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Abstract  

     Throughout this paper we depend on the concept of μ- small submodule to 

generalized the Jacobson radical called μ-Radical that lead us to present a 

generalization of (GP*) property. 
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µ-لجاكوبسون من النمط  GP* حول خاصية 
 

 ريهام هادي*, وسن خالد 

العراق , بغداد, جامعة بغداد, كلية العلوم قسم الرياضيات,   
 

  الخلاصة 
ر  ذلأجل اعطاء تعميم لج  -µ-في هذا البحث سوف نعتمد تعريف المقاسات الجزئية الصغيرة من النمط       

وهذا التعميم سوف يقودنا إلى اعطاء تعميم للخاصية من    µ-جاكوبسون ونسميه جذر جاكوبسون من النمط  
 *P. النمط 

1. Introduction 

     In this work every module is a unital left R-module, and all rings are associative with the 

identity element. The sets K and U are submodules of X, where X is an R-module. A sub 

module U is said to be small submodule of X if whenever K +  U =  X for some submodule K 

of X, then  X =  K,indicates that U << X , see [1]. Let U and W be submodules of X, U is a 

supplement of W in X if U is minimal with respect to the property X =  U + K. Equivalently, 

X =  U +  K and U ∩ K << U, [1]. The module X is called ⊕-supplemented module if each 

submodule of X has a supplement of a direct summand of X [2, 3]. There are many 

generalizations of ⊕-supplemented module were presented, see [4-6]. 

 

     Many authors generalized small submodule see [7-11]. In [12] it was defined the submodule 

Z∗ (X) as a dual of singular submodule to be the set of all elements x in X such that Rx is a 

small module. The set 𝑍∗ (X) = { 𝑥  in X: 𝑅𝑥 ≪𝜇  𝐸 (X)}, where 𝐸(X) is an injective hull of 

X. The set X is called cosingular (non-cosingular) module if 𝑍∗(X) = X , (𝑍∗(X) = 0). W. 

Khalid and E. Mustafa presented the notion of μ- small submodules in [7] as a generalization 

of small submodules. Any submodule U of X that has X/L cosingular whenever X=U+L and 

X = L is referred to as μ-small submodule of X (denoted by U≪µ X). If there is a L ≤ X such 
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that X= U+L and U ∩ L ≪µ K, then X is said to be µ- supplemented. If L is a direct summand 

of X, then X is called a ⊕µ- supplemented module [13]. If for each submodule U of X, there 

exists direct summand L of X such that L ≤ U and U/L ≪µ  X/L, then M is said to be lifting 

[14]. 

 A module X is called µ- lifting if for each submodule U of X there exists H of U such that X= 

H⊕H’, where H’ in X and U ∩ H’ ≪µ  H’. Equivalently, for each submodule U of X there 

exists L ≤⨁ X such that L ≤ U, and U/L ≪µ  X/L  [15]. A module X is called has the property 

(P∗) if for each submodule U of X , ∃ 𝐿 ≤⨁ 𝑋 such that L ≤ U and U/L << ( X/L), [16]. A 

module X is said to has property (𝐺𝑃∗) if every λ ∈  𝐸𝑛𝑑𝑅 (X) there exists a direct summand 

H of  X such that H ⊆  Im(λ) and  
Im( λ)

H
<< 𝑅𝑎𝑑(

X

H
) , see [17].  

According to the property (𝐺𝑃∗) and μ- lifting module we generalize µ- lifting module to be 

(Rµ-P*) and (N- Rµ-GP*) properties. We present a generalization to Rad (X) called Radµ (X), 

to define (Rµ-P*) property. It is evident that the µ- lifting module possesses the property (Rµ-

P*), and each module that possesses this feature is Radµ - ⊕- supplemented.  

In our work we learn some information on the properties (Rµ-GP*) with (N- Rµ-GP*). We 

demonstrate that each direct summand of a module with (Rµ-GP*) has also the property (Rµ-

GP*) by proving various results on these properties.  

 

2. µ-Radical of X: 

     This section defines and establishes some of the fundamental features of X is µ-maximal 

submodule and µ-Radical. Among many generalizations of Rad (X) [18], we present the 

following:  

Definition2.1: Let X be an R-module and let K be submodule of X, then K is called µ-maximal 

submodule of X if K is maximal and Z*(
X

K
)= 

X

K
 . 

Examples and remarks 2.2:  

1- While every µ-maximal is maximal, this is not always the case. 

