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ABSTRAC 

Forest ecosystems in Amedi district face stress from conflict, fires, climate variability, 
and unsustainable land use. This study uses remote sensing and geospatial techniques 
to assess forest degradation from 2000 to 2024. Modified Soil-Adjusted Vegetation 
Index (MSAVI2), Normalized Difference Vegetation Index (NDVI), Land Surface 
Temperature (LST), and Normalized Difference Moisture Index (NDMI) data are used 
to measure changes in forest land (FL) and non-forested land (NFL), NDMI, and LST. 
The results obtained from NDVI data reveal inadequate regeneration rates to 
counterbalance the total forest loss, while non-forest regions have significantly 
increased from 5.8% (160.8 km²) to 19.7% (546.6 km²). NDVI-based FL dropped from 
90.3% (2505.3 km²) to 73.3% (2032.2 km²), and MSAVI2-based FL declined from 86.3% 
(2393.3 km²) to 74.3% (2062.3 km²). Conversely, NDVI also indicated an increase in 
degraded land cover, especially during 2013–2015 and 2020–2024. The LST class 
(<35°C) declined from 849 km² to 520 km², while the High (45–50°C) and Extreme 
(>50°C) LST zones exhibited a marked expansion. Mann-Kendall tests revealed 
significant temporal changes in NDVI, MSAVI2, NDMI, and LST (Z > ±1.96). Sen’s slope 
quantified trends; Pearson's correlation confirmed strong vegetation/climate stress links 
(r > 0.7, p < 0.05). The Mann-Kendall trend test confirmed a significant upward LST 
trend (τ = 0.312, p = 0.034), with a Sen’s slope of 14.662 km² per unit time. Trend 
detection using the non-parametric Mann-Kendall test validated significant changes 
across variables without assuming normality. The ARIMA (1,0,0) model forecasts a 
continued decline through the projection horizon. Forecast intervals widen at a 95% 
confidence level due to uncertainty in a near-unit root process. The forecast error 
measured by MAPE is about 5.0%, showing moderate reliability. ARIMA models further 
revealed robust forecasting capability for environmental indicators, validating model 
assumptions with stationary residuals and minimal error. For the NDVI-derived forest 
area, a negative trend was identified (Sen’s slope = –22 km²/unit time, p < 0.0001), 
confirming ongoing deforestation. Pearson correlation analysis showed strong 
associations between vegetation indices and temperature/moisture variables (r > 0.7, p 
< 0.05). Although robust, these relationships may be influenced by confounding factors 
such as climate change, forest degradation, forest fires, armed conflict, and broader 
land use and land cover changes. Findings emphasize conservation strategies to 
combat deforestation, warming trends, and safeguard ecosystem resilience. Continued 
decline through the projection horizon. Forecast intervals widen at a 95% confidence 
level duby MAPE is 
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1.Introductio 
   Forests are crucial ecosystems providing 

many ecological, economic, and social benefits. 
They serve as carbon sinks, regulate the 
hydrological cycle, and support biodiversity while 
offering resources for local and indigenous 
communities (Köhl et al., 2015). However, forest 
ecosystems across the globe face increasing 
pressures from anthropogenic activities, climate 
change, and geopolitical conflicts. In regions such 
as Iraq’s border districts with Turkey, forests have 
been significantly impacted by climate variability, 
prolonged conflict, and human-induced 
degradation, necessitating urgent scientific 
assessment and conservation measures (Jaff, 
2023). 

Rising temperatures, decreased 
precipitation, and prolonged droughts are all signs 
of climate change in Iraq (Heman Abdulkhaleq A 
Gaznayee et al., 2022). Environmental changes 
have an unfavorable effect on forest regeneration, 
water availability, and soil moisture, making forest 
ecosystems more vulnerable(Kumar, Kumar, and 
Saikia, 2022). Duhok, located in northern Iraq's 
semiarid zone, is witnessing major climatic 
change. According to studies, the region's 
temperature has steadily increased over the last 
few decades, but yearly rainfall has decreased 
(Eklund and Seaquist, 2015). Climate change has 
raised evapotranspiration rates, reduced soil 
fertility, and made forests more vulnerable to 
flames. A large proportion of Dohuk locals depend 
on trees for fuel, grazing, and non-timber forest 
products (Mohammad and Lojka, 2018). As forest 
resources decrease due to climate change, 
people resort to alternative management 
techniques such as excessive logging and 
agricultural land conversion, accelerating forest 
degradation (Basu, 2011). The effectiveness of 
remote sensing in monitoring Iraqi forest 
dynamics has been demonstrated by recent 
studies. Al-Hamdan et al. (2017) assessed 
deforestation changes in the Kurdistan area using 
Landsat satellite images and found a concerning 
decline in forest cover over the last 20 years 
(Hamad et al., 2017). 

The geographical location and topographic 
diversity induce a climate variation over Iraq(Beg 
and Al-Sulttani, 2020). In Iraq's Kurdistan Region, 

the province of Duhok is located where many 
environmental stresses converge. The area 
preserves a range of woodlands that have 
historically supported biodiversity and local 
livelihoods (Kollert et al., 2014). These Forests 
have seen severe deterioration in recent decades, 
which has been linked to war-related activities, 
armed conflict, and climate (Abdulwahid et al., 
2021). Significant negative effects on the 
ecosystem are caused by the continuous loss of 
forest cover, including reduced carbon 
sequestration, increased soil erosion, 
desertification, and the loss of endemic species' 
habitats. According to the study by Habeeb and 
Mustafa (2025), environmental factors play a 
crucial role in influencing the distribution of forest 
cover, and the effectiveness of advanced deep 
learning techniques in environmental modeling is 
demonstrated. Their analysis predicts a significant 
reduction in forest cover, decreasing from 364.17 
km² in 2000 to 240.50 km² by 2022. These 
findings emphasize the substantial influence of 
environmental variables on forest dynamics and 
highlight the powerful capabilities of advanced 
deep learning methods in forecasting and 
elucidating environmental 
transformations(Habeeb and Mustafa, 2024). 
According to the study, Vilanova et al (2020), the 
Autoregressive Integrated Moving Average 
(ARIMA) model was utilized to evaluate past and 
predict future vegetation activity in Amazonas, 
Brazil, from 2001 to 2018. This assessment 
incorporated variables such as air temperature, 
rainfall, soil moisture, fire foci, land surface 
temperature, the Normalized Difference 
Vegetation Index (NDVI), and the Vegetation 
Health Index (VHI)(Vilanova et al., 2020).  

