
 

 

 
ZANCO Journal of Pure and Applied Sciences 2025 

 
126 

                                                                                                                              
 

 

 

 

 
 

  OPEN ACCESS 

  *Corresponding author 

   Nayla Faiq Othman 

nayla.othman@epu.edu.iq 

RECEIVED :06 /01 /2025 

ACCEPTED :12/05/ 2025 

PUBLISHED :31/ 08/ 2025 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Enhancing Brain Tumor Classification 
Accuracy Using Deep Learning with Real and 
Synthetic MRI Images 
 
Nayla Faiq Othman1* and Shahab Wahhab Kareem1,2 
1Department of Information System Engineering, Polytechnic University
Erbil, Iraq
2Department of Computer Technical Engineering, Al-Qalam University College, 
Kirkuk 36001, Iraq

ABSTRACT 

Brain tumors, being the most severe and complex kind of cancer, necessitate 
specialized investigation for diagnosis, treatment, and care.  Early recognition of brain 
tumors enhances patient care and reduces mortality rates.  The application of deep 
learning in MRI diagnostics has transformed medicine.  The study employs real and 
synthetic MRI data to evaluate novel deep-learning models to enhance brain tumor 
diagnosis.  The ensemble model employed AlexNet, VGG16, and ResNet 18 on MR 
data from Rizgary Hospital in Erbil and Hiwa Hospital in Sulemani, as well as synthetic 
images produced by Deep Convolutional Generative Adversarial Networks.  Modeling 
measurements encompassed accuracy, precision, recall, and F1 score.  The 
architecture of ResNet18 and its capacity to incorporate residual connections for 
feature mapping enabled it to surpass all other models in classification accuracy, 
achieving 99%.  Although AlexNet and VGG16 achieve accuracies of 98.16% and 
98.83%, respectively, ResNet18 excels in differentiating between normal and unusual 
instances.  DCGANs excel in generating synthetic images and enhancing image 
categorization and model precision.  A study utilizing both real and synthetic images 
showed that synergistic virtual paradigms could enhance the accuracy of clinical 
instruments and facilitate deeper AI integration in medicine.  Subsequent research will 
focus on optimizing model architecture and implementing data augmentation 
techniques to enhance classification accuracy.  This Python study demonstrates that 
deep learning can enhance the diagnosis and treatment of brain tumors. 
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1.Introduction 
Brain tumors arise from an abnormal increase of 
cells within the brain tissue and may be 
categorized as primary or secondary tumors. 
Primary tumors originate in the brain, while 
secondary tumors spread from different brain 
components. These tumors are, in addition, 
categorized as benign (non-cancerous) or 
malignant (cancerous). Malignant tumors, mainly 
at advanced levels, can be life-threatening. The 
recognition and categorization of brain tumors 
present great demanding situations due to 
variations in tumor size, form, and location 
among patients. Early and accurate prognosis is 
important for powerful treatment. Magnetic 
Resonance Imaging (MRI) is extensively used for 
brain tumor recognition as it provides high-
resolution images of soft tissues and no longer 
involves dangerous radiation (Siva Raja & rani, 
2020)(Haydar, 2022).  
In the process of disease prediction, diagnosis, 
and treatment, the contributions of medical 
practitioners and researchers are of the utmost 
importance.  On the other hand, one of the major 
challenges that these experts must contend with 
is a lack of datasets that are ample and 
diversified datasets (Johnson et al., 2021). The 
quantity of data that is utilized for training is a 
significant factor that determines the 
effectiveness of predictive models in the field of 
medical disease analysis (Candemir et al., 
2021)(Abdullah et al., 2023).  
Researchers have looked at methods of 
augmentation and the production of synthetic 
datasets as viable ways to expand and enhance 
the data that is currently accessible to meet the 
constraints that have been identified. (Khan et 
al., 2021), frequently conflate image 
enhancement with synthetic datasets. 
Nonetheless, a distinct distinction exists between 
augmentation and synthetic datasets. On the 
other hand, there is a distinct distinction between 
augmentation datasets and synthetic dataset 
samples. During the process of image 
augmentation, the training set is manipulated by 
modifying its geometric and color properties. 
These attributes include scaling, rotation, cutting, 
brightness, zooming in and out, and contrast 
(Alomar et al., 2023).  One of the most significant 

drawbacks of using primary data or augmented 
data is that there is always the possibility of an 
accidental breach and an absence of 
preservation of the privacy of patients 
represented by the data. This is because the 
collection of data through Magnetic Resonance 
Imaging (MRI)  may include images of the head, 
facial images, or comparable representations in a 
manner that enables the identities of research 
participants to be easily and accurately 
determined.(Anemone & Lalani, 2020)(A. I. 
Abdullah, 2020). On the contrary, synthetic data 
can be employed to get around this obstacle 
while also improving the efficiency of models in 
situations where the size of the data is 
insufficient to facilitate the training of models.   
Synthetic datasets, on the other hand, are data 
that have been artificially manufactured and 
closely mirror the properties of source datasets.  
To establish supplementary or alternative data 
sources, particularly in scenarios with insufficient 
authentic data, synthetic datasets are 
manufactured artificially rather than derived from 
original data. Generative models, including 
generative adversarial networks (GANs) and 
Variational Autoencoders (VAEs), are commonly 
employed for synthetic data generation, 
alongside rule-based generators and simulation 
models(Wen et al., 2021). The application of 
GANs for producing synthetic medical research 
data represents a relatively unexplored 
methodology in current literature. Specifically in 
brain tumor prediction, GANs have not been 
extensively investigated for synthetic dataset 
generation, although some applications exist in 
medical image synthesis for brain tumor 
segmentation (Cirillo et al., 2021).  
The potential of GANs for generating synthetic 
data to enhance brain cancer prediction models 
remains largely unexamined. This research aims 
to contribute significantly to illness prediction, 
particularly for brain tumors, which are increasing 
at an alarming rate globally due to stressful 
lifestyles and can significantly impact mortality 
rates if not detected early. Our work's primary 
contribution involves utilizing personally collected 
data while developing a Deep Convolutional 
Neural Network (DCNN) model based on CNN 
architectures for tumor recognition and 
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classification. We conduct a comprehensive 
performance comparison between our DCNN 
model and state-of-the-art models (ResNet18, 
VGG16, and AlexNet) when trained on both 
augmented and synthetic datasets. This 
comparative analysis evaluates the efficacy of 
these methodologies, determining which 
approach yields superior prediction accuracy 
while examining how synthetic datasets influence 
the predictive accuracy of illness models, 
particularly for brain cancers.  

