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This study investigates the use of advanced machine learning algorithms to classify different 

classes of epilepsy EEG signals. Using the Time Series Feature Extraction on basis of Scalable 

Hypothesis tests (TSFRESH) package, a large set of features was reduced to the most important 

ones by extracting them from the University of Bonn EEG dataset. Following that, seven 

distinct machine learning classifiers were trained using these features. Three different 

classification tasks are used to evaluate the classifiers using cross validation. The evaluation 

results of each algorithm after testing them on each of the three tasks show that the accuracy of 

the Support Vector Machine (SVM) reaches 99.60% for binary classification, the accuracy of 

Histogram-based Gradient Boosting Trees (HGBT) reaches 99.20% for the three-class task, and 

for the five-class classification, the Random Forest achieves 94.80% accuracy, which is the 

highest among the others. These results show that there is no dominant algorithm that works for 

all classification tasks and it is necessary to always run more than one algorithm to get a better 

assessment. 
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1. Introduction      

     For accurate tracking of brain activity, healthcare professionals rely on measuring the electrical activity through 

electroencephalography (EEG) [1]. EEG is used for monitoring and identification of harmful neurological disorders such as 

epilepsy, which is a chronic disease that affects the brain and causes seizures in a periodic way. It might be claimed that 

while it affects both sexes, men are more affected than women. Since it affects people of various ages, there is no set age 

for it [2]. Compared to alternative methods used in the evaluation of epilepsy, EEG devices offer portability, cost-

effectiveness, and the ability to capture time-domain recordings [3]. However, the analysis of EEG data poses complex 

challenges due to the complex characteristics of the signal and the large volume of data that requires intensive processing. 

Due to the nonlinearity of EEG signals, in addition to their non-stationary property, this makes it difficult to obtain accurate 

and complete information about these biomedical signals and their dynamics. This makes the diagnosis of seizures a 

difficult challenge for clinicians [4-5]. For this, machine learning (ML) and deep learning (DL) algorithms are applied to 

EEG data, making it easier and more efficient to decode large, complex, and high-resolution EEG datasets. This is done 

through a set of tools used to build specific models [6-7]. ML tools consist of algorithms that automatically build these data 

models from the set of features extracted from the original data (training data). The data models are then used to predict or 

classify new data (test data) [8]. ML and DL techniques have proven successful in many fields including classification and 

analysis, making significant contributions to different areas, this is possible due to the use of high computational power to 

run these models, thus enhancing EEG analysis [9]. The four most widely used types of ML are reinforcement learning, 

unsupervised learning, semi-supervised learning, and supervised learning. Supervised learning methods are on average of 

higher accuracy than their unsupervised counterparts. In ML, data is the most crucial component. Numerous fields, 

including the medical field, may provide this data. Once gathered, this data is examined, converted into the right format for 

the model, and then entered into various algorithms [10-11]. On the other hand, time series data is a set of sequential 

measurements recorded over time, where the order of the data points plays a crucial role in the analysis [12]. 

Differentiating characteristics set time series data apart from other types of data, one important characteristic that shows 
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how each data point is impacted by its prior observations is temporal dependence, because of this interconnectedness, the 

data exhibits observable patterns and trends that call for efficient methods of collection and extraction. Inherent 

characteristics of time series data, such as periodicity, or patterns, can also be seen in EEG signals [13-14]. Comprehensive 

EEG data analysis requires an understanding of the ability to extract these inherent patterns, this is why researchers and 

clinicians could benefit from these techniques to help diagnose, monitor, and understand neurological disorders [15-16]. 

     The contribution of this paper is testing different ML algorithms in epilepsy signal classification. By dividing the 

problem into three sub-problems, it has been possible to look deeper into each ML algorithm and its efficiency. 

Specifically, the first sub-problem is a multi-class classification task for 5 classes, the second one is a multi-class 

classification task for 3 classes, normal, inter-ictal, and seizure. The last one is a binary classification task to classify 

between seizure and no seizure classes. The paper is organized as follows. In the second part, Sec.2 the review of similar 

studies on EEG classification is provided. The third section provides the proposed system model and describes the data and 

methods used. In the fourth section, the results are presented and discussed. Finally, the conclusion of the paper is in Sec. 5. 