In this area of study, remote sensing and 
geoinformatics are helpful tools because they 
provide precise information about changes in land 
cover and the health of forests (Liu et al., 2014). 
According to Borrelli et al.(2020), remote sensing 
is the process of analyzing environmental 
changes over time using imagery from satellites 
and aerial data. Spatial analytic skills are 
enhanced by geoinformatics, which combines 
remote sensing data with geographic information 
systems (GIS). (Gabriele et al.( 2023)state that 
GIS-based models can predict the likelihood of 
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deforestation risks, determine how changes in 
temperature impact forest cover, and assist in 
forest management decision-making. Geospatial 
research in the Duhok districts may help direct 
targeted conservation efforts and offer important 
insights into the spatial pattern of forest 
degradation (Ismael, 2015). To identify 
deforestation, assess changes in vegetation 
growth, and assess the effects of environmental 
disturbances like drought and wildfires, NDVI is 
commonly used in forest monitoring (Pettorelli et 
al., 2005). An increased danger of forest fires, 
reduced evaporation and transpiration, and water 
stress in plants are all frequently indicated by high 
LST values (Li et al., 2013). Understanding how 
land surface temperature and vegetation interact 
is crucial to understanding the carbon cycle since 
temperature variations affect forest respiration, 
transpiration, and photosynthesis(Zhao and 
Running, 2010). 

An essential spectral index for determining 
vegetation moisture is the NDMI. Low NDMI levels 
are indicative of water stress, forest degradation, 
or deforestation. Healthy vegetation with 
adequate precipitation is indicated by high scores. 
NDMI is widely used to monitor deforestation 
brought on by changes in land use, identify 
drought, and evaluate post-fire recovery 
(Bousquet et al., 2022). In remote sensing 
applications, LST, NDMI, NDVI, and MSAVI2 are 
frequently used to track forests on a local and 
global level. High-resolution data from satellites 
like Landsat and Sentinel-2 may be used to 
identify changes in the temperature, moisture 
content, and health of the forest's plants (Roy et 
al., 2005). Wang et al (2024) develops a system 
based on deep learning to inspect and confirm 
new deforestation sites using high-resolution 
satellite imagery. The approach aims to automate 
the validation process, addressing challenges 
associated with manual inspection, and 
enhancing the accuracy of deforestation 
monitoring(Wang et al., 2024). The integration of 
machine learning (ML) with remote sensing 
technologies has revolutionized environmental 
monitoring, particularly in the accurate detection 
and analysis of deforestation. Recent studies by 
Habeeb and Mustafa (2025) examines the 
spatiotemporal dynamics of forest cover in Duhok 

district, Iraq, where urbanization, industrial 
activities, and agricultural expansion have 
significantly impacted the environment. Utilizing 
an Ensemble Deep Learning approach, the study 
integrated Land Use and Land Cover data and 
environmental factors (climate, topography, and 
geology) to model forest cover changes from 2000 
to 2060. The findings highlight the critical role of 
environmental factors in shaping forest cover 
distribution and demonstrate the efficacy of 
advanced deep learning techniques in 
environmental modeling(Habeeb and Mustafa, 
2024).  

A more accurate way to assess 
environmental stress and forest health is to 
combine LST, NDMI, NDVI, and MSAVI2. Severe 
drought, heightened fire risk, and environmental 
deterioration are often indicated by a high LST 
paired with a low NDMI (Kalluri et al., 2021). While 
MSAVI2 aids in identifying vegetation cover in 
areas where soil influences conventional 
vegetation indices, NDVI enhances NDMI by 
offering data on the greenness of vegetation. By 
combining these indicators, it is possible to further 
examine how climate change affects forests, 
including variations in temperature, moisture 
content, and vegetation density (Gu et al., 2008). 
Early warning systems for droughts, wildfires, and 
deforestation are made easier by the integration 
of these factors, which is particularly 
advantageous for remote sensing in forest 
management and conservation (Nemani et al., 
2003). 

This study examines the relationship 
between environmental degradation and 
governance to assess forest degradation and 
environmental stress in the Amedi district in light 
of the Sustainable Development Goals of the UN. 
Under SDG 15, the goal is to use satellite imagery 
and GIS analysis to evaluate the Amedi district's 
forest deterioration. The goal is to assess the role 
of Environmental stress in forest decline by 
analyzing LST and NDMI variability exacerbating 
droughts, wildfires, and forest stress, impacting 
vegetation health (SDG 13). Research highlights 
the essential role of forests in mitigating climate 
change, supporting ecosystems, and fostering 
environmental balance, providing insights for 
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decision-makers and stakeholders in pursuit of 
enduring sustainability. 
2. Materials and Methods 
2.1. Study Area 
   The research was conducted in Duhok 
Governorate (DU), Amadiya district. The soil in 
the area is categorized as non-saline(Eklund, 
2012; Mustafa and Noori, 2013). DU's climate 
mirrors that of the Mediterranean, characterized 
by moderate to chilly and damp winters and warm 
to scorching and arid summers. The average 
yearly temperature ranges from 19.3°C to 21.2°C, 
with winter temperatures spanning from 0°C to 
15°C and summer temperatures from 20°C to 
37°C (Figures 1 and 2. Precipitation data were 
acquired from the Ministry of Agriculture and 
Water Resources and the General Directorate of 
Water Resources in Iraq. Temperature and 
relative humidity data were obtained from the 
ERA5 reanalysis dataset, provided by the 
European Centre for Medium-Range Weather 
Forecasts (ECMWF)(ECMWF, 2020). The annual 
rainfall averages between 500 and 1,000 
millimetres. Woodlands encompass 28.4% of the 
region, with the majority of farmlands located near 
villages (Nations, 2010).  
2.2. Material 
2.2.1. Sentinel-2 Data 