For example, Z6 as Z6 -module <2̅> is maximal but not µ-maximal since Z* (
Z6

 <2̅> 
) ≅ Z* (Z2) 

= 0 ≠ 
Z6

 <2̅> 
.  

2- If Z* (X) =X, then every maximal is µ-maximal. To show that, let N be maximal and N≠ 

X and consider the neutral epimorphism. 

𝑓 ∶  𝑋 →  
𝑋

𝑁 
 since 𝑓(𝑍∗(𝑋)) ≤  𝑍∗ (

𝑋

𝑁 
) , 𝑓   (𝑋) 𝑍∗  (

𝑋

𝑁 
) , but 𝑓(𝑋)  =  

𝑋

𝑁 
.  

Then Z∗  (
X

N 
) =  (

X

N 
) . Hence, N is µ-maximal. 

3- The module Z4 as Z – module, by (2) <2̅> is µ-maximal. 

4- The module Z as Z – module: since 𝑍∗(𝑍)  =  𝑍, then by (2) for all P prime, < P >is 

maximal if and only if <P> is µ-maximal.  

5- If 0 is maximal and M is cosingular, then 0 is µ-maximal, by (2). 

6- The module Q as Z- module since Q has no maximal. So, by (2) Q has no µ-maximal 

submodule. 

 

Definition 2.3: If X is an R-module, then the intersection of all of its µ-maximal submodules 

is known as X is µ-Radical, and it is represented as (Radµ (X)). The Radµ (X) = X if there is no 

µ-maximal submodule for X. 

Note: The fact that Rad (X) ≤ Radµ (X), is obvious, but the inverse is typically not the case. 

The Radµ (Z6) = Z6 as Z6 - module, but Rad (Z6) = 0. 

 

Proposition 2.4: Let X be R – module and a ∈ Radµ (X) if and only if Ra <<µ X. 
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Proof: Let Ra <<µ X and suppose that a ∉ Radµ (X), then there exists µ - maximal L and a ∉ 

L, so Z* (
X

L
) = 

X

L
  , and Ra + L = X. Since Ra <<µ X, then X = L, which is a contradiction. 

Therefore, a ∈ Radµ (M). 

Conversely, suppose that a ∈ Radµ (X) and Ra is not µ-small in X. 

Let F = {N ⊂ X such that Z*(
𝑋

𝐿
) = 

𝑋

𝐿
 and N + Ra= X} ≠ ϕ. 

Since Ra is not µ- small in X, then let {Cα} α∈∧ be chain in F. To show that ∪α∈∧ Cα ∈ F, let Cα 

∈ F, for each α ∈ ∧. Since Cα ∈ F, then Z* 
X

C
= 

X

C
 and Ra+ Cα = X, for all α∈∧.  Since Z* (

X

  C 
)= 

(
X

  C 
), then Z* (

X

 ∪a∈∧ Cα  
)= (

X

 ∪a∈∧ Cα  
), by [3] and Ra + ∪α∈∧ Cα =X. To show ∪α∈∧ Cα ⊊ X, if 

∪α∈∧ Cα = X = Ra + H, a ∈∪α∈∧ Cα then there exists α0 ∈ ∧ such that α ∈ 𝐶𝑎0, (since {𝐶𝑎}𝑎∈∧is 

chain). Then Ra ≤ Cα and Ra + Cα0 = Cα0 = X, which is a contradiction, then ∪α∈∧ Cα ⊂ F. By 

Zorn’s Lemma, F has a maximal element say N0. Since N0 ⊂ X and Z*(
X

N0 
)= 

C

N0 
  and Ra + N0 

= X. To show N0 is a maximal submodule suppose that N0 ⊂ N, then Ra+ N = X, and since 

Z*(
X

N0 
) = 

X

N0 
, then by [7], we get Z*(

X

N 
)= 

X

N 
, then N ∈ F, a contradiction with the maximality 

of N0 , a ∉ N0 , hence a ∉ Radµ (X), and that is a contradiction. Therefore, Ra<<µ X. 

 

Corollary 2.5: Radµ(X) = ΣAα <<µ X Aα. 

Proof: Aα<<µ X, then ∀ α ∈ Aα, Ra <<α X, by Proposition 2.4, a ∈ Radµ(X), for all a ∈ Aα , 

which leads to Aα ≤ Radµ (X) , then ΣAα <<µ M Aα ≤ Radµ (X). 

Conversely, let a ∈ Radµ(X), then Ra <<µ X, thus a ∈ ΣAα <<µ M Aα. 