2. Related Works 

     This section presents a review of previous studies on EEG classification. EEG and epilepsy 

classification have been studied previously, and different traditional machine learning algorithms have 

been applied to different tasks. 

     Savadkoohi et al. [17] extracted EEG features in three domains: time, frequency, and time-

frequency, they also applied feature selection for classification, comparing both support vector 

machine (SVM) and K-Nearest Neighbors (KNN) algorithms where SVM’s accuracy was higher. 

AlShorman et al. [18] used SVM and Naive Bayes and achieved an accuracy ranging from 90% to 

98.21% for detecting psychological stress from EEG. Bashivan et al. [19] investigated robust 

representations of EEG using ML and DL techniques, the results for test errors were 12.39% and 

8.89% for both single and multi frame classifications respectively. Raghu et al. [20] aimed to classify 

seven types of seizures and non-seizure EEG patterns with pretrained Convolutional Neural Networks 

(CNNs) architecture and SVM, their method achieved an accuracy of 88.30%. Xu et al. [21] 

researched to develop a model of recognizing seizures automatically using epileptic signals with a 

One-Dimensional Convolutional Neural Network-Long Short-Term Memory model (1D CNN-

LSTM). It has achieved high accuracy in binary and multi-class tasks related to seizures. Varalakshmi 

et al. [22] applied the global feature extraction using the Tunable Q Factor Wavelet Transformation 

(TQWT) for EEG decomposition, EEG signals were classified using a simple Artificial Neural 

Network (ANN). 

     Hussain et al. [23] proposed a Multichannel Vision Transformer (MViT) architecture to classify 

preictal and interictal EEG activities with the use of Continuous Wavelet Transform (CWT), this 

method achieved 99.8% accuracy, on the CHB–MIT Dataset. Potter et al. [24] introduced a 

transformer-based unsupervised learning approach for seizure identification in EEG data, the achieved 

results were an AUC of 0.93 ±0.005 on the CHB-MIT dataset. Yan et al. [25] highlighted the design of 

a model to predict epileptic seizures for patients with epilepsy via Three-tower Transformer, achieving 

a sensitivity result of 96.01% on the CHB-MIT data. Qi et al. [26] described an automatic epilepsy 

detection method by using feature extraction and CNNs with an attention mechanism for classification 

Acquired 98.89% for triple and 99.70% for binary classification accuracies respectively in Bonn and 

Bern-Barcelona datasets. Moreover, Lebal et al. [27] proposed and evaluated Epilepsy-Net. Both 

CNN, Recurrent Neural Network (RNN), and attention mechanism were used, achieving high accuracy 

on Bonn EEG dataset. Lastly, Pontes et al. [28] proposed a seizure prediction algorithm incorporating 

a data-batch selection method using logistic regression (Seizure-batch Regression), with dynamic 

integration of classifiers (Dynamic Weighted Ensemble), a combination of univariate linear features 

and SVM classifiers were used. Considering a group of 37 patients with Temporal Lobe Epilepsy from 

the Epilepsiae database. The best-performing approach was the Backwards-Landmark Window, which 

achieved results of 0.75 ± 0.33 for sensitivity and 1.03 ± 1.00 for false positive rate per hour.  
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3. System Model 

     This section briefly describes the data set used in the study, the algorithms, the metrics used to 

assess the efficiency of each algorithm, and the feature selection approaches. The system model is 

shown in Figure 2 below. 

3.1 Dataset Description 

     The Bonn University EEG dataset is one of the resources that is widely used in epileptic seizure 

classification tasks, it is collected by the Department of Epileptology at the University of Bonn, 

Germany, and the recording of the signals is performed using the international 10-20 system, they 

were sampled at 173.61 Hz sampling rate and filtered with a 0.53-40 Hz bandpass filter. The dataset is 

organized into five classes, each class contains 100 single-channel EEG records, and each record is 

23.6 seconds long with 4097 samples in each. Each class's records show a distinct state of brain 

activity: class A records from healthy volunteers with their eyes open, class B records from healthy 

volunteers who have their eyes closed, class C and D feature interictal signals from patients with 

epilepsy during intervals without seizures, and class E contains ictal signals recorded during a seizure. 