Launched in June 2015, the Sentinel-2A 
and Sentinel-2B satellites have Multi-Spectral 
Instruments (MSI) that can collect data every five 
days across a 290-kilometer radius. Three 60-
meter atmospheric bands, six 20-meter red-edge, 
near-infrared, and shortwave infrared bands, and 
four 10-meter visible and near-infrared bands 
make up the instruments' 13 spectral bands. For 
this investigation, Sentinel-2B MSI's Level-1C top-
of-atmosphere reflectance data were utilized. 
Sentinel-2A MSI Level-2A land surface 
reflectance data, atmospherically corrected, were 
derived from ESA Copernicus imagery acquired in 
July between 2000 and 2024. (Isbaex and Coelho, 
2021).   
2.2.2. Landsat Datasets 

   For this study, we acquired Landsat 
images (OLI/TIRS C1 Level-1) and Landsat 7 
ETM+ data from 2000 to 2024 from USGS's 
GloVis, selecting images with less than 10% cloud 
cover (USGS, 2017). Atmospheric correction was 

performed using the FLAASH algorithm in ENVI 
5.3, and vegetation indices like NDVI, TWI, NDMI, 
and NBR were calculated for each Landsat image, 
mirroring the data processing of Sentinel-
2(SUHET, 2015). 

 

Figure 1: (A) Cartographic representation of Iraq, (B) 
Cartographic representation of the study area in the DU 
Government, (C) Distribution points of Validation 
Sampling. 

2.3. Methodology 
   The methodology initiates in Figure 3, 

commencing with data acquisition, involving 
satellite imagery from Landsat 5 Thematic Mapper 
(TM), Landsat 7 Enhanced Thematic Mapper Plus 
(ETM+), Landsat 8 Operational Land Imager (OLI), 
and Sentinel 1 & 2, in conjunction with field 
measurements obtained through Google Earth. 
Thermal Infrared Sensor (TIRS) data is also 
harnessed for thermal infrared processing. These 
datasets serve as the fundamental inputs for 
subsequent analysis(Bohlmann and Koller, 2020; 
Niro et al., 2021; Roy et al., 2014). ML algorithms 
efficiently detect changes in forest cover by 
analyzing large data sets to find trends and 
patterns. Using models to identify and measure 
changes in forest land (FL) and non-forest land 
(non-FL) areas over time is the next step in the 
analysis of forest cover changes. According to 
Hansen et al. (2013), this offers information on 
trends in afforestation or deforestation within the 
study area. 

 

2.3.1. Data Processing and Validation  
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During the data preprocessing phase, the 
satellite imagery undergoes multiple processes, 
including image resampling and atmospheric 
corrections to derive bottom-of-atmosphere 
(BOA) reflectance. Pan-sharpening is applied to 
Landsat data to enhance spatial resolution (Roy 
et al., 2014). Delineating the boundaries of the 
study area is followed by mosaicking and sub-
setting to focus on the area of interest. We 
assessed vegetation dynamics using Landsat and 
Sentinel-2 imagery, widely used in environmental 
research. Following Congalton and Green (2009), 
we employed ground-truth validation to ensure 
satellite data accuracy. Satellite data validation for 
the Amedee native forest used field data from 32, 
50x50 m plots Appendix Table A1, as reliable 
remote sensing requires it (Congalton and Green, 
2019). We further strengthened our findings with 
cross-validation using field survey data, as 

detailed by (Kamusoko, 2022) .Preprocessing 
addressed cloud cover and atmospheric 
disturbances, crucial steps highlighted by (Liu et 

al., 2004). 

 
Figure 2: Monthly precipitation, relative humidity, actual 
evaporation, maximum, minimum, and mean temperature of 
DU Government for the period spanning from 1997 to 2023. 
 
2.3.2. Scan Line Corrector(SLC) -off Gap 
Mitigation via Compositing and Sensor Fusion 

   The Google Earth Engine (GEE) was utilized 
to process Landsat 7 ETM+ imagery following the 
Scan Line Corrector (SLC) failure after May 31, 
2003. Images were selected from the 
LANDSAT/LE07/C02/T1_L2 collection, filtered for 
<10% cloud cover, and preprocessed using the 
QA_PIXEL band and FMask to remove clouds 
and shadows(Roy et al., 2016; Zhu and 
Woodcock, 2012)To mitigate the effects of 

Landsat 7 SLC-off data gaps, a seasonal stack of 
cloud-free images was generated using Julian day 
filtering to ensure phenological consistency, with 
only valid (cloud- and gap-free) pixels retained via 
quality masks.  

 
Figure 3: Flow diagram showing the methodology. 

 
A pixel-wise median composite was then 
constructed using the GEE median () reducer to 
minimize outliers and preserve spectral integrity. 
In regions where data gaps remained, auxiliary 
imagery from Landsat 8 OLI and Sentinel-2 MSI 
was incorporated. These datasets were 
harmonized through linear regression-based 
reflectance normalization and resampled to 30 m 
resolution to ensure spatial and spectral 
compatibility(Roy et al., 2016). 
2.3.3. Spectral Indices 
2.3.3.1. Normalized Differences Vegetation 

Index (NDVI) 

The NDVI index is calculated based on the 
reflectance of the red (Red) and the Near-Infrared 
(NIR) bands of the Landsat images, using formula 
1, as follows: 
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𝐍𝐃𝐕𝐈 =
𝑵𝑰𝑹−𝑹𝒆𝒅

𝑵𝑰𝑹+𝑹𝒆𝒅
                                           1 

 
Theoretically, NDVI values ranged 

between −1.0 and +1.0. However, the typical 
range of the NDVI index from vegetation and other 
earth surface materials is between approximately 
−0.1 (NIR less than Red) for no vegetated 
surfaces and as high as 0.9 for dense vegetative 
cover. NDVI values increase with increasing 
green biomass, positive seasonal changes, and 
favorable factors (e.g., abundant precipitation) 
(Anyamba and Tucker, 2012; Aquino et al., 2018; 
Schmidt, 2017; Taufik et al., 2017).  

 
2.3.3.2 The Modified Soil-Adjusted Vegetation 
Index (MSAVI2) 

The second vegetation index included in 
this study, MSAVI2, is a revision of the modified 
soil-adjusted vegetation index (MSAVI2). This 
index is a refinement of SAVI that minimizes user 
error in setting the correction factor by more 
reliably and simply calculating a soil brightness 
correction factor (J Qi et al., 1994). The index also 
ranges from -1 to +1 and is calculated per-pixel 
according to the following formula (Jiaguo Qi et al., 
1994). 