The main innovation of this manuscript 
involves the development of an ensemble deep 
learning architecture made from AlexNet, 
VGG16, and ResNet18, as well as their 
subsequent evaluation for brain tumor detection 
from MRI images. This merged architectural 
system leverages two separate CNN structures 
to raise diagnostic accuracy by exploiting their 
advantages. The research brings forward four 
primary achievements that include: 

1-The manuscript brings together three pre-
trained CNN frameworks (AlexNet and VGG16, 
and ResNet18) through weighted voting and 
majority rule methodology to optimize diagnostic 
identification results. 
2-The merged network achieves enhanced 
diagnostic accuracy and reliability through model 
combination, which surpasses the performance 
of single network systems. 
3-Turns out Transfer Learning makes the system 
learn efficiently from small medical image 
collections, whereas it minimizes both training 
time and computational requirements. 
4-The ensemble framework provides early, 
precise tumor classification as part of clinical 
decision support that enables better quality 
medical decisions and treatment planning. 
This paper follows this structure: Section I 
explores background information and motivation, 
with the study goals of brain tumor classification 
through MRI, along with deep learning. The 
second part of this paper illustrates a review of 
recent research regarding CNNs used for brain 
tumor recognition. The proposed ensemble 
framework, which incorporates AlexNet, VGG16, 
and ResNet18, forms the core of Section III 
(Methodology). Data collection, together with 

preprocessing operations, is expressed in this 
section as well. Experimental Setup and Results 
delivers descriptions of training procedures while 
presenting assessment parameters together with 
model-to-dataset performance assessments. 
Future research needs should be summarized in 
Section V (Conclusion), together with critical 
research findings. 
2.Related work 
The primary objective of this paper is to analyze 
and understand techniques for brain tumor 
categorization and recognition. This study aims 
to examine the most prevalent methods for 
recognizing brain cancer that are globally 
available, as well as to assess the efficacy of 
CAD systems in this context. The concept of 
GANs was initially introduced in 
(Mahdizadehaghdam et al., 2019). 
Backpropagation was the method that the 
researchers utilized to train their multilayer 
perceptron models for generators and 
discriminating factors.  As a consequence of 
several improvements that have enhanced the 
quality of the images that are formed and 
broadened the variety of applications that can be 
used with them, GANs have gained a lot of 
popularity over the years. This popularity has 
gained a lot of momentum over the years.  A 
particular architectural design that is referred to 
as the Deep Convolutional Generative 
Adversarial Network (DCGAN), as stated 
by(Radford et al., 2015), the goal is to reduce the 
disparity between the Convolutional Neural 
Networks (CNNs) that are used for supervised 
learning and those that are used for 
unsupervised learning. In (Onakpojeruo et al., 
2024) version for classifying brain tumors, uses 
synthetic datasets generated through a 
Conditional Deep Convolutional Generative 
Adversarial Network (DCGAN) and traditional 
augmented datasets. The problem addressed is 
the scarcity of scientific datasets and privacy 
issues, with a look at innovatively leveraging 
GAN-generated artificial information for sickness 
classification duties. Using the Cancer Imaging 
Archive and KiTS19 datasets, the model was 
trained and tested on 40,000 preprocessed 
images, achieving 99% accuracy, precision, take 
into account, and F1 ratings for each dataset 
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kind. The C-DCNN outperformed modern-day 
models like VGG16, InceptionV3, and ResNet50, 
showcasing its robustness in correct diagnosis. 
This technique not only complements 
classification overall performance but also 
addresses information privacy concerns, making 
it a widespread contribution to clinical research 
and medical packages.(Li et al., 2020) introduces 
a unique combination of Deep Convolutional 
Generative Adversarial Networks (DCGAN) and 
AlexNet, for distinguishing pseudo progression 
(PsPD) from true tumor progression (TTP) in 
glioblastoma multiforme (GBM) the usage of MRI 
facts. The trouble addressed is the undertaking 
of differentiating PsPD and TTP, which exhibit 
similar visible characteristics in MRI, complicating 
medical remedy selections. The DC-AL GAN 
model leverages the opposed nature of GANs to 
extract high-level discriminative functions, with 
AlexNet as the discriminator.  
A feature fusion technique is applied to mix high- 
and occasional-layer features, improving type 
performance. The version is evaluated on a 
dataset of 84 GBM patients, attaining a 
classification accuracy of 92%, outperforming 
different models, including DCGAN, ResNet, 
DenseNet, and VGG. The effects show the 
capacity of the DC-AL GAN for robust, automatic 
classification of PsP and TTP, addressing 
overfitting challenges and improving diagnostic 
accuracy in clinical settings(Sille et al., 2023). 
Makes a specialty of using Generative 
Adversarial Networks (GANs) for brain tumor 
segmentation. The problem addressed is the 
correct and automatic segmentation of brain 
tumors, which is important for analysis and 
treatment planning, especially for gliomas and 
glioblastomas. The look at leverages MRI 
images, particularly the use of facts from the 
BRATS 2020 database and other multimodal 
MRI benchmarks. The methodology involves 
using GAN-based total processes, including 
DCGAN and WGAN, to make the image 
resolution higher and improve segmentation 
accuracy. 
 The key contribution lies in showcasing GAN's 
capability to generate sensible pathological 
images and address the records augmentation 
demanding situations in clinical imaging. The 