So, Radµ(X) ≤ ΣAα <<µ X Aα, hence Radµ (X) = ΣAα <<µ X Aα. 

 

Theorem 2.6:  

Let Φ: X→ N be an R- homomorphism, then Φ(Radµ(X)) ≤ Radµ(N).  

Proof: Let U <<µ X, then by [7], Φ(U) <<µ N, and Φ(U) ≤ Radµ (N), for all U <<µ X. Therefore, 

Φ (Radµ (X)) ≤ Radµ(N). 

 

Corollary 2.7: 

Let X be any R- module:  

a. If C  ≤ X, then Radµ(C) ≤ Radµ(X). 

b. Let {X𝑖}𝑖∈𝐼 be a family of R- modules, so if X = ⨁𝑖∈𝐼X𝑖, then  Radµ(X) =

⨁i∈I Radµ(Xi), 𝑖 ∈ 𝐼. 

c. If X = ⨁𝑖∈𝐼X𝑖, then 
X

Radµ(X) 
≅ ⨁𝑖∈𝐼

Xi

Radµ(Xi)
. 

Proof:  

a. Let 𝑖: 𝐶 → X be the Inclusion map, then by Corollary 2.5, we have 𝑖 (Radµ(C)) ≤ Radµ(X). 

Therefore Radµ(𝐶) ≤ Radµ(X). 

b. For all  𝑖 ∈  𝐼, X𝑖 ≤ X , by (a) we have Radµ(X𝑖) Radµ(X), ∀𝑖 ∈ 𝐼 , then 

⨁i∈IRadµ(Xi) ≤  Radµ(X). 
(1) 

For all 𝑖 ∈ 𝐼, let 𝑃𝑖 ∶ ⨁𝑖∈𝐼X𝑖 ⟶ X𝑖, defined by P𝑖(∑ X𝑖
n
𝑖∈𝐼 ) = X𝑖. 

Let x ∈  Radµ(X)  X, then x = ∑ m𝑖
n
𝑖∈𝐼 , m𝑖 ∈  X𝑖  , m𝑖 ≠ 0 for at most a finite number of 𝑖 ∈ 𝐼.  

For all 𝑖 ∈  𝐼 , P𝑖(x)  =  P𝑖 (∑ m𝑖
𝑛
𝑖∈𝐼 )  =  m𝑗  , 𝑃𝑖  (𝑅𝑎𝑑µ(X𝑗))  𝑅𝑎𝑑µ(X𝑗), then m𝑖 ∈ 𝑅𝑎𝑑µ(X𝑖), 

then 

x =  ∑ m𝑖

𝑛

𝑖∈𝐼

∈ ⊕ Radµ(X𝑖). 

 Then, 
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 Radµ(X) (Radµ(X𝑖)).                                                 (2) 

Form (1) and (2) we get 𝑅𝑎𝑑µ(X)  = ⨁𝑖∈𝐼(𝑅𝑎𝑑µ(X𝑖)). 

c. Let Φ: 
𝑋

𝑅𝑎𝑑µ(𝑋) 
⟶⊕𝑖∈𝐼 (

𝑋𝑖

𝑅𝑎𝑑µ(𝑋𝑖)
). 

Let 𝛴m𝑖  ∈ ⊕ X𝑖 with m𝑖  ∈ ⊕  X𝑖 be an arbitrary element from X, and define Φ(𝛴m𝑖)  +

 𝑅𝑎𝑑µ(X)  ∶=   𝛴( m𝑖  +  𝑅𝑎𝑑µ(X𝑖))  ∈ ⊕𝑖∈𝐼  (
X𝑖

Radµ(Xi)
). To show that Φ is well define: 

Let ∑(m𝑖)  +  𝑅𝑎𝑑µ(X)  ∶=   ∑(m𝑖‘) +  𝑅𝑎𝑑µ(𝑋)with m𝑖 , m𝑖‘ ∈  X𝑖 .  