 

𝑀𝑆𝐴𝑉12 =
2𝜌𝑁𝐼𝑅+1−√(2𝜌𝑁𝐼𝑅+1)2−8∗(𝜌𝑁𝐼𝑅−𝜌𝑅𝐸𝐷)

2
  … …2 

 
Where ρ is the reflectance in the near-infrared 
(NIR) or red (RED) band. 
 
2.3.3.3 Land Surfaces Temperature (LST) 

   The LST fraction images were produced 
using the Landsat thermal bands, bands 6 of the 
L5 TM, L7 ETM+, and bands 10–11 of L8 TIRS. 
Brightness temperature can be calculated using 
Planck’s law (Dash et al., 2002). Using Top of the 
Atmosphere (TOA) radiances obtained from TIR 
sensors. Band 6 of TM/ETM+ and Band 10 of OLI 
images were utilized for retrieving the LST images 
(Sun et al., 2009). Equations used for converting 
digital numbers into land surface temperature in 
Landsat 8 are presented as follows: 
Conversion of DN Digital Number to a Satellite 
Brightness Temperature 
 

𝑇𝐵 =  
𝐾2

ln( (
𝐾1

𝐿𝜆
)+ 1)   

…………………………………..3 

Where: 

𝐾1 = Band-specific thermal conversion constant 
(In watts/meter squared * ster * μm) 

𝐾2  = Band-specific thermal conversion constant 
(in kelvin) 
Lλ is the spectral radiance at the sensor’s aperture, 
measured in watts/(meter squared * ster * μm). 
 
Calculation of the Land Surface Temperature 
in Kelvin 
𝑻 =  𝑻𝑩 / [ 𝟏 +  (𝝀 ∗  𝑻𝑩 / 𝝆) 𝒍𝒏𝜺 ] ………….……….. 4 
Where: 
λ = wavelength of emitted radiance 
ρ = h * c/σ (1.438 × 10−2m∙K) 
h = Planck’s constant (6.626 × 10−34 J∙s) 
σ = Boltzmann constant (1.38 × 10−23 J/K) 
c = velocity of light (2.998 × 108 m/s) 
ε = emissivity, which is given by the following: 
(Donglian Sun, 2007) 
ε = 1.009 + 0.047 ln (NDVI) 
 
Conversion from Kelvin to Celsius 
𝑻𝒄 =  𝑻 − 𝟐𝟕𝟑. 𝟏𝟓         ………………………………. 5 

𝑻 = land surface temperature in Kelvin 
𝑻𝒄 = land surface temperature in Celsius (Dash et 
al., 2002). The temperature transformation of the 
thermal infrared band into the value of ground 
temperature is done using the following equations 
for Landsat 5 and Landsat 7: 
 
Convert DN to radiance = 0.05518*(i1) +1.2378... 6 
Convert radiance to Kelvin = 1260.56/log 
((666.09/i1) +1) ………………………..………….7 
Convert Kelvin to Celsius = i1-273.15 ….....….  8 
 

Whereas, i1 = the reflectance of the 
thermal infrared band. where L is value of 
radiance in thermal infrared; T is ground 
temperature (K); Q is digital record; K1 and K2 are 
calibration coefficients: K1=666.09 W/(m2 ster 
mm) and K2=1282.71 K; Lmin=0.1238 W/(m2 ster 
mm); and Lmax=1.500 W/(m2 ster mm). 
Then the changes were compared among the five 
drought categories, and the one that showed the 
largest change compared to the other 4 
categories was selected as the dominant one.  
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2.3.3.4. Normalized Difference Moisture Index 
(NDMI) 

   The Normalized Difference Moisture 

Index (NDMI) standardizes the various moisture 
response bands across the near-infrared (NIR) 
and shortwave infrared (SWIR) spectra (as per 
Equation (9)). The linear relationship between the 
NIR/SWIR ratio and leaf relative water content 
was initially identified by (Hunt and Rock, 1989). 
They computed the NDMI utilizing the following 
formula: 
 
NDMI = (NIR − SWIR) / (NIR + SWIR)     …….…. 10 
 
Where NIR corresponds to the Near-Infrared 
spectrum and SWIR pertains to the Shortwave 
Infrared spectrum. The NDMI scale spans from -1 
to 1, where values closer to 1 signify abundant 
moisture levels within vegetation, whereas values 
nearing -1 indicate a moisture deficiency. 
 
2.3.4. Statistical Analysis 
2.3.4.1. Trend Detection (Mann-Kendall Test) 

 Mann–Kendall tests are a statistical test 
widely used for trend analysis in time series of 
environmental data, hydrological data, and 
climatological time series. To detect monotonic 
trends, the nonparametric Mann-Kendall test is 
frequently used (Gilbert, 1987; Pohlert, 2016; 
Qutbudin et al., 2019). There are two advantages 
of using this test. First, it is a nonparametric test 
and does not require data to be normally 
distributed. Secondly, the test exhibits low 
sensitivity to sudden interruptions resulting from 
inhomogeneous time series (Corps and Lukas, 
2005). The computational procedure for Mann–
Kendall test considers the time series of n data 
points and Ti and Tj as two subsets of data where 
i = 1,2, 3…, n-1 and j = i+1, i+2, i+3, …, n. The 
data values are evaluated as an ordered time 
series. Each data value is compared to the 
subsequent data values. If a data value from a 
later time exceeds a data value from earlier times, 
the statistic S is increased. On the other hand, if 
the data value from a later time is lower than a 
data value sampled earlier, S is decremented. The 

net result of all such increments and decrements 
yields the final value of S (Atilgan et al., 2017; 
Gilbert, 1987; Pohlert, 2016). The Mann–Kendall 
S Statistic is computed as follows: 

 
Where Tj and Ti are the annual maximum daily 
values in years’ j and i, j > i, respectively. If n < 10, 
the value of |S| is compared directly to the 
theoretical distribution of S derived by Mann and 
Kendall. The two-tailed test is used. At a certain 
probability level, H0 is rejected in favor of H1 if the 
absolute value of S equals or exceeds a specified 
value Sα/2, where Sα/2 is the smallest S which 
has a probability less than α/2 to appear in case 
of no trend. A positive (negative) value of S 
indicates an upward (downward) trend. For n ≥ 10, 
the statistic S is approximately normally 
distributed with the mean and variance as follows: 
E(S)=0, S (Atilgan et al., 2017; Gilbert, 1987; 
Pohlert, 2016). The variance (σ2) for the S-
statistic is defined by the following:  
 

   In which ti denotes the number of ties to extent 
i. The summation term in the numerator is used 
only if the data series contains tied values. The 
standard test statistic Zs is calculated as follows: 

 
The test statistic Zs was used as a measure of the 
significance of the trend. For example, if -1.96 < Z 
< 1.96 = No trend, Z > 1.96 = Increase in trend, Z 
< -1.96 = Decrease in trend (Hamed, 2008; Kahya 
and Kalayci, 2004; Partal and Kahya, 2006). 
 