outcomes highlight that GAN-based strategies 
achieved aggressive and promising results in 
segmenting brain tumors, with potential 
implications for enhancing future MRI-based 
diagnostic fashions.(Xu et al., 2024) addresses 
the venture of clinical image analysis with small, 
imbalanced datasets. The proposed answer 
introduces the Cross-Domain Attention-Guided 
GAN (CDA-GAN), a sophisticated CycleGAN 
model designed to generate clinically significant 
augmented data. The version consists of modern 
additives, such as the AMSE block for more 
desirable feature recalibration, a semi-supervised 
spatial interest module for unique location 
concentration, and spectral normalization to 
ensure training stability.  
Experiments have been carried out at the BraTS 
2020 and TCIA datasets, demonstrating 
improvements over ultra-modern techniques in 
class (e.g., 50% better accuracy and a pair 
of.05% higher F1 on BraTS) and segmentation 
responsibilities (e.g., 2.50% better Dice rating 
and 96.14% improvement in HD95 on TCIA). The 
contribution lies in successfully addressing inter-
elegance differences and segmentation-
demanding situations whilst proving the potential 
of go-domain statistics augmentation for clinical 
image tasks. A study on data augmentation 
strategies for brain tumor segmentation 
emphasized the advantages of GAN-based 
image augmentation and synthesis for brain 
tumors by (Nalepa et al., 2019). The researchers 
of (Safdar et al., 2020). While researchers have 
employed various strategies to enhance brain 
tumor classification using advanced models such 
as ResNet-50 and VGG-16, a significant gap 
persists in the literature. Despite the 
considerable accomplishments demonstrated in 
current studies, there remains an absence of 
thorough comparative analysis between synthetic 
and augmented dataset methodologies, 
specifically for medical disease prediction, 
particularly in the context of brain cancer. 
Although numerous investigations have 
examined the implementation of synthetic and 
augmented data approaches individually, they 
consistently fail to address the fundamental 
question regarding which methodology proves 
more appropriate and efficacious for medical 
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disease prediction. This critical comparison is 
essential for establishing optimal protocols in 
medical image analysis and could significantly 
impact diagnostic accuracy and treatment 
planning in clinical settings. Authors of (Iglesias 
et al., 2023). During the classification stage, the 
training sets are improved by the good quality 
and diversification offered by generative 
adversarial networks (GANs). It requires a 
generator to produce datasets that are as 
genuine as possible and a discriminator to 
distinguish between them. In the MRI image-
based brain tumor classification problem, GANs 
create realistic MRI scans to overcome 
challenges like a limited and unbalanced dataset. 
The generator generates a fake image while the 
discriminator assesses whether the image 
formed is synthetic or real. Such an approach 
guarantees the progression of differences and 
improved realism in synthetic images. Thus, to 
increase classifier accuracy, the synthetic images 
produced within this classification framework can 
be incorporated into the training dataset. 
(Alrashedy et al., 2022) Previous research 
contrasted synthetic data with real data for blood 
glucose prediction; however, their work neither 
compared ML models with state-of-the-art 
approaches nor aligned with our current research 
objectives. A significant gap exists in the 
literature regarding studies that explicitly contrast 
synthetic and augmented image datasets 
generated by GANs for medical disease 
prediction. To our knowledge, this specific 
comparison remains unexplored in existing 
research. While some studies, such 
as(Mukherkjee et al., 2022)(Mustafa et al., 2024), 
have utilized GANs to augment data size for 
classification tasks using conventional ML 
models, they have not distinctly differentiated 
between synthetic generation and augmentation 
techniques, perpetuating the misconception that 
these approaches are equivalent. Our study 
addresses this critical gap, providing the medical 
research community with much-anticipated 

insights. We developed a novel CNN architecture 
specifically for brain tumor classification and 
systematically compared its performance against 
established models, including ResNet18, 
AlexNet, and VGG16, when trained on both 
augmented and purely synthetic datasets. The 
findings from this research enhance disease 
prognosis prediction accuracy and create new 
opportunities for medical research by 
establishing effective protocols for synthetic data 
utilization.The research evaluates modern 
developments in brain tumor discovery together 
with categorization and segmentation through 
Generative Adversarial Networks (GANs). At the 
beginning of their development, GANs were 
employed to synthesize medical images while 
handling data limitations and privacy challenges. 
High classification precision levels result from 
Conditional DCGANs along with DC-AL GANs, 
while surpassing the performance of VGG16 and 
ResNet50 as standard models. The performance 
of brain tumor segmentation has seen 
improvement with GAN-based approaches 
through their generation of detailed pathological 
images. The current literature shows limited 
research on the direct evaluation between 
artificial and augmented medical datasets in 
disease prediction tasks. The present research 
develops a new CNN model combined with a 
systematic analysis of dataset results to boost 
clinical research diagnostic precision and data 
augmentation implementation. 
3.Materials and Methods 
This section describes the procedures for data 
collection and analysis that were employed to 
accomplish the goals of the research, as well as 
the experimental design that is illustrated in 
Figure 1. This paper provides a comprehensive 
summary of all the models, processes, and 
techniques that were utilized in this research. 
Python, a programming language, was employed 
in Anaconda using a Spyder environment for 
training, testing, optimizing, and evaluating the 
model. 



 

 
131 

   Othman & Kareem                                                                                                                                                           ZJPAS (2025), 37(4);126-149     

ZANCO Journal of Pure and Applied Sciences 2025 

 

 
Figure 1Study flow and experimental design

3.1Dataset  
Brain MRI Images have been used to capture the 
brain tumor. As can be seen in Figure 2, the 
private dataset includes magnetic resonance 
imaging (MRI) in the Digital Imaging and 
Communications in Medicine (DICOM) format. 
Three months of data gathering were necessary 

to collect the dataset, which was obtained from a 
database maintained by Rizgary and Hiwa 
Hospital. Moreover, the classification process 
required an additional two to three months of 
development. Additionally, the database contains 
images that are both normal and abnormal.  

 
Figure 2Example of an MRI 

Magnetic resonance imaging (MRI) has a 
resolution of 512 by 512 pixels, and it contains a 
total of thousands of samples. A total of 200 
patients' images are included in the dataset, with 
15 images taken for each unique patient. Among 

these, one hundred cases were deemed to be 
abnormal, and another hundred cases were 
placed in the normal category. There were 38 
male patients and 62 female patients in the 
dataset of normal cases, however, there were 67 
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male patients and 33 female patients in the 
abnormal instances, which indicates that males 
are infected with brain cancer. The hospitals in 
Erbil and Slemani provided the resources 
necessary to collect images of patients with brain 

cancer who ranged in age from 19 to 98. In 
addition, we used DCGAN to expand our data. 
We changed both the normal and abnormal from 
1500 to 3000, each shown in Table 1. 

Table 1:  Dataset Detail 

Brain tumor 
type 

Real 
data 

Synthetic 
data (using 
DCGAN) 

Total Training/testing 
data 

Label  

Normal 1500 1500 3000 80/20 0 

Abnormal 1500 1500 3000 80/20 1 

 