𝛴(m𝑖)  −  𝛴(m𝑖‘)  =  𝑅𝑎𝑑µ(X), then ∑(m𝑖  − m𝑖‘)  ∈ 𝑅𝑎𝑑µ(X), hence m𝑖  −  m𝑖 ‘  ∈

𝑅𝑎𝑑µ(X𝑖). It follows that m𝑖  +  𝑅𝑎𝑑µ(X𝑖)  =  m𝑖‘ +   𝑅𝑎𝑑µ(X𝑖) , thus  𝛴(m𝑖  +

 𝑅𝑎𝑑µ(X))  =  𝛴(m𝑖‘ +  Radµ(X𝑖)), then Φ is well-define  

 Now, let 𝛴(m𝑖 +  𝑅𝑎𝑑µ(𝑋)  ∈  KerΦ, then Φ(𝛴(m𝑖 +  𝑅𝑎𝑑µ(X))  =  𝛴(m𝑖 +  𝑅𝑎𝑑µ(X𝑖))  =

 0 , hence m𝑖 +  𝑅𝑎𝑑µ(X𝑖)  =  0 , ∀𝑖. 

Then it follows that m𝑖 ∈  Radµ(X𝑖)for all occurring 𝑚𝑖, since X𝑖 ≤ X. Therefore, 𝑅𝑎𝑑µ(X𝑖) ≤

 𝑅𝑎𝑑µ(X), we deduce that 𝛴(m𝑖)  +  Radµ(𝑋)  =  𝑅𝑎𝑑µ(X), hence kerΦ = 0. 

Let m𝑖 ∈  X𝑖 then m𝑖 ∈  𝑅𝑎𝑑µ(X𝑖), then m𝑖  +  𝑅𝑎𝑑µ(X𝑖))  ∈ ⊕𝑖∈𝐼 (
X𝑖

Radµ(X𝑖)
) ,then 𝛴(m𝑖 +

  𝑅𝑎𝑑µ(X𝑖))   ∈ ⊕𝑖∈𝐼  (
X𝑖

Radµ(X𝑖)
 ) , and since X = ⊕𝑖∈𝐼 X𝑖, then 𝛴 (m𝑖)  ⊕𝑖∈𝐼  X𝑖  =  X, and 

𝛴(m𝑖)  + 𝑅𝑎𝑑µ (X)  ∈  
𝑋

Radµ(X)
. Then Φ(𝛴(m𝑖)  + 𝑅𝑎𝑑µ (X))  =  𝛴(m𝑖 +  𝑅𝑎𝑑µ (X)). 

 

Remark 2.8: 

If X is an R-module and N is a submodule of X, then Radµ (N) ≤   Radµ (X)  ∩   N. 

Proof:  

Since Radµ (N)  ∩  N and Radµ (N)  ∩ Radµ(X) by Corollary 2.7, then Radµ  (N) ≤  N ∩

 Radµ (X)and Radµ (N)   ≤ Radµ (X)  ∩   N. 

 However, the converse of Corollary2.8 is not true in general, for example, Z8 as Z- module. 

The set <2̅> is maximal in Z8. 0̅  ≤ < 4̅ > ≤ < 2̅ > ≤ 𝑍8. Since Z*(Z8) = Z8, then <2̅> is µ - 

maximal in Z8.  Also, since Radµ (Z8) = <2̅> and Radµ (<2̅>) = <4̅>. 

Thus Radµ (<2̅>) ≤ Radµ (Z8) ∩ <2̅>, but Radµ (Z8) ∩ <2̅>=<2̅> ≰Radµ (<2̅>) = <4̅>, then 

Radµ (X) ∩ N ≰ Radµ (N). 

 

Note 2.9:  For N ≤ X, Radµ (X) ∩ N = Radµ (N), if N is the direct summand of X.  

Proof: By Remark 2.8 Radµ (N) ≤ Radµ (X) ∩ N. 

Conversely, let w ∈ Radµ (X) ∩ N , then w ∈ Radµ (X), hence w = ∑ 𝑎𝑖
𝑛
𝑖=1 , 𝑎𝑖 ∈ 𝐴𝑖 , 𝐴𝑖 ≪µ 𝑋 

and 𝑎𝑖 ≪µ  𝑋, thus 𝑅𝑤 =  𝑅𝑎1  +  𝑅𝑎2 +  … +  𝑅𝑎𝑛and 𝑅𝑎𝑖 ≪µ 𝑋, for each i = 1,2,…,n , thus 

𝑅w ≪µ  X , since N is a direct summand of X , then by [3], 𝑅w ≪µ  𝑁, therefore 𝑅w <<µ 

Radµ(N) and w ≤  Radµ (N). 

 

Proposition 2.10: 

If L and K are submodule of module X, then Radµ (L) + Radµ (K) ≤ Radµ (L + K). 