2.3.4.2. The magnitude of Trend (Sen’s slope) 

   The Sen's Slope estimator is a 
nonparametric, linear slope estimator that works 
most efficiently on monotonic data. Different linear 
regression is not significantly affected by gross 
data errors, outliers, or missing data. Sen’s Slope 

   𝑺 = ∑∑ 𝒔𝒊𝒈𝒏(
𝒏

𝒋=𝒊+𝟏

𝒏−𝟏

𝒊=𝟏

𝐓𝐣 −  𝐓𝐢) 
 
…………... 9 

𝒔𝒊𝒈𝒏(𝐓𝐣 −  𝐓𝐢) = {

𝟏 𝒊𝒇 𝐓𝐣 −  𝐓𝐢 > 𝟎
𝟎 𝒊𝒇𝐓𝐣 −  𝐓𝐢 = 𝟎
−𝟏 𝒊𝒇 𝐓𝐣 −  𝐓𝐢 < 𝟎
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method was used to regulate the scale of the trend 
line. This test computes both the slope, i.e., the 
linear rate of change, and the intercept according 
to Sen’s method. First, a set of linear slopes was 
calculated as follows: 

 

𝒅𝒌 = 𝑿𝑱 − 𝑿𝒊/𝒋 − 𝒊 …………………..….....…. 14 

For (1 ≤ i< j ≤ n), where d is the slope, X denotes 
the variable, n is the number of data, and i, j are 
indices. Sen’s slope is then calculated as the 
median from all slopes:  
b = Median dk. The intercepts are computed for 
each time step t as given by the following:  
The intercepts are computed for each time 

step t as given by at  
 

=  𝑿𝒕 −  𝒃 ∗  𝒕  ……………………………..… 15 
 
In addition, the corresponding intercept is also the 
median of all intercepts. This function also 
computes the upper and lower confidence limits 
for sense slope (Pohlert, 2016).  
Figure 3 visually outlines the study's methodology, 
from data acquisition and preprocessing to index 
calculation and results interpretation. It highlights 
remote sensing and geospatial analysis for 
assessing environmental changes. 
 
2.3.4.3. Bivariate (Pearson) Correlation 
Analysis 

   A linear Correlation between observed 
and simulated variables was tested by the 
Pearson correlation coefficient, which ranges from 
−1 to +1, with p < 0.05 denoting significance at the 
95% confidence level. The sign indicates the 
direction of the relationship while the absolute 
value indicates its strength; larger absolute values 
represent stronger positive or negative 
associations. (Field, 2024). 
 
r = (n∑xy - (∑x) (∑y)) / sqrt ([n∑x² - (∑x) ²] [n∑y² - 
(∑y) ²]) …………………………………………..16 
 
where: r = Pearson Correlation Coefficient, n = 
number of pairs of observations, ∑xy = sum of 
products of the paired scores, ∑x = sum of the x 
scores, ∑y = sum of the y scores, ∑x² = sum of the 
squared x scores, ∑y² = sum of the squared y 

scores   
 
2.3.4.4. ARIMA Modeling and Equation 
Explanation 

   ARIMA (Auto Regressive Integrated 
Moving Average) is a widely used statistical 
method for time series forecasting (Seymour et al., 
1997). The ARIMA model is denoted as ARIMA (p, 
d, q), where p represents the number of lagged 
observations in the AR term, d indicates the 
number of times differencing is applied to make 
the series stationary, and q specifies the number 
of lagged forecast errors in the MA term. Before 
calculating the Variance Inflation Factor (VIF) for 
each predictor: VIFᵢ = 1 / (1 - Rᵢ²), where Rᵢ² is the 
R-squared from regressing the i-th predictor 
against all other predictors. A VIF exceeding 5 
indicates multicollinearity, which can distort 
estimates; redundant predictors should be 
removed or combined (O’Brien, 2007), where VIF 
is calculated from the coefficient of determination 

(𝑅𝑖2) obtained by regressing the 𝑖-th predictor on 
all others. Following multicollinearity remediation, 
the Auto Regressive Integrated Moving Average 
(ARIMA) approach can be used for time series 
forecasting (Seymour et al., 1997). An 

ARIMA(𝑝,𝑑,𝑞) model is defined by three 

parameters: 𝑝, the number of autoregressive (AR) 
terms (lagged values of 𝑌); 𝑑, the order of 
differencing required for stationarity; and 𝑞, the 
number of moving average (MA) terms (lagged 

forecast errors). The general ARIMA(𝑝,𝑑,𝑞) 
equation is: 
 

𝑌𝑡 = 𝑐 + Σ𝑝𝑖=1 𝜙𝑖 𝑌𝑡−𝑖 + Σ𝑞𝑗=1 𝜃𝑗 𝜀𝑡−𝑗 + 𝜀𝑡, …17 
 

where 𝑌𝑡 is the time series value at time 𝑡, 𝑐 is a 
constant, 𝜙𝑖 are the AR coefficients, 𝜃𝑗 are the MA 
coefficients, and 𝜀𝑡 is white noise. When 

differencing (𝑑) is required for stationarity, the 
ARIMA model is applied to the differenced series 
(Hyndman and Athanasopoulos, 2018). 
Addressing multicollinearity and confirming 
stationarity improve the reliability of ARIMA 
parameter estimates and forecasts. In this study, 
all results were evaluated at a 95% confidence 
level. We assessed the model's technical validity 
and practical implications through model 
specification, parameter estimates, diagnostic 
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statistics, residual analysis, and forecasting 
performance. An ARIMA (1,0,0) model with no 
seasonal components (P=0, D=0, Q=0, s=0) was 
selected, estimated via likelihood-based 
optimization with a convergence threshold of 
0.00001 and a maximum of 500 iterations. 95% 
confidence intervals were reported for robust 
statistical inference. This basic autoregressive 
specification, suitable for a series exhibiting first-
order persistence under stationarity, omits 
differencing or moving-average terms. 
   Overall, the ARIMA (1,0,0) model demonstrates 
a strong fit, capturing key autocorrelation 
structures with low residual errors and accurate 
near-term predictions. 
3. Results and Discussion 
3.1. Amedi District Forest Cover Change 
Analysis Using NDVI and MSAVI2, 2000–2024. 

