X) = EBlE,(Radu(Xl-)).
C. Let ®: m —@ie (Rad (X ))

Let 2m; € @ X; with m; € @ X; be an arbitrary element from X, and define ®(Xm;) +
Rad,(X) := X(m; + Rad,(X;)) € Die (Rad e )) To show that @ is well define:

Let}(m;) + Rad,(X) := Y (m;) + Rad,(X)withm;,m;" € X; .

2(m;) — X(m;) = Rad,(X), then Z(mi —m;) € Rad,(X), hencem; — m;" €
Rad, (X;). It follows thatm; + Rad,(X;) = m;" + Rad,(X;),thus X(m; +
Rad,(X)) = X(m;" + Rad,(X;)), then @ is well-define

Now, let X(m; + Rad,(X) € Ker®, then ®(X(m; + Rad (X)) = X(m; + Rad,(X;)) =
0, hence m; + Rad,(X;) = 0,Vi.

Then it follows that m; € Rad,,(X;)for all occurring m;, since X; < X. Therefore, Rad,(X;) <
Rad,(X), we deduce that X(m;) + Rad,(X) = Rad,(X), hence kerdJ =0.

Let m; € X; then m; € Rad,(X;), then m; + Rad,(X;)) € Die; (=) .then X(m; +

Radu(X )) E®l€1 (
2(m;) + Rad, X) € ———

Rad (x )

Rad (x)) , and since X = @;e; X;, then 2 (m;) Dy X; = X, and

raago’ Then ®(Z(my) + Rady, (X)) = Z(m; + Rady (X)).

Remark 2.8:

If X is an R-module and N is a submodule of X, then Rad, (N) < Rad, (X) n N.

Proof:

Since Rad, (N) n N and Rad, (N) n Rad,(X) by Corollary 2.7, then Rad, (N) < Nn
Rad, (X)and Rad, (N) <Rad, (X) n N.

However the converse of Corollary2 8 is not true in general, for example, Zg as Z- module.
The set <2> is maximal in Zs. 0 < <4 > < < 2 > < Zg. Since Z*(Zs) = Zs, then <2>is u -
maximal in Zs. Also, since Rad, (Zs) = <2> and Rad,, (<2>) = <4>.

Thus Rad, (<2>) < Rad, (Zs) N <2>, but Rad, (Zs) N <2>=<2> %£Rad, (<2>) = <4>, then
Rad, (X) N N % Rad, (N).

Note 2.9: For N < X, Rad, (X) N N =Rad, (N), if N is the direct summand of X.

Proof: By Remark 2.8 Rad, (N) <Rad, (X) N N.

Conversely, let w € Rad, (X) N N, then w € Rad, (X), hence w =i, a;,a; € 4; ,A; <, X
and a; <, X,thus Rw = Ra; + Ra, + .. + Razand Ra; <, X, foreachi=1,2,...,n, thus
Rw <« X, since N is a direct summand of X , then by [3], Rw <, N, therefore Rw <<,
Radu(N) and w < Rady (N).

Proposition 2.10:

If L and K are submodule of module X, then Rad, (L) + Rad, (K) <Rad, (L + K).

Proof:

Demonstrating that Rad,(L) < Rad, (L + K) is sufficient. Since K is a p-small submodule of
L+K according to [3], K < Rad, (L+ K). Let K be a p-small sub module of X. Thus Rad, (K)
<Rad, (L + K). Similarly, Rad, (L) < Rad, (L+ K), therefore Rad, (L) + Rad,(K) <Rad, (L +
K).

3. A generalization of modules with the property (GP*)
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It is known that X is said to have the property (P*) if for each submodule U of X, there exists
a direct summand K of X such, that K < U. and U/K € Rad( X/K) [16].

Definition 3.1: If for every element A in Endy (X), there exists a direct summand, such that
N € Im (1) with 22 Rad, (%), then the module X has the property (Rad,-GP*).

Remark 3.2: It is evident that each module satisfies (Radu-GP*) by having the (P*) property.
But generally speaking, the opposite is not true; for example, F can be any field. Take into
consideration the direct product of F;, where F; = F, and the commutative ring R. Therefore,
R is not semisimple; rather, it is a regular ring [17]. The property (GP*) is held by [16];
nevertheless, since Rad(X) € Rad, (X), R as R-module satisfies (Radu-GP*). The not satisfy

(P*) property.

Proposition 3.3: For a module X, the corresponding conditions are equivalent.

1. The module X has the property (Rad, -GP*);

2. Every A € Endg (X)has a decomposition X = X;PX> such that X; € Im(4) and Xz N
Im(A)< Radu(X2);

3. The representation of Im(A) for each A € Endg (X)is Im(1) = U @ U’, whereas U is
the direct sum of X and U’ € Rad,,(X).