3.2. Image Preprocessing 
Increasing the number of significant 
characteristics and fine details was accomplished 
through the elimination of superfluous variations 
using image pre-processing (Mustapha et al., 
2022) . Images that had been preprocessed 
appropriately improved the segmentation and 
classification tasks (Ozsahin et al., 2023). This 
was because all algorithms were prone to noise. 
The size of the pixel region that is sought can be 
used to categorize the many techniques that are 
used for pre-processing images. These 
techniques employ the sub-images that surround 
the pixels to lessen the amount of noise and 
distortion in the image and improve its overall 
quality. Poor image quality, external factors, and 
a limited user interface can all cause MRI images 
to become distorted, which can result in a loss of 
visual information and processing problems. 
(Mustapha et al., 2022). Nevertheless, these 
biases can be avoided through the use of proper 
preprocessing methods. For the given analysis, 
the addition of contrast was done to draw more 
attention to specific areas of interest in the 
dataset. The primary collection of brain cancer 
data was composed of MRI images in DICOM 
format, which poses serious problems for CNN 
frameworks due to its proprietary structure, lack 
of supporting tools, and possible conflicts with 
other software. These DICOM images are much 
easier to handle in JPEG (Joint Photographic 
Experts Group) format, as it is considerably more 
compatible with CNN frameworks and reduces 
overall file sizes. Therefore, all DICOM images 
were converted to JPEG format. After this 
conversion, each image was processed further 
by resizing and normalizing the image, preparing 

it for analysis with neural networks, and then 
saving it in JPEG format. The augmentation 
techniques added diverse methods to generate 
more training data that expanded the available 
effective dataset. 
1. The process of image rotation occurred across 
a spectrum of angles from -30 to +30 degrees. 
2. The application of both horizontal and vertical 
flips generated mirrored duplicates of the original 
image files. 
3. A brightness adjustment frame ranged 
between ±20 to enhance the images. 
These augmentation techniques effectively 
multiplied the training data, creating variations of 
existing images with different orientations, 
perspectives, and lighting conditions. This 
expanded dataset helped prevent overfitting and 
improved the models' ability to recognize brain 
tumors under various imaging conditions and 
orientations without requiring additional patient 
scans 

 3.3 Model Architecture 
Three cutting-edge deep learning models that 
are used for classifying brain cancer using 
magnetic resonance imaging (MRI) have been 
implemented and analyzed. ReseNet18, VGG16, 
and AlexNet were chosen for their robust 
architectural strengths in data categorization. 
With the identification of an acceptable 
methodology for identifying brain cancers using 
magnetic resonance imaging (MRI) and the 
utilization of deep learning algorithms for efficient 
and reliable diagnosis, the approach was 
examined in greater depth. 

3.3.1Generative Adversarial Networks 
(GAN) 

       Generative Adversarial Networks (GANs) are 
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a framework for training a deep learning model to 
replicate the distribution of training data, enabling 
the generation of new data from that same 
distribution. They consist of two separate models: 
a generator and a discriminator. The generator's 
function is to produce 'synthetic' images that 
resemble the training images. The discriminator's 
role is to evaluate an image and determine if it is 
a genuine training image or a counterfeit image 
produced by the generator (Jenkins & Roy, 
2024). Throughout the training process, the 
generator persistently endeavors to surpass the 
discriminator by producing increasingly 
sophisticated fakes, while the discriminator 
strives to enhance its recognition capabilities to 
accurately distinguish between real and 
counterfeit images(Park et al., 2021). The 
equilibrium of this game occurs when the 
generator produces flawless fakes 
indistinguishable from the training data, while the 
discriminator consistently guesses with 50% 
confidence whether the generator's output is real 
or fabricated. 
Let 𝑥 Data that represents an image.𝐷(𝑥) is the 
discriminator network that outputs the scalar 
probability indicating whether 𝑥 Originated from 
the training data instead of the generator. The 
input to 𝐷(𝑥) is an image with a Channels Height  
Width(CHW) size of 3x64x64. Intuitively, 𝐷(𝑥) 
should be HIGH when 𝑥 originates from the 
training data and LOW when 𝑥 It is produced by 

the generator. 𝐷(𝑥) may also be regarded as a 
conventional binary classifier. In the generator's 
nomenclature, let 𝑧 Represent a latent space 
vector drawn from a typical normal distribution. 𝐺 
(𝑧) denotes the generating function that 

transforms the latent vector 𝑧 Into data space. 
The objective of 𝐺 It is to approximate the 
distribution from which the training data 
originates (𝑝data) to facilitate the generation of 
synthetic samples from the estimated distribution 
(𝑝g).𝐷(𝐺 (𝑧)))is the scalar probability that the 
output of the generator 𝐺 It is a genuine image. 
In(Unsupervised Representation Learning with 
Deep Convolutional Generative Adversarial 
Networks, n.d.), 𝐷 and 𝐺 Engage in a minimax 
game where 𝐷 aims to maximize the likelihood of 
accurately classifying real and fake instances 
(𝑙𝑜𝑔 𝐷(𝑥)), while 𝐺 seeks to reduce the 

probability that 𝐷 will classify its outputs as false 

(𝑙𝑜𝑔 (1−𝐷(𝐺 (𝑧))))The loss function for the GAN is 
delineated  as follows: 
MinG MaxDV (𝐷, 𝐺)=𝐸x∼pdata(x)[log𝐷(𝑥)]+𝐸z∼pz(z )

[log(1−𝐷(𝐺(𝑧))]                              (1) 
Where: 

𝑝dat(𝑥) is the distribution of real data. 

𝑝z(𝑧) is the prior distribution of the input noise 
variable 𝑧. 
𝐺(𝑧) is the generator mapping from noise to 
data space. 
𝐷(𝑥) outputs the probability that x came from 
real data rather than the generator. 

 The theoretical solution to this minimax game 
occurs when pg = pdata, and the discriminator 
randomly determines whether the inputs are 
authentic or counterfeit. Nonetheless, the 
convergence theory of GANs remains a subject 
of active investigation, and in practice, models do 
not consistently reach this 
state.(Mahdizadehaghdam et al., 2019). 

 3.3.1.1Deep Convolutional Generative 
Network (DCGAN) 

  A Deep Convolutional Generative Adversarial 
Network (DCGAN) is a direct extension of the 
GAN described earlier, except that it makes 
explicit use of convolutional and convolutional-
transpose layers in the discriminator and 
generator, respectively. Stride convolution layers, 
batch norm layers, and LeakyReLU activations 
are the components that make up the 
discriminator.  Input is a 3x64x64 image, and 
output is a scalar probability that the input is from 
the real data distribution. The input is the image, 
and the output is the probability.  Convolutional-
transpose layers, batch norm layers, and ReLU 
activations are the components that make up the 
generator. In this study, DCGAN was employed. 
DCGAN is a specific type of GAN designed to 
generate high-quality synthetic 
images(Onakpojeruo et al., 2024)(Goodfellow et 
al., 2020). DCGANs employ CNNs as both the 
discriminator and generator. DCGANs have been 
extensively utilized and adapted for many 
imaging production tasks, including object 
recognition, handwriting recognition, facial age 
progression, and realistic faces and scenes. 
They have made a substantial contribution to the 
field of generative models(Behara et al., 
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2023)(Alrashedy et al., 2022). The Generator 
network is expected to convert the noise vectors 
to realistic image attributions. They use 
architectures based on a deep convolution layer, 
which transforms the five-input feature maps at 
different rates while up-sampling until images of 
the size 64×64 pixels and three-color channels 
are produced. The network starts with an input of 
a latent noise vector of dimension 100 and 
applies several transposed convolution 
layers(𝐺(𝑧;θg): R100→RH×W×C), also known as 
deconvolution layers. There are a total of three 
blocks in the architecture for up-sampling 
operations. The first block converts the input 
noise, as passed through the latent dim, into 512 
feature maps. Subsequently, the network 
continues with three more blocks that 
progressively reduce the number of feature maps 
while increasing the spatial dimensions from 
512:256 to 128:64 channels. Each of those 
blocks is made of a transposed convolution layer 
with a batch normalization layer and a ReLU 
function for introducing non-linearity. The last 
layer of the Generator also employs a 
transposed convolution to generate the final 
output image with 3 channels – RGB; the final 
activation function used is Tanh to scale the 
generated values to the range of [-1,1]. This 
architecture allows the Generator, through the 
training phase, to learn the mapping of random 
noise to realistic image distributions(𝐷(𝑥;θd): 
RH×W×C→[0,1]). Therefore, the discriminator 