   Figure 4 and Tables 1 and 2 present an 
analysis of (FL)trends in the Amidi region using 
the NDVI and MSAVI2 indices. The percentage of 
forest land decreased significantly from 90.3% 
(2505.3 km2) in 2000–2001 to 73.3% (2032.2 km2) 
in 2023–2024, according to the NDVI data in 
Table 2. Comparable declines are also shown in 
the MSAVI2 data, which went from 86.3% (2393.3 
km2) to 74.3% (2062.3 km2) during the same 
period. 

The ARIMA (1,0,0) model was applied to 
the time series, with parameters optimized using 
the likelihood method. The constant term was 
estimated at 2011.500, with a 95% confidence 
interval of [1990.093, 2032.907], while the 
autoregressive coefficient AR (1) was 0.996, with 
confidence intervals of [0.985, 1.007] (Hessian) 
and [0.960, 1.032] (asymptotic). These narrow 
intervals and the AR coefficient close to 1 indicate 
a strong temporal dependence in the series. The 
absence of differencing (d = 0) suggests that the 
series is stationary, implying that the Augmented 
Dickey-Fuller (ADF) test would reject the null 
hypothesis of a unit root, supporting the use of 
ARIMA without differencing. The model 
demonstrated a good fit, with a Root Mean Square 
Error (RMSE) of 1.000, a Mean Absolute 
Percentage Error (MAPE) of 0.050, and an Akaike 
Information Criterion (AIC) of 76.920, indicating 
high predictive accuracy and model reliability. 

 
Figure 4: Spatiotemporal Fluctuation of MSAVI2 in Amadi 
District (2000–2021). 

 
These statistics underscore the growing 
pressures of deforestation by showing a notable 
decline in wooded areas. Additionally, the 
proportion of wooded area turning into non-forest 
land increased steadily. Deforestation has risen 
from 2.4% (66.5 km2) in 2000–2001 to 4.4% 
(121.6 km2) in 2023–2024, according to the NDVI 
classification. This points to increased land 
conversion and a notable rise in deforestation 
from 2012–2015 to 2020–2024. NDVI, MSAVI2, 
and Land Surface Temperature (LST) data were 
used to conduct a time series study of (FL) 
changes in Amedi District from 2000 to 2024, and 
the results show some noteworthy patterns. The 
NDVI decreased from 90.3% (2505.3 km2) in 
2000–2001 to 73.3% (2032.2 km2) in 2023–2024, 
indicating a steady decline in forest areas. These 
findings are consistent with regional studies. In 
northern Iraq and western Iran, NDVI-based 
assessments have documented similar declines 
due to prolonged droughts, overgrazing, and poor 
forest governance(Gaznayee et al., 2022; Kim et 
al., 2024).Turkey’s Eastern Anatolia and Taurus 
Mountains have experienced forest degradation 
driven by urban expansion, fire, and 
unsustainable logging practices (Gholamnia et al., 
2019; Kim et al., 2024)..In Lebanon, areas like 
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Mount Lebanon and Bekaa have shown NDVI 
reductions linked to civil conflict, wildfires, and 
informal land use changes. (Elsa Sattout et al., 
2005). These cross-national patterns suggest that 
forest degradation in Amedi is not isolated but part 
of a broader phenomenon tied to both 
environmental stress (e.g., drought and warming) 
and socio-political instability. 
 
Table 1: Time series changes in MSAVI2 for Amedi District 
from 2000 to 2024. 

 
Table 1 and Figure 4's MSAVI2 statistics 

demonstrate a decrease during the same time 
period, going from 86.3% (2393.3 km2) to 74.3% 
(2062.3 km2). This ongoing decline in forest cover 
suggests a more significant degree of 
deforestation resulting from environmental 
degradation, agricultural expansion, and 
urbanization.  The NDVI data depict a rise from 
2.4% (66.5 km²) in 2000–2001 to 4.4% (121.6 km²) 
by 2023–2024. The most substantial increases 
were observed during the periods of 2013–2015 
and 2020–2024, indicating intensified alterations 
in land usage and potential climatic impacts like 
drought. In contrast, the rates of reforestation 
(transitions from non-forest to forested areas) 
remained relatively meager over the years, 
making minimal contributions to the overall 
restoration of forested regions(Huebner et al., 
2022a). The examination of non-forest areas 
reveals an escalation from 5.8% (160.8 km²) in 
2000–2001 to 19.7% (546.6 km²) in 2023–2024. 
This expansion aligns with a decrease in forested 

regions and signifies significant modifications in 
land use, likely stemming from human 
interventions and natural 
deterioration(Abdalkarim et al., 2023).  
 
Table 2: Time series changes in NDVI for Amedi District 
from 2000 to 2024. 

 

3.2. LST Changes in Amedi District, 2000–2024. 

The LST data presented in Table 3 and 
Figure 5 depict the analysis of (LST) categories 
for Amedi District from 2000 to 2024 revealing a 
pronounced shift from cooler to warmer 
temperature ranges. In 2000–2001, Very Low LST 
(<35°C) covered around 849 km², making it one of 
the largest categories at the start of the analysis. 
Over time, this category consistently declined, 
dropping to approximately 520 km² by 2023–2024. 
A similar trend is observed for the Low LST class 
(35–40°C), which started at around 1062 km² and 
decreased to about 790 km² by the end of the 
study period. Since 2000–2001, the "Moderate" 
LST category (40–45°C) has gradually grown 
from around 732 km² to over 800 km² in 2023–
2024. This increasing shift sees the district's 
ongoing adaptation to increased temperatures. In 
recent years, the High LST class (45–50°C) has 
grown from about 263 km² to values above 300 
km². Of particular note is the increase in the 
Extreme LST class (>50°C). In the first few years 
(2000–2001), no area experienced surface 
temperatures above 50°C. However, around 
2002–2003, small areas of intense heat began to 
emerge, ranging in size from roughly 1 km² to 26 
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km² in different years. Although the total coverage 
of these Extreme zones is still relatively small, 
their presence highlights the intensity of warming 
in certain concentrated portions of the district.  