Table 1 shows an overview of the dataset used [29]. 

Table 1. Overview of Bonn University EEG Dataset 

Class Description State 

A Healthy volunteers with eyes open Normal 

B Healthy volunteers with eyes closed Normal 

C 
Epileptic patients, interictal (opposite 

hemisphere) 
Interictal 

D Epileptic patients, interictal (epileptogenic zone) Interictal 

E Epileptic patients, ictal (during seizures) 
Seizure 

(Ictal) 

 

3.2 Feature Extraction and Selection 

     Feature extraction in this study is performed using the Time Series Feature Extraction on basis of 

Scalable Hypothesis tests (TSFRESH) package in Python 3.12.0, this package makes feature extraction 

faster by automatic calculation of features using 63 different feature calculation methods, capturing 

various statistical properties of each EEG signal as well as time-domain, and frequency-domain 

characteristics. Feature selection is performed using the feature selection method in the same package 

to select the most relevant features for more efficient computation [30]. The package implements 

standard APIs of time series and machine learning libraries (e.g. pandas and scikit-learn) and it is 

designed for both exploratory analyses as well as straightforward integration into operational data 

science applications. All the features are standardized using a standard scalar before they are fed to the 

classifiers so that they have a mean of zero and standard deviation of one, the standard scalar is 

expressed as: 

 𝑧 =
𝑥 − 𝜇

𝜎
 (1) 

where 𝑧 is the standardized value, 𝑥 is the original feature, 𝜇 is the mean of the feature values and 𝜎 is 

the standard deviation of the feature values. 
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This process is crucial, especially for algorithms that rely on distance calculation like SVM and are 

sensitive to feature scales, the standardization will reduce the bias towards features that have large 

numeric ranges. 

 

Figure 1. The three steps of the TSFRESH algorithm are feature extraction (1.), calculation of p-values 

(2.) and a multiple testing procedure (3.), image from [41]. 

3.3 Classification methods 

     We assess the performance of a range of ML classifiers on the EEG dataset for epilepsy 

classification. Logistic regression estimates the likelihood that a given input belongs to a specific class 

by fitting a logistic function to the input features, it is useful in situations when there is a linear 

relationship between the target and the features [31]. The non-parametric, instance-based learning 

technique KNN classifies a data point according to the majority class among its k-nearest neighbors in 

the feature space [32]; however, because of its computational cost, its performance may suffer with 

larger datasets, so we employ KNN with Bagging (Bootstrap Aggregating) to enhance the performance 

of KNN [33]. Another non-parametric model is a decision tree, which is used independently to 

evaluate their performance, but in order to reduce overfitting, the ensemble learning technique, random 

forest is used. It uses a bootstrap sample of the data to train each decision tree and only selects a 

random subset of features for splitting at each node. This increases accuracy and reduces overfitting 

[34]. An additional ensemble technique also used is Histogram-based Gradient Boosting Trees 

(HGBT) which builds models sequentially with each new model correcting the errors of its 

predecessor [35]. Lastly, to find the hyperplane that separates the classes in the feature space with the 

application of kernel functions, we use SVM, which can handle both linear and non-linear 

classification by maximizing the margin between the nearest points of different classes [36]. 

3.4 Cross Validation (CV) 

     We can use previously unseen data to evaluate our models by dividing our dataset into train and test 

sets. However, it is possible that the split used for testing does not represent the true performance of 

our models because of data variability. For that, we will use K-Fold CV with shuffling to generate 

randomly shuffled pairs of data, and stratification to maintain class distribution, we train and test the 

model on the complete dataset and average the results to get a more accurate model evaluation [37-38]. 

We use 5 splits for the five-class classification task and 10 splits for both binary and the three-class 

classification tasks. 