Proof:  

Demonstrating that Radµ(L) ≤ Radµ (L + K) is sufficient. Since K is a µ-small submodule of 

L+K according to [3], K ≤ Radµ (L+ K). Let K be a µ-small sub module of X. Thus Radµ (K) 

≤ Radµ (L + K). Similarly, Radµ (L) ≤ Radµ (L+ K), therefore Radµ (L) + Radµ(K) ≤ Radµ (L + 

K). 

 

 

3. A generalization of modules with the property (GP*) 
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    It is known that X is said to have the property (P*) if for each submodule U of X, there exists 

a direct summand K of X such, that K ≤ U. and U/K ⊆ 𝑅𝑎𝑑( X/K) [16]. 

  

Definition 3.1:   If for every element λ in 𝐸𝑛𝑑𝑅  (X), there exists a direct summand, such that 

N ⊆ 𝐼𝑚 (λ) with  
𝐼𝑚( 𝜆)

𝑁
⊆ Radµ ( 

𝑋

𝑁
), then the module X has the property (Radµ-GP*). 

 

Remark 3.2: It is evident that each module satisfies (Radµ-GP*) by having the (P*) property. 

But generally speaking, the opposite is not true; for example, F can be any field. Take into 

consideration the direct product of 𝐹𝑖, where 𝐹𝑖 = 𝐹, and the commutative ring R. Therefore, 

R is not semisimple; rather, it is a regular ring [17]. The property (GP*) is held by [16]; 

nevertheless, since Rad(X) ⊆ Radµ (X), R as R-module satisfies (Radµ-GP*). The not satisfy 

(P*) property. 

 

Proposition 3.3: For a module X, the corresponding conditions are equivalent. 

1. The module X has the property (Radµ -GP*); 

2. Every 𝜆 ∈  𝐸𝑛𝑑𝑅  (X)has a decomposition X = X1⊕X2 such that X1 ⊆ 𝐼𝑚(𝜆)  and X2 ∩ 

𝐼𝑚(𝜆)⊆ Radµ(X2); 

3.  The representation of 𝐼𝑚(𝜆) for each 𝜆 ∈  𝐸𝑛𝑑𝑅 (𝑋) is 𝐼𝑚(𝜆)  =  U ⊕  U′, whereas U is 

the direct sum of X and U′ ⊆  Radµ(X). 

Proof: 1) → 2) By assumption, if there exists direct summands X1, X2 of X such that X1 ⊆ 

𝐼𝑚(𝜆), X = X1 ⊕X2 and  
𝐼𝑚( 𝜆)

X1
⊆ Radµ ( 

X

X1
). Since X2 is a Radµ-supplement of X1 in X, Radµ 

( 
X

X1
) = 

Radµ(X)+X1 

X1 
. Then 

𝐼𝑚(𝜆) 

X1 
 ⊆ 

Radµ(X)+X1 

X1
. So, we have 𝐼𝑚(𝜆)⊆ Radµ(X2) + X1, and, X2 ∩ 

𝐼𝑚(𝜆)⊆ Radµ(X2).  

2) → 3) For every 𝜆 ∈  𝐸𝑛𝑑𝑅 (X),there exists a decomposition X = X1 ⊕ X2 such thatX1 ⊆ 

𝐼𝑚(𝜆) and X2 ∩ 𝐼𝑚(𝜆) ⊆ Radµ(X2). So, 𝐼𝑚(𝜆)= X1⊕ (𝐼𝑚(𝜆)∩ X2), by the modular law. Say 

U = X1 in addition that U′ = 𝐼𝑚(𝜆)∩ X2. Therefore, 𝐼𝑚(𝜆)= U ⊕ U′, where U is a direct 

summand of X and U′ ⊆ Radµ (X).  

3)  →1( Given X the assumption states that for any λ in 𝐸𝑛𝑑𝑅  (X), 𝐼𝑚(𝜆)= U ⊕ U′, where U 

is the direct summand of X and U′ is a subset of Radµ(X). Therefore, U is absolutely greater 

than 𝐼𝑚(λ) since it is a direct summand of X. As a result, we may write it as 
𝐼𝑚(𝜆) 

U 
 = 

U ⊕ 𝑈’

𝑈
 ⊆ 

U+Radµ(X) 

U
 ⊆ Radµ ( 

X

U
). 

 

Definition 3.4: The property (N – Radµ –GP*) applies to a module X if, for any homomorphism 

λ: X → N, then there exists a direct summand L of N, such that 
𝐼𝑚 (𝜆)

 𝐿 
 ⊆ Radµ (

N

L
) with L ⊆

 𝐼𝑚(𝜆).  
It is evident that if and only if X possesses the property (X –Radµ-GP*), then X has the property 

(Radµ-GP*).  