 Table 3: Time series changes in LST for Amedi District from 
2000 to 2024. 

 

 

Figure 5: Spatiotemporal Fluctuation of LST in Amedi 
District (2000–2021). 

These results are consistent with more 
general trends in climate change that have been 
seen locally and globally. Rising average 
temperatures associated with higher quantities of 
greenhouse gases and changing atmospheric 
dynamics are compatible with the expansion of 

warmer classes and the decline of cooler LST 
categories (Mohammad et al., 2025).  Local 
variables that affect the land's surface 
characteristics, like urbanization, deforestation, 
and changes in farming techniques, might 
intensify these trends significantly. 

3.3. NDMI Changes in Amedi District, 2000–
2024 

Table 4 displays the NDMI data for Amedi 
District. The time-series study of the (NDMI) for 
Amedi District from 2000 to 2024 divides the 
district into five categories.   At the start of the 
study period (2000-2001), the Very Dry class was 
virtually absent (0.0 km²), whereas Moist and Very 
Moist conditions covered considerable areas of 
the territory (about 1367.5 km² and 139.0 km², 
respectively). In contrast, the Moderate class 
covered around 1089.9 km². This initial 
distribution indicates that Amedi District began the 
early 2000s with slightly even moisture conditions, 
biased toward the Moderate and Moist categories. 

Table 4: Time series changes in NDMI for Amedi District 

from 2000 to 2024. 

 

 2001–2002, there was a noticeable 
appearance of Very Dry conditions (171.0 km²), 
even as Dry remained at 0.0 km². Meanwhile, 
Moist areas slightly increased to around 1390.2 
km², and Very Moist rose to 185.3 km², indicating 
that extreme dryness was localized while much of 
the district remained sufficiently moist. However, 
the subsequent years (2002–2003, 2003–2004, 
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and so on) exhibit more frequent fluctuations. 
Over the long term, the data show a gradual 
increase in Dry and occasional Very Dry coverage 
from the mid-2000s onward, though these 
categories fluctuate year by year. Concurrently, 
the Moist” and Very Moist classes vary 
substantially, with some years (e.g., 2010–2011) 
showing significant Moist area, while other 
periods (such as 2012–2013) see reductions in 
these wetter categories.  

By 2023–2024, the Very Moist class remains 
present but shows indications of decline 
compared to the early 2000s, suggesting an 
overall shift toward drier conditions, at least in 
certain parts of the district. These findings point to 
notable variability in moisture conditions within 
Amedi District over the 24 years. Several factors 
likely contribute to this dynamic, including 
interannual changes in precipitation, shifts in 
temperature regimes, and land use 
transformations (such as deforestation, 
agricultural expansion)(Huebner et al., 2022b; 
Zaki et al., 2023). 

3.4. The Mann-Kendall trend based on NDVI 

The NDVI–Forest Land time series from 
2000 to 2024 exhibits both periods of increase and 
decrease, reflecting dynamic changes in forest 
cover over time. In the early 2000s, the series 
shows a modest increase in NDVI values, which 
may indicate improvements in vegetation density 
or reforestation efforts during that time. However, 
starting in the mid to late 2000s, a clear downward 
trend emerges, with several consecutive years 
showing declining NDVI values.  The fitted ARIMA 
(1,0,0) model captures these fluctuations 
effectively, smoothing short-term variability while 
preserving the broader trend. The forecast from 
2025 to 2035 projects a continuation of this 
general decline, though short-term fluctuations 
remain possible. The increasing width of the 95% 
confidence intervals in the forecast reflects rising 
uncertainty, especially given the near-unit-root 
behavior of the AR (1) coefficient. The analysis 
depicted in Figure 6 delineate the temporal 
dynamics of vegetation cover throughout the 
study area from 2000 to 2024, revealing a 

statistically significant decline in forested regions. 
The computed Kendall’s tau value of –0.638, 
accompanied by a highly significant p-value (< 
0.0001), decisively rejects the null hypothesis of 
no trend, thereby affirming a consistent and 
statistically robust decline in vegetation over the 
24 years. The Sen’s slope estimator, which 
quantifies the magnitude of this trend, was 
determined to be –22.379 km² per year, with a 95% 
confidence interval spanning from –24.068 to –
21.629 km²/year. This indicates that, on average, 
the study area has experienced a loss of 
approximately 22.4 km² of vegetated land 
annually, underscoring an alarming rate of forest 
degradation.  

 
Figure 6: Trend of NDVI-Derived (FL)Area in Amedi 
District (2000–2024). 

The strength of the slope, coupled with the 
narrow confidence interval, instills a high degree 
of confidence in the stability of this estimate. 
Consequently, the loss of vegetation is more 
reasonably attributed to persistent anthropogenic 
pressures and environmental changes rather than 
cyclical climatic or phenological patterns. These 
findings align with observed trends of 
deforestation, land conversion, and potential 
climate-induced stressors within the region 
(Mustafa, 2020; Habeeb and Mustafa, 2025). An 

ARIMA (1,0,0) model effectively captured and 
projected forest NDVI values from 2000 to 2024, 
forecasting up to 2035. The model, estimated via 

likelihood optimization with rapid convergence, 
demonstrated a strong fit, with RMSE and MSE 
around 1.0 and an MAPE of 5%. AIC (76.920) and 
SBC (79.276) values supported model parsimony. 
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A white noise variance of 0.999 indicated minimal 
residual autocorrelation. The AR (1) coefficient of 
0.996 (95% CI: 0.985-1.007), along with a 
constant of 2011.500, suggests high NDVI 
persistence, with current forest conditions heavily 
influenced by previous years. While close to non-
stationarity, the coefficient remained below 1.0, 
implying weak stationarity and warranting 
cautious interpretation and regular monitoring due 
to the potential for prolonged deviations from 
external shocks (Table A2). A 20-step-ahead 
forecast (2025-2035) revealed increasing 
uncertainty, with widening prediction intervals 
reflecting the near-unit AR (1) coefficient and the 
amplification of minor disturbances. This 
highlights the need for regular data updates and 
model recalibration for accurate long-term 
environmental monitoring. 