3.5 Model Selection and Hyperparameters Tuning 

     We select the best-performing model based on the CV results, to further enhance the performance 

of the selected model, the optimal hyperparameters should be chosen. Grid search [39], also known as 

exhaustive grid search, is a popular method for determining the optimal set of hyperparameters. It is 

done by defining the range of potential values for the hyperparameters and then evaluating every 

combination that can be found. Furthermore, it is designed to conduct hyperparameter tuning in a 

systematic way by going through each of the sets of hyperparameter values automatically during the 



Mohammed et. al, MJPAS, Vol. 3, No. 4, 2025 
 

45 

model training process [40]. The fact that the hyperparameter settings are independent is one benefit of 

grid search. It is hence appropriate for parallel processing. 

 

Figure 2. Overview of the Proposed System Model 

3.6 Evaluation Metrics 

     To understand the performance of the classification models the following evaluation metrics are 

used: 

 Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

(2) 

 

 Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

(3) 

 

 
Recall (Sensitivity) =

𝑇𝑃

𝑇𝑃+𝐹𝑁
 

(4) 

 

 
Specificity =

𝑇𝑁

𝑇𝑁+𝐹𝑃
 

(5) 

 

 
F1 Score = 2 ⋅

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 
 (6) 

where TP represents true positives, TN represents true negatives, FP represents false positives, and FN 

represents False Negatives. These metrics collectively provide a comprehensive view of a model's 

strengths and weaknesses in classification tasks. 

4. Simulation Results  

     This section presents a comprehensive evaluation of performance metrics, including accuracy, 

precision, recall, and F1-score, for the previously mentioned classification methods across three 

distinct tasks: binary, five-class, and three-class classification. A comparative analysis was conducted 

among Logistic Regression, KNN, KNN with bagging, SVM, HGBT, Random Forest, and Decision 

Trees. 

4.1 Experimental Setup 

     The dataset is combined using three different ways, specifically, three classification tasks to 

comprehensively evaluate the model performance as follows: binary classification (four non-seizure 

classes vs. seizure class), multi-class classification for three classes (normal, interictal, and seizure), 

and multi-class classification task for five classes. 

All experiments were conducted using the 1.51 version of scikit-learn [37] library in Python. 
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4.2 Feature Extraction and Selection Results 

     A total of 777 features were computed from each EEG recording using the TSFRESH library for 

extracting features. In order to improve the efficiency and performance of the model, feature selection 

was used; the three-class, five-class, and binary classification tasks produced 383, 343, and 281 

features, respectively. Because of the decrease in dimensionality, it is possible to estimate the 

significance of feature engineering in EEG-based classification by considering the value of distinct 

feature subsets in differentiating between numbers of classes. 

4.3 Classification Results 

     The classification results for the binary classification task are summarized in Table 2, while the 

results for the three-class and five-classes classification tasks are summarized in Table 3 and Table 4 

respectively. 

Table 2. Evaluation Results for Binary Classification Task 

Model 
Accuracy 

(%) 

F1-Score 

(%) 

Precision 

(%) 

Recall 

(%) 

Specificity 

(%) 

SVM 99.60 99.60 99.63 99.60 99.90 

Logistic 

Regression 
99.20 99.20 99.25 99.20 99.90 

KNN 98.20 98.16 98.26 98.20 98.40 

KNN with 

Bagging 
98.40 98.35 98.44 98.40 98.35 

Decision Tree 97.00 96.96 97.10 97.00 92.60 

Random Forest 96.60 96.59 96.62 96.60 98.20 

HGBT 98.00 97.98 98.07 98.00 95.10 

 

Table 3. Evaluation Results for Three-Class Classification Task 

Model 
Accuracy 

(%) 

F1-Score 

(%) 

Precision 

(%) 

Recall 

(%) 

Specificity 

(%) 

SVM 98.40 98.39 98.47 98.40 99.01 

Logistic 

Regression 
98.40 98.37 98.48 98.40 98.93 

KNN 96.60 96.55 96.77 96.60 98.06 

KNN with 

Bagging 
96.80 96.76 96.96 96.80 98.30 

Decision Tree 95.40 95.39 95.63 95.40 97.23 

Random Forest 97.60 97.58 97.72 97.60 98.30 

HGBT 99.00 98.99 99.03 99.00 99.46 
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Table 4. Evaluation Results for Five-Class Classification Task 