Proof: 1) — 2) By assumption if there exists direct summands Xi, X> of X such that X; C

Im(1), X =X; @&X;z and (A)C Rad, (—) Since X> is a Rady-supplement of X in X, Rad,
( < ) = w Then ”;L((/D c Rad“;X)Jer . So, we have Im(1)< Radu(Xz2) + X1, and, X2 N

1 1 1 1
Im(1)< Radu(X2).
2) — 3) For every 1 € Endy (X),there exists a decomposition X = X; @ Xo such thatX; €
Im(A) and X» N Im(A) € Radu(X2). So, Im(A)=Xi1@ (Im(A)N Xz), by the modular law. Say
U = X in addition that U" = Im(A)N Xs. Therefore, Im(A)= U @ U’, where U is a direct
summand of X and U’ € Rad, (X).
3) —1) Given X the assumption states that for any A in Endg (X), Im(4)=U @ U’, where U

is the direct summand of X and U’ is a subset of Radu(X). Therefore, U is absolutely greater
m@) _Ueu _
— =€

than Im(M) since it is a direct summand of X. As a result, we may write it as

U+Rad, (X) X
T“ C Rad, (G)'

Definition 3.4: The property (N — Rad, —GP*) applies to a module X if, for any homomorphism
A: X — N, then there exists a direct summand L of N, such that 2 (A) C Rad, (%) with L C
Im(A).

It is evident that if and only if X possesses the property (X —Rad,-GP*), then X has the property
(Rad,-GP*).

Remember that if a submodule N of X lacks a valid submodule K such that K € N, then N is

said to be p-coclosed in X. The module X is p-coclosed in all direct summands, as is evident
[14].

Theorem3.5: Given two R-modules X and U. The module X possesses the property (U —Rad,
—GP*). If and only if X' has the property (U'—Rad, -GP*), for each direct summand X' and a
p-coclosed submodule U’ of U.

Proof: (=) For each e? = ¢ € Endj (X), let U’ be a p-coclosed submodule of U, and let X' =
eX. Presume that Hom (X', U’) € a. U = U1@U; can be decomposed so that U; S Im (a(e))
and UxN Im (a(e)) € Radu(X2) € Radyu(U), since a (eX) =a (X') € U’ € U and X satisfies the
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condition (U — Rad, —GP*). The modular law therefore, gives us U’ = U; @ (U> N U’). Rad,
(U") =Radu(U) N U’ by [4], where U’ is a p-coclosed sub module of U. Therefore, UoN U’ N
Im(a) € Rad, (U2 N U’) is what we obtain. Hence, X' possesses the property (U’ —Rad, -GP*).
(&) Clear

Corollary 3.6: For a module X, the following criteria are equivalent.

1- The module X has the property (Rad, -GP*);

2- For each a direct summand L of X owns the property (U-Rad,-GP*) for any a p-coclosed
sub module U of X.

Corollary 3.7:
It is true that all direct summands of modules with the property (Rad, -GP*) also have this

property.

Proposition 3.8: An indecomposable module X is defined here. Suppose for any & in
Endg (X), the fact that Im(d) € Radu(X) means that & = 0. The property (Rad, -GP*) is
applicable to X if and only if each non-zero endomorphism 6 € Endy (X) is an epimorphism.
Proof. Let 0 # 0 € Endr(X). Since X has the property (Rad, -GP*), there exists a
decomposition X = X; @ X with X; € Im(3) and X N Im(d) € Radu(Xz). Since X is
indecomposable, X; = 0 or X; = X. If X; = 0, then Im(d) € Rad.(X). By assumption ¢ = 0;
which is a contradiction. Thus, X; = X and hence 6 is epimorphism.

The opposite is clear.

Remember that if there is an isomorphism for each surjective endomorphism of module X, then
that module is said to be Hopfian [18, 19].

Proposition3.9: Consider X as a Noetherian module with the following property: (Rad, -GP*).
Im(A) € Rad,(X) means that A = 0 if every endomorphism A of X exists. Thereafter, X =
X:i @ X, P ... & X, has a decomposition, where X; is an indecomposable noetherian
module with the condition (Rad p -GP*), and Endg(X;) is a division ring for it.

Proof: X has a finite decomposition of Noetherian direct summands since it is a Noetherian.
All direct summand has the property (Radp -GP*), by Corollary 3.7, and every decomposable
direct summand has a division ring by [16] because every Noetherian module is Hopfian, by
[20].

4.Conclusions

We confirm the following outcomes:

1.While every p-maximal is maximal

2. If Z* (X) =X, then every maximal is p-maximal.

3. Let ®: X— N be an R- homomorphism, then ®(Rad,(X)) < Rad,(N).

4. If X is an R-module and N is a submodule of X, then Rad, (N) < Rad, (X) n N.
5. For N <X, Rad, (X) N N =Rad, (N), if N is the direct summand of X.
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