network is adversarial, and it is designed to learn 
the images that have been generated and the 
real ones. The system is designed following a 
convolutional neural network structure, which 
gradually reduces the spatial size of the input 
image whilst adding extra feature channels. 
Figure 3: DCGAN  diagram of the Generator and 
discriminator.  The network, first of all, consists of 
the initial convolution block, which takes the input 
image with three channels and produces 64 
Feature Maps. This first block has a missing 
feature from batch normalization to have the 
discriminator learn directly from input statistics. 
The architecture then continues with three 
additional blocks that progressively increase the 
number of feature maps while reducing spatial 
dimensions: from 64 to 128 channels, from 128 
to 256 channels, and from 256 to 512 channels. 
Every block of the discriminator includes a 
convolutional layer, LeakyReLU function with a 
negative slope of 0.2, and batch normalization, 
but for the first block. The final layer performs a 
convolution that will squash feature maps down 
to a single channel. Then a sigmoidal function is 
applied, which spits out the Discriminator’s 
evaluation of the input image: is it real, or is it 
fake? They both employ a kernel size of 4 in their 
architectures and employ suitable stride and 
padding parameters to obtain the specific spatial 
transformations. All the above architectural 
choices allow the networks to learn the 
distribution of the target image dataset using 

adversarial training. 
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Figure 3: DCGAN diagram of the Generator and discriminator. 

Training Dynamics 
The training process involves alternating 
between updating the discriminator and the 
generator: 
Update Discriminator:  

• Real images: Maximize log𝐷(𝑥) 

• Fake images: Maximize log(1−𝐷(𝐺(𝑧))) 

• Combined objective: maxD 𝐸 

𝑥∼pdata(𝑥)[log𝐷(𝑥)]+𝐸z∼pz(z)[log(1−𝐷(𝐺(𝑧))]                    
(2) 

Update Generator:  

• In practice, instead of minimizing 
log(1−𝐷(𝐺(𝑧)))We maximize log𝐷(𝐺(𝑧)) to 
provide stronger gradients early in training  

• Objective: maxG 𝐸z∼pz(z) [log𝐷(𝐺(𝑧))] 

The gradient updates for the discriminator 
parameters are 

 ∇θd 
1

 𝑚
∑ [𝑙𝑜𝑔𝐷(𝑥)(𝑖) +

𝑚

𝑖=0

log (1 − 𝐷(𝐺(𝑧)(𝑖))))]                                         
(3) 
The gradient updates for the generator 
parameters are: 

                      ∇θd 
1

 𝑚
∑ [𝑙𝑜𝑔𝐷(𝑥)(𝑖)))

𝑚

𝑖=0
                                                                                  

(4) 

• Where 𝑚 is the mini-batch size.  

This adversarial process continues until the 
generator learns to produce images that the 
discriminator cannot distinguish from real 
ones.(Peng et al., 2025). Figure 4 shows the 
architecture of DCGAN. 
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Figure 4:DCGAN architecture 

3.3.2 ResNet 
A deep resident network (ResNet) model that is 
founded on deep architectures and demonstrates 
high levels of accuracy and high levels of 
accuracy. ResNet was developed by a number of 
the surviving stacked units, and it has been 
constructed with a variety of layer numbers, 
including 18, 34, 50, 101, 152, and 1202. ResNet 
18 is a decent compromise between 
performance and depth, although the number of 
operations can vary depending on the 
architectures that are used(El-Feshawy et al., 
2023).  ResNet architecture, and especially 
ResNet-18, is used for medical imaging tasks, 
including the diagnosis of Alzheimer’s disease, 
because of the ability of the proposed framework 
to effectively learn multi-level patterns. Residual 
learning is the idea of creating layers of a 
network such that the layers learn residual 
functions rather than direct functions, making the 
optimization process easier since optimizations 
are done on differences between input and 
output. This approach minimizes the degradation  
problem that is common with deeper networks in 
which accuracy flattens or even declines as 
depth rises. Figure 5 shows the architecture 
diagram of ResNet18, how the layers are laid 
own, and how they are connected. As a result, 

there is the encouragement of very deep 
networks and, at the same time, the 
enhancement of accuracy, which makes ResNet 
well-suited for classifying complex patterns in 
medical images like MRI scans. (ZainEldin et al., 
2023). It is because of its dependability and 
versatility that ResNet has become a model that 
is utilized more frequently to transfer learning 
between a number of different activities. Due to 
its capacity to train extremely deep neural 
networks, ResNet has become a point of 
reference in the field of deep learning. It has 
been demonstrated that when deep learning is 
performed well within trained models, it produces 
superior outcomes. (Ramtekkar et al., 2023). An 
overview of the ResNet model is provided, as 
shown in Table 2. 
Table 2Outline of the ResNet18 model 
Name of layer Size of output ResNet 18 

Convolution1 112*112*64 7*7,64, stride 2 

Convolution3 28*28*128 1283*3 convolutions 

Convolution4 14*14*256 2563*3 convolutions 

Convolution5 7*7*512 5123*3 convolutions 

Average pool 1*1*512 7*7 Average pool 

Fully connected 2 512*2 fully connected 

Soft max 2 ---- 
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Figure 5:ResNet architecture diagram 

3.3.3VGG16 
VGG Transfer Learning VGG is a neural network 
trained on the ImageNet dataset for the 
classification of natural images(Al-Mukhtar et al., 
2023). The VGG16 architecture, introduced by 
Simonyan and Zisserman, has a fixed input size 
of 224 × 224. The images are processed through 
a series of convolutional layers utilizing small 
receptive filters of 3 × 3. Additionally, 1 × 1 
convolution filters are employed to perform a 
linear transformation of input channels, followed 
by a non-linear activation. To maintain spatial 
resolution post-convolution, a padding of 1 pixel 

is utilized for 3 × 3 convolutional layers; spatial 
pooling is performed using 5 max-pooling layers. 
Max pooling is executed using a 2×2-pixel 
window with a stride of 2. A series of 
convolutional layers is followed by three fully 
connected (FC) layers, where the first two FC 
levels have 4096 channels each, and the third 
FC layer comprises 1000 channels, 
corresponding to each class. The ultimate layer 
of this architecture is the SoftMax layer.(Ramzan 
et al., 2020). Figure 6 shows the architecture 
diagram of VGG16. 