Model 
Accuracy 

(%) 

F1-Score 

(%) 

Precision 

(%) 

Recall 

(%) 

Specificity 

(%) 

SVM 91.60 91.43 92.13 91.60 97.90 

Logistic 

Regression 
92.00 91.87 92.54 92.00 98.00 

KNN 86.00 85.62 86.32 86.00 96.50 

KNN with 

Bagging 
87.60 87.46 88.67 87.60 96.50 

Decision Tree 83.20 83.11 84.26 83.20 95.90 

Random Forest 93.60 93.57 94.12 93.60 98.30 

HGBT 93.20 93.08 93.64 93.20 98.30 

 

     From the results, Random Forest showed as the best-performing model for the five classes in a 

multi classification task. It achieved an accuracy of 93.60%, which means that 93.60% of its 

predictions were correct. Furthermore, it had an F1-score of 93.57% which signifies a balance between 

precision and recall. Specifically, recall measures how effectively the model could identify all true 

positives, whereas precision is the number of positive predictions that were truly positive. produced 

scores for precision and recall of 94.12% and 93.60%, respectively. 

     Similarly, in binary classification, SVM had the best scores with an accuracy of 99.60% and other 

metrics as well. On the other hand, for multi-class three-class classification tasks, HGBT showed very 

high performance across all metrics, it achieved almost the perfect accuracy of 99%. The F1-score of 

98.99% reflects a strong balance between precision 99.03% and recall 99%, indicating the model's 

ability to correctly identify positive cases and minimizing false negatives. 

     It can be noticed that HGBT demonstrated the most consistent and superior performance across all 

classification tasks. For more specificity, in binary classification, SVM and Logistic Regression 

showed excellent results, with SVM slightly outperforming the Logistic Regression. Conversely, in 

multi-class classification of the three-class, HGBT achieved perfect scores, while SVM and Logistic 

Regression maintained strong performance. In multi-class classification of the five-class, Logistic 

Regression performed slightly better than SVM, and both significantly outperformed other models. 

However, KNN and KNN with Bagging performed well in binary classification but lagged in multi-

class classification, on the other hand, Decision Trees and Random Forest are generally 

underperformed compared to other models, especially in multi-class tasks. But HGBT demonstrates 

exceptional adaptability to different classification complexities, consistently achieving top results. 

4.4 Hyperparameters Tuning Results 

     The best hyperparameters for each best-performing model in each task are identified through grid 

search with cross-validation, these parameters will further improve the performance of the models. For 

the Random Forest model, the best hyperparameters were: 1000 estimators, minimum samples split of 

5, a minimum samples leaf of 2, max features set to 'sqrt', a max depth of 100, and no bootstrap, 

resulting in improved classification metrics. The HGBT model achieved its best performance with an 

l2_regularization of 0.0, a learning rate of 0.1, a max depth of 5, and 100 iterations. The SVM model 
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showed enhanced results on binary classification by setting the hyperparameters of C to 0.1, and 

gamma to scale while using a linear kernel. 

      Table 5 presents the evaluation results for each split as well as the average results for SVM 

classifier in the binary classification task. While the results for HGBT are presented in Table 6 show a 

slight increase in the performance of the classifier after hyperparameter optimization. Table 7 shows 

improved results attained by random forest for each split and the overall average results for the five-

class classification task. 

Table 5. Evaluation Results for Binary Classification Tasks for SVM 

Split Accuracy F1-score Precision Recall Specificity 

1 100% 100% 100% 100% 100% 

2 100% 100% 100% 100% 100% 

3 100% 100% 100% 100% 100% 

4 100% 100% 100% 100% 100% 

5 100% 100% 100% 100% 100% 

6 98% 98.03% 98.18% 98% 99.5% 

7 100% 100% 100% 100% 100% 

8 98% 98.03% 98.18% 98% 99.5% 

9 100% 100% 100% 100% 100% 

10 100% 100% 100% 100% 100% 

Average 99.60% 99.60% 99.63% 99.60% 99.90% 

 

 