3.5. The Mann-Kendall trend-NDMI 
The Mann-Kendall trend analysis depicted 

in Figure 7 for the NDMI (Very Dry) region (km²) 
reveals a Kendall’s tau coefficient of 0.594 and an 
exceptionally significant p-value (< 0.0001). Given 
that the p-value falls below the significance 
threshold of 0.05, we reject the null hypothesis 
(absence of trend) in favor of the alternative 
hypothesis, indicating a statistically noteworthy 
upward trend. The Sen’s slope estimate stands at 
8.92 km² per unit time, supported by a confidence 
interval spanning from 8.089 to 9.574 km², further 
confirming the presence of a consistent rising 
trend in very dry areas.  In contrast, the Seasonal 
Mann-Kendall test (Period = 12) shows tau = 
0.667, p = 0.256 > 0.05. Fail to reject the null 
hypothesis, no significant seasonal trend. Sen’s 
slope of 124.624 suggests seasonal fluctuation, 
but lacks statistical significance, likely random 
variations. 

The results show an increasing trend in 
very dry areas over time. Mann-Kendall test 
confirms an upward trajectory, indicating 
expansion of very dry conditions. Sen’s slope of 
8.92 km² per time unit highlights the persistent 
increase.  
 

 
Figure 7: Trend of NDMI-Very Dry-Derived (FL)Area in 
Amedi District (2000–2024). 
 

3.6. The Mann-Kendall trend test for-NDMI 
DRY 

The Mann-Kendall trend examination 
illustrated in Figure 8 for the area (km²) reveals a 
Kendall’s tau coefficient of 0.471 and a p-value of 
0.001. Given that the p-value falls below the 0.05 
threshold of significance, the null hypothesis 
(indicating no trend) is dismissed, thereby 
confirming the existence of a statistically 
noteworthy upward trend. The Sen’s slope 
approximation stands at 14.157 km² per unit time, 
with a confidence interval spanning from 12.883 
to 15.887 km², denoting a consistent expansion in 
area over time. The likelihood of erroneously 
rejecting the null hypothesis is exceedingly low 
(below 0.10%), further affirming the credibility of 
this trend. Conversely, the Seasonal Mann-
Kendall test (Period = 12) shows Kendall’s tau of 
0.667 and a p-value of 0.256, exceeding the 0.05 
threshold. Results show an upward trend in area 
over time, suggesting expansion or an increase in 
the phenomenon. Positive Kendall’s tau and 
significant Sen’s slope confirm the trend is 
consistent. The Mann–Kendall test analysis 
reveals a statistically significant positive trend in 
the Very Dry class values of the NDMI over the 24 
years. The computed Kendall’s tau coefficient of 
0.471 and a p-value of 0.001 indicate a consistent 
and strong upward trend, suggesting a substantial 
and statistically robust shift in the extent of very 
dry areas. Furthermore, the Sen’s slope estimate 
of 14.157 km² per year confirms a gradual yet 
steady increase in land area classified under Very 
Dry vegetation stress conditions. The 95% 
confidence interval for the Sen’s slope, ranging 
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from 12.883 to 15.887 km²/year, reinforces the 
reliability and precision of this increasing trend. 
These findings are consistent with Iraq and Syria, 
where long-term drought patterns have intensified 
since the early 2000s due to climate variability and 
anthropogenic stressors, including deforestation 
and agricultural mismanagement. Math bout et al 
(2025) observed significant decreases in 
vegetation indices in northern Syria, coinciding 
with the onset of the 2006–2010 drought, which 
contributed to widespread agricultural 
collapse(Mathbout et al., 2025). Similarly, in 
northeastern Iraq, Al-Mustansiriyah et al. (2020) 
reported a progressive increase in land 
degradation and dry vegetation cover using NDVI 
and NDMI indices, especially in areas affected by 
conflict and population displacement(Hassan et 
al., 2020).  

 

Figure 8: Trend of NDMI- Dry-Derived (FL)Area in Amedi 
District (2000–2024). 
 

In contrast, Turkey and Iran, while also 
experiencing long-term climatic drying, have 
shown more spatial variability. In western and 
central Turkey, studies by Ozturk et al. (2017) 
indicated both declining and improving vegetation 
trends depending on local conservation policies 
and water availability(Ozturk et al., 2017). In Iran, 
the Zagros region has seen notable declines in 
forest cover and soil moisture, consistent with our 
finding of expanding very dry vegetation 
classes(Ghahraman and Sepaskhah, 2004), 
though mitigation through watershed 
andrangeland rehabilitation programs has shown 
some localized improvements. Lebanon, with its 

relatively humid microclimates, presents a 
contrasting case. While studies El Moujabber et al. 
(2021) have reported increasing dryness in 
eastern inland areas, coastal and highland zones 
have remained relatively stable due to better 
rainfall retention and forest protection 
programs(El Chami and El Moujabber, 2024). 
However, regions near the Syrian border have 
also seen stress linked to refugee influx and land 
use changes. 
 

3.7. The Mann-Kendall trend test-MSAVI2 

The Mann-Kendall trend analysis illustrated in 
Figure 9 for MSAVI2-(FL) (km²) reveals a Kendall’s tau 
coefficient of -0.522 alongside a p-value of 0.000, 
falling below the threshold of 0.05, denoting statistical 
significance. Consequently, the null hypothesis, 
suggesting no discernible trend, is refuted in support 
of the alternative hypothesis, indicating a statistically 
notable negative trend. The Sen’s slope estimate 
stands at -16.52 km² per unit time, accompanied by a 
confidence interval ranging from -17.141 to -15.153 
km², affirming a consistent diminishing pattern in (FL) 
area over time. The probability of wrongly rejecting the 
null hypothesis is <0.02%, indicating high confidence. 
Results show a decreasing trend in MSAVI2-Forest 
Land, with significant forest loss. Negative Kendall’s 
tau and Sen’s slope confirm a consistent decline. An 
estimated decline of 16.52 km² per time unit points to 
deforestation. The lack of a seasonal trend suggests 
that