 
Figure 6: VGG16 architecture diagram 
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3.3.4 AlexNet 
The AlexNet is a conventional convolutional 
neural network that made a major image 
recognition advancement when it garnered the 
2012 ImageNet challenge. The network design 
takes an input of 227X227X3 RGB images and 
comprises the following units: five convolutional 
layers, three fully connected layers. The first 
Layer type is Convolution, and the number of 
filters is 96, the size is 11*11, and stride is 4, the 
Second Layer type is Convolution and the filters 
is 256 of size 5*5, the Layer type is Convolution 
and the number of filters is 3*3 containing 384, 
384 and 256 respectively. The constraints 
imposed by the need to limit processing time are 
satisfied through the inclusion of three max 

pooling layers of kernel 3 × 3 and stride 2 in the 
sequel of the network after the first, second, and 
fifth convolution layer. After that, the network 
goes through to three completely connected 
layers, the two initial ones containing 4096 
neurons each, and the last one representing the 
number of the target categories. Activation 
functions deployed throughout the network is 
ReLU, while the regularization technique 
between FC layers is dropout with a probability of 
0.7. It finishes at a softmax layer for 
classification, and it is most beneficial for large-
scale image classification.(Putzu et al., 2020). 
Figure 6 shows the architecture diagram of 
AlexNet. 
 

 
Figure 7: AlexNet architecture diagram 

3.4 Optimization and Hyperparameter 
Tuning 

In particular, noted that with a project such as 
designing and implementing a deep 
convolutional neural network-based DCGAN, 
hyperparameter tuning was required as the 
model's performance and training efficiency were 
affected greatly with poorly optimized 
parameters. It is well known that the parameters 
set by the researchers will influence performance 
aspects related to capacity, regularization, and 

convergence speed [30]. In the case of the 
DCGAN intern, we made several hyperparameter 
changes to improve learning rates (0.1 – 0.3), 
beta 1 of 0.5 for the exponential decay rate within 
Adam’s optimizer, batch sizes between 8 and 
128, fixed noise dimension of 100, and epochs 
ranging from 50 up to thousands dependent on 
the model’s complexity. We considered 
appropriate complexity for a set architecture for 
the generator and discriminator for the specific 
application. Regarding the classification task 
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done through well-known models such as 
ResNet18, VGG16, and AlexNet, they 
distinctively chose not to change their original 
hyperparameters, valuing the benefits achieved 
through transfer learning, as alteration would 
have fundamentally changed the construction 
and operation of the models. For the novel CNN 
model developed, we utilized a grid search 
optimization approach to test multiple 
combinations of parameters in order to determine 
the best-performing set. The key 
hyperparameters explored included batch sizes 
from 10 to 100, epochs ranging from 30 to 100, 
five optimizers (SGD, AdamW, Adam, Adamax, 
and Nadam), and various learning rates (0.0001, 
0.001, 0.01, 0.1, 0.2, and 0.003). After thorough 
evaluation, our grid-search determined the 

optimal configuration consisted of 32 batches, 50 
epochs, Adam optimizer, and a 0.0001 learning 
rate, maximizing model efficacy while preventing 
issues such as slow convergence or overfitting.. 
3.5 Evaluating Methods 
This substantiates the study's validity. The 
suggested model evaluation, detailed in 
equations (5) to (8), encompasses four metrics: 
accuracy, precision, Recall, and F1-Score (FS). 
In this context, TP represents true positives, TN 
denotes true negatives, FP indicates false 
positives, and FN suggests false negatives. 

• Accuracy: Accuracy refers to the ratio of 
the true patterns to the summation of 
entire patterns. It can be expressed as  

 

 Accuracy =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 Negative

True Positives + False Positives+True Negative+False Negative
 100                   (5) 

 

• Precision: The percentage of accurately projected positive observations to the total 
projected positives. 

                                  Precision =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

True Positives + False Positives
                                    (6) 

Greater precision shows less false positives 
 

• Recall (or sensitivity): The percentage of accurately projected positive observations to all 
actual positives. 

                                       Recall =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

True Positives + False Negative
.                                         (7)                                                        

               Greater recall shows less false negative 

• F1-Score: The harmonic means of precision and recall. 

                                            F1score =
2×Precision×Recall

Precision +Recall
                                                          (8)                                                                 

        
        
A high F1 score shows that the model balances precision and recall in  
4.Preparing and assessing experiments 
In this experiment, a huge dataset of images 
consisting of 3000 images was obtained from 
200 patients, of whom 1500 were benign and 
1500 were malignant. All of the data was 
gathered within a period of 3 months at Erbil 
Rzgray Hospital and Sulaymaniyah Hewa 
Hospital. DCGAN implementation runs on 
Pytorch to generate images. We transform the 
dataset through four steps that include resizing 
images, cropping them in the center, 
transforming to tensors, and normalizing values 

between [ -1,1]. Our learning method repeatedly 
alternates between developing the discriminator 
network and the generator network during the 
training steps. In each epoch, the generator 
creates false images using random numbers 
then the discriminator checks these images 
against the actual ones. Our training records 
losses alongside images it generates at every 
single epoch step. Our system shows real and 
fake images next to each other with loss curves 
for both networks as training progresses. The 
completed generator becomes our future model 
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while we track training results through multiple 
plots that show the improvement of both models 
over time. The hyperparameter tuning is shown 
in Table (3). 
Table 3: DCGAN hyperparameters 

Parameter Value Description 

latent dim 100 Dimension of the 
noise vector input 

image size 64 Size of input/output 
images (64x64) 

Num channels 3 Number of color 
channels (RGB) 

batch size 16 Number of images 
per training batch 

learning rate 0.0002 Learning rate for 
Adam optimizer 

Epochs 1500 Total number of 
training epochs 

optimizer 
betas 

(0.5,0.999) Beta parameters 
for Adam optimizer 

normalization 
range 

[-1,1] Input image 
normalization range 

 