Table 6. Evaluation Results for Three-Class Classification Task for HGBT 

Split Accuracy F1-score Precision Recall Specificity 

1 100% 100% 100% 100% 100% 

2 98% 97.99% 98.09% 98% 98.66% 

3 98% 97.97% 98.09% 98% 98.66% 

4 98% 97.99% 98.09% 98% 98.66% 

5 100% 100% 100% 100% 100% 

6 100% 100% 100% 100% 100% 

7 100% 100% 100% 100% 100% 

8 98% 97.97% 98.09% 98% 98.66% 

9 100% 100% 100% 100% 100% 

10 100% 100% 100% 100% 100% 

Average 99.20% 99.19% 99.23% 99.20% 99.46% 
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Table 7. Evaluation Results for Five-Class Classification Task for Random Forest 

Split Accuracy F1-score Precision Recall Specificity  

1 98% 97.99% 98.18% 98% 99.5% 

2 92% 91.88% 92.14% 92% 97.5% 

3 92% 91.97% 92.32% 92% 98% 

4 96% 95.99% 96.18% 96% 99% 

5 96% 96% 96% 96% 99% 

Average 94.80% 94.77% 94.96% 94.80% 98.60% 

 

      The results showed that SVM consistently achieved the highest performance in binary 

classification, with very high accuracy, and other metrics as well. It also maintained strong 

performance in the three-class classification and five-class classification. Logistic Regression results 

were comparable to SVM but slightly better than it in the five-class classification. HGBT excelled in 

the three-class classification task with excellent scores around 99% after hyperparameters tuning. 

Random Forest displayed significant performance in the five-class classification at 94.8% with 

optimized hyperparameters, but it was less competitive in binary and three-class classification tasks. 

For example, binary classifications by KNN and KNN with Bagging produced approximately 98.20% 

and 98.40% respectively but performed poorly on the three-class classification task, the classifiers 

having about 3 percent less accuracy of 96.60%, while at the same time falling significantly at 

approximately 86% accuracy with the five-class classification, however, Decision Tree has been found 

to always have low scores across all tests especially within the three-class classification. 

     The application of these algorithms to epilepsy diagnosis and monitoring could significantly 

enhance the accuracy and efficiency of identifying epileptic events. The provided analysis offers a 

comprehensive approach by comparing the performance of various ML algorithms on three different 

kinds of classifications, Binary, three-class, and five-class classification,  thus allowing us to easily 

examine their strengths in terms of speed as well as how well they perform and it’s also assessed using 

accuracy, precision, recall and F1-score for comprehensive evaluation regarding model performance, 

considering both right predictions plus covering the balance between true positives against false 

positives/negatives, also clear results are provided enabling understanding about the performance of 

algorithms during various tasks. Moreover, the high accuracy of these models can easily enhance the 

automated monitoring systems that continuously analyse EEG data in real time, providing immediate 

alerts for potential epileptic events. 

5. Conclusion 

     The aim of this research was to classify Electroencephalography (EEG) signals into different 

categories related to epilepsy, which is a chronic brain disease that causes periodic seizures. This is 

done by using Machine Learning (ML) applied to the extracted features from EEG data of Bonn EEG 

dataset, the features were identified using the Time Series Feature Extraction on basis of Scalable 

Hypothesis tests (TSFRESH) package and then fed into seven machine learning classifiers, which were 

evaluated through three classification tasks, binary, three-class, and five-class classification tasks to 

identify the best-performing model in each task. The results showed that Support Vector Machine 

(SVM) was the top-performing model in binary classification with an accuracy of 99.6% and a 

specificity of 99.90%. For three-class classification, Histogram-based Gradient Boosting Trees 

(HGBT) achieved an accuracy of 99.2% and a specificity of 99.46%. Finally, the random forest model 

achieved 94.80% accuracy and also a specificity of 98.30% in the five-class classification. These 

results make it clear how important these methods are for using EEG data to diagnose neurological 

conditions. In order to improve the diagnosis and treatment of epilepsy and other neurological 
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illnesses, future research should concentrate on the improvement of these techniques and their speed, 

in addition to lowering their false positive rate, to classify negative cases more robustly, and the use of 

more comprehensive feature extraction. 
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