Remember that if a submodule N of X lacks a valid submodule K such that K ⊂ N, then N is 

said to be µ-coclosed in X. The module X is µ-coclosed in all direct summands, as is evident 

[14]. 

 

Theorem3.5: Given two R-modules X and U. The module X possesses the property (U –Radµ 

–GP*). If and only if X' has the property (U′−Radµ -GP*), for each direct summand X' and a 

µ-coclosed submodule U′ of U. 

Proof: (⇒) For each e2 = e ∈ 𝐸𝑛𝑑𝑅  (𝑋), let U′ be a µ-coclosed submodule of U, and let X' = 

eX. Presume that Hom (X′, U′) ∈ α. U = U1⊕U2 can be decomposed so that U1 ⊆ 𝐼𝑚 (α(e)) 

and U2∩ 𝐼𝑚 (α(e)) ⊆ Radµ(X2) ⊆ Radµ(U), since α (𝑒𝑋) = α (X′) ⊆ U′ ⊆ U and X satisfies the 
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condition (U – Radµ –GP*). The modular law therefore, gives us U′ = U1 ⊕ (U2 ∩ U′). Radµ 

(U′) = Radµ(U) ∩ U′ by [4], where U′ is a µ-coclosed sub module of U. Therefore, U2∩ U′ ∩ 

𝐼𝑚(α) ⊆ Radµ (U2 ∩ U′) is what we obtain. Hence, X' possesses the property (U′ −Radµ -GP*). 

(⇐) Clear 

 

Corollary 3.6: For a module X, the following criteria are equivalent. 

1- The module X has the property (Radµ -GP*); 

2- For each a direct summand L of X owns the property (U-Radµ-GP*) for any a µ-coclosed 

sub module U of X. 

 

Corollary 3.7: 

     It is true that all direct summands of modules with the property (Radµ -GP*) also have this 

property. 

 

Proposition 3.8: An indecomposable module X is defined here. Suppose for any δ in 

𝐸𝑛𝑑𝑅  (X), the fact that 𝐼𝑚(δ) ⊆ Radµ(X) means that δ = 0. The property (Radµ -GP*) is 

applicable to X if and only if each non-zero endomorphism δ ∈ 𝐸𝑛𝑑𝑅  (X) is an epimorphism. 

Proof. Let 0 ≠ δ ∈ 𝐸𝑛𝑑𝑅(X). Since X has the property (Radµ -GP*), there exists a 

decomposition X = X1 ⊕ X2 with X1 ⊆ 𝐼𝑚(δ) and X2 ∩ 𝐼𝑚(δ) ⊆ Radµ(X2). Since X is 

indecomposable, X1 = 0 or X1 = X. If X1 = 0, then 𝐼𝑚(δ) ⊆ Radµ(X). By assumption δ = 0; 

which is a contradiction. Thus, X1 = X and hence δ is epimorphism. 

The opposite is clear. 

 

Remember that if there is an isomorphism for each surjective endomorphism of module X, then 

that module is said to be Hopfian [18, 19].  

 

Proposition3.9: Consider X as a Noetherian module with the following property: (Radµ -GP*). 

𝐼𝑚(𝜆)  ⊆  𝑅𝑎𝑑µ(X) means that 𝜆 =  0 if every endomorphism λ of X exists. Thereafter, X =

 X1  ⊕  X2 ⊕  … ⊕  Xn has a decomposition, where X𝑖 is an indecomposable noetherian 

module with the condition (Rad µ -GP*), and  𝐸𝑛𝑑𝑅(X𝑖) is a division ring for it. 

Proof: X has a finite decomposition of Noetherian direct summands since it is a Noetherian. 

All direct summand has the property (Radµ -GP*), by Corollary 3.7, and every decomposable 

direct summand has a division ring by [16] because every Noetherian module is Hopfian, by 

[20].  

 

4.Conclusions 

We confirm the following outcomes: 

1.While every µ-maximal is maximal 

2. If Z* (X) =X, then every maximal is µ-maximal. 

3. Let Φ: X→ N be an R- homomorphism, then Φ(Radµ(X)) ≤ Radµ(N).  

4. If X is an R-module and N is a submodule of X, then Radµ (N) ≤   Radµ (X)  ∩   N. 

5. For N ≤ X, Radµ (X) ∩ N = Radµ (N), if N is the direct summand of X. 
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