And below procedure of DCGAN model that have 

been used in the paper is added: 

 

 

which were also utilized, in order to guarantee 
the efficiency of the training and testing stages. 
We have prepared our model according to the 
results shown in table (4). 
Table 4:Hyperparameters of transfer learning models for 
image classification 

Quantifying performance 
and evaluation 

Assessing measurement 
outcomes 

Batch size 32 

Optimizer Adam 

Number of epochs 50 

Learning rate  0.0001 

Evaluation criterion cross-entropy loss 
function 

Training confusion matrices 

 

The evaluated models, ResNet18 exhibited 
superior performance, achieving the lowest 
testing loss of 0. 0235.at epoch 30 and a testing 
accuracy of 99.33.00% Among the evaluated 
models, AlexNet exhibited the lowest testing loss 
of 0.1026 at epoch 32 but experienced the most 
fluctuation in testing accuracy. It ultimately 
achieved a testing accuracy of 98.17%. VGG16 
showed promising results, with accomplishing 
training of accuracy 98.83% and loss of 0.0426 
at the epoch 39. An ensemble of three models 
combines their predictions to enhance accuracy 
and robustness. This can be executed through 
strategies like voting (majority or weighted), 
where the final output is primarily based on the 
consensus or confidence of each model, for brain 
tumor classification, an ensemble of ResNet18, 
VGG16, and AlexNet should use majority or 
weighted voting to supply extra reliable 
predictions.  
5.Experimental results and comparison 
  5.1Results & Discussion 
 The results gotten from the deep learning 
models shows that convolutional neural networks 
(CNNs) are useful in classifying brain tumors 
using MRI images. ResNet18 is the model with 
the highest accuracy, which means it performs 
best out of all models at feature extraction from 
medical imaging data. This is due to the 
architecture’s residual connections which 
decrease the vanishing gradient problem and 
allow lower performance walls for deeper 

DCGAN implementation: 
• Setup 

- Set device (GPU/CPU) 
- Initialize hyperparameters (latent_dim=100, 
image_size=64) 
- Load and transform dataset 

• Networks 
- Generator: noise → fake images 
- Discriminator: images → real/fake probability 

• Training Loop 
- For each epoch: 

* Generate fake images from noise 
* Train discriminator (real + fake images) 
* Train generator 
* Save losses and sample images 
• Output 

- Save model 
- Plot results and losses 
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structures. VGG16 and AlexNet also show 
decent performance but do lag in results 
because their simpler architecture does not 
perform as well. These results mean deeper 
networks can improve diagnosed performance in 
medical imaging when trained right, regulated, 
and some sort of learning enabled. Further 
evaluation on larger, diverse datasets is still 
needed to test if the accuracy is reliable. 
Alongside model comparison, the fact that 
certain MRIs were real and others were not aided 
in the training’s robustness. Created synthetic 
data works to relieve classification issues posed 
by being an underrepresented class or having a 
few samples in comparison with a class—all to 
improve the actual dataset. The overall 
enhancement allowed limited overfitting by 
boosting generalization, especially for deeper 
models like ResNet18, leading to fewer duplicate 
discrepancies. Focus on cautious realism should 
be a focus while model training using synthetic 
data. 
for this work, Python programming language was 
used in the Spyder Notebook environment for 
training and testing models using both real 

datasets and the synthetic dataset that was 
developed. The pre-processed data, which 
totaled 6000, and consisted of three thousand 
real data and three thousand synthetic data, 
were divided into two sets: a training set 
consisting of 80%, and a test set consisting of 
20% for both synthetic and real data. 
Subsequently, these datasets have been 
integrated into the novel CNN model. This 
strategy ensured that the model was robust and 
generalized well to data that had not been seen 
before, illustrating the benefits of combining both 
synthetic data and real data simultaneously in 
the training process. The training of the model 
lasted for 50 epochs. Furthermore, we used 
DCGAN to expand locally created dataset . We 
had 1500 normal and 1500 abnormal brain tumor 
images. We put both datasets separately in 
DCGAN, which then gave us 3000 normal and 
3000 abnormal synthetic data. Figure 8 shows an 
example of the real and fake images. Figure 9 
shows the generator and discriminator loss 
during training.  

 

 
Figure 8: Real and Fake images                                                                                   
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Figure 9: generator and discriminator loss 

Research used ResNet18 VGG16 plus AlexNet versions of CNN architecture for the dataset. we  
tested the models exclusively with actual data and synthetic the results are shown in table (5).  

Table 5: Testing All Models 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure (10 a b c) shows the confusion matrix of all three models 

Among the models that were assessed, 
ResNet18 performed the best, attaining a testing 
loss of 0.0410 at epoch 50 and a testing 
accuracy of 99.24%. AlexNet had the lowest 
testing loss of 0.0804 at epoch 13 of the models  
that were assessed, but it also had the highest 
variability in testing accuracy. In the end, it  

reached a testing accuracy of 98.75%. VGG16 
produced encouraging results, achieving a 
training accuracy of 98.92% and a loss of 0.0873 
at epoch 48. The results of the three models from 
each epoch are described in the figures below. 
Moreover, Figures (11,12,13) show the accuracy 
and loss of all three models. 

model  type 
precision recall 

f1-
score 

Accuracy 

ResNet18 Testing normal 0.99 0.99 0.99 
99 

abnormal 0.99 0.99 0.99 

VGG16 Testing normal 0.98 1 0.99 
98.83 

abnormal 1 0.98 0.99 

AlexNet Testing normal 0.97 0.99 0.98 
98.16 

abnormal 0.99 0.97 0.98 
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Figure 11: Training and testing loss and Accuracy of AlexNet 

 
Figure 12: Training and testing loss and Accuracy of ResNet 

 
Figure 13: Training and testing loss and Accuracy of VGG16 

Figure 14 illustrates the ROC curves for all three 
models. ResNet is exceptionally proficient in 
differentiating between the two classes, 
exhibiting minimal false positives and a high rate 
of true positives across various thresholds. An 
AUC of (1) demonstrates high model 

performance. VGG16 also had a proficient ROC 
curve with a result of (1), and lastly, AlexNet had 
an ROC curve result of (1). 
The three models worked together to aggregate 
their predictions in order to improve accuracy and 
strength. This can be accomplished using 
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procedures such as voting (majority or weighted), 
in which the final result is mostly determined by 
the consensus or confidence of each model. 
When classifying brain tumors, an ensemble of 
ResNet18, VGG16, and AlexNet should use 
majority or weighted voting to provide  
more credible predictions. In addition, we 
obtained the ensemble predictions of all the 

models combined. The majority voting was 
98.68%, and the weighting voting was also 
98.68%. Finally, we also found the ROC curves. 
Figure (15) shows the architecture of the 
Ensemble model and an AUC of (1) and plot 
accuracies for the models over the epochs as 
shown in figures (16,17). 
 

 

 
Figure 10:Ensemble of AlexNet, ResNetv18, VGG16 

 
Figure 15: ROC Curve   
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Figure16:  Ensemble accuracy of AlexNet, ResNetv18, VGG16. 

 
Figure 11: ROC curve Ensemble of AlexNet, ResNetv18, VGG16 

5.2Comparison 
Fo analyzing the research model which has been 
developed   is generalized and it can classify blur 
or noise added images and keeps its accuracy, A 
comparison has been done between three 
models (ResNet18, VGG16, AlexNet) without 
having DCGAN data and one with the GAN data 
both using the collected dataset as you can see 
the details in table 6. The investigation 
demonstrated ResNet18 delivered the finest 
overall operational outcomes by obtaining 99% 
precision and recall as well as f1-score across 
real normal data and real abnormal data and real 
data augmented with synthetic entries. VGG16 
and AlexNet also showed strong results, with 
precision, recall, and f1-scores generally in the 

96-99% range. The models performed better on 
the real with synthetic data compared to the real 
data alone, indicating the benefits of data 
augmentation. The abnormal data cases tended 
to have slightly lower precision but higher recall, 
suggesting the models are better able to identify 
abnormal samples. The ensemble performance, 
which combines the predictions of multiple 
models, reached 98-99% across the different 
data types and model architectures. The deep 
learning models demonstrated excellent 
performance on this classification task, with 
ResNet18 emerging as the top performer. The 
implementation of augmented data significantly 
improved system accuracy. 
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Table 6: Model Performance Comparison 

Type of data Models Type Precisio
n 
(%) 

Recall 
(%) 

f1sco
e 
(%) 

AUC 
(%) 

Accurac
y (%) 

Ensembl
e (%) 

Real data ResNet18 Normal 99 98 99 1 
 
98.66 

 
 
 
98.33 

Abnorm
al 

98 99 99 

VGG16 Normal 96 99 98 1 
 
97.83 

Abnorm
al 

99 96 98 

AlexNet Normal 99 98 98 1 

97.66 Abnorm
al 

98 99 98 

Real+synthet
ic data 

ResNet18 Normal 99 99 99 1  
99 
 

 
 
98.67 
 

Abnorm
al 

99 99 99 

VGG16 Normal 98 1 99  

98.83 Abnorm
al 

1 98 99 

AlexNet Normal 98 98 98 1 

98.16 Abnorm
al 

98 98 98 

 

results show that DCGAN consistently improves 
CNN performance by a small amount across 
different models. The CNN accuracy scores rise 

consistently when DCGAN integration patterns 
appear across all ResNet, VGG16, and AlexNet 
testing shown in figure 17.

 

 
Figure 12: CNN Architecture Accuracy Comparison with and Without DCGAN 

5.3Brain Tumor Image Dataset with 
Grayscale Normalization and Zoom (3096 
images) 
 The dataset was brought from Kaggle, it consists 
of 3096 brain images which used to be 3264 
images that  has been developed and upgraded, 
which contains normal and abnormal. As shown 
in table (7) I applied my methods on the Kaggle 
dataset first I used DCGAN and made the 

synthetic data then I used my three models 
(VGG16, ResNet, and AlexNet) on both the real 
and synthetic data, comparing the methods: The 
DCGAN method making use of ResNet, VGG16, 
and AlexNet performed superior performance 
with accuracies of 99.98%, 99.35%, and 99.03%, 
extensively outperforming different methods. The 
next first-rate performer was the multi-model 
method the usage of Xception, DenseNet-201, 
and EfficientNet-B3 at 97.74%, observed by 
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means of the CNN ensemble at 97.12%. AlexNet 
with VGG and ResNet achieved 96.94%, the 
VGG16/ResNet18/Dense Net aggregate reached 
95%, and the ResNet50/VGG16 pairing showed 
the lowest accuracy at 92.6%. the method used 
in my model had the highest accuracy and the 
methos used.  
Table 7:Performance Comparison of Brain Tumor Image 
Dataset with Grayscale Normalization and Zoom     

6.Conclusion 
This groundbreaking study showed the profound 
potential of deep learning for brain tumor 
classification by developing new techniques for 
fusion of real and synthetic MRI image datasets. 
Integration of high-quality synthetic data 
generated by DCGAN technology into a CNN 
ensemble comprising ResNet18, VGG16, and 
AlexNet yielded astounding diagnostic accuracy 
of 99% for brain tumor identification. The 
research offered a novel solution to fundamental 
challenges in medical imaging diagnosis by 
providing patient-validated MRI scans that 
synthesized clinical imaging with zeroes data, 
data range limitations, and privacy issues, along 
with data scarcity, dataset scope, and patient 
data confidentiality. By collecting MRI images 
from patients at Rizgary Hospital in Erbil and 
Hiwa Hospital in Sulemani, then with aid of 
DCGAN augmenting the dataset from 1500 to 
3000 images including normal and abnormal 
categories, a comprehensive dataset was 
created. The study is the first to show the reliable 

accuracy improvement achieved through the 
inclusion of synthetic data across multiple CNNs, 
thus achieving a new frontier for AI in Medicine. 
The use of ResNet18 as a voting block for 
VGG16 and AlexNet in the ensemble increased 
the diagnostic accuracy for complex cases, 
demonstrating the power of cooperation among 
deep learning models. Combining ResNet18 with 
VGG16 and AlexNet using weighted voting 
demonstrated greater reliability in diagnosing 
complex conditions showcasing the power of 
deep learning collaboration. In regard to tumor 
cases, precise diagnostic methodologies in 
parallel with advanced brain imaging techniques 
greatly aid in patient management by heightening 
survival rates and improving treatment strategies, 
placing focus on the recognition of malignant 
tumors at the initial growth stage. Along with 
further exceptional strides, the AI-driven 
framework alongside the medical imaging 
systems tailored for healthcare services 
underscored the evolution of deep learning allied 
with generative adversarial networks and 
ensemble modeling techniques, unlocking 
opportunities in medical image classification and 
underscoring the capacity of AI in redefining 
diagnostics toward systemic shifts not only in 
medical care, but also in clinical decision support 
systems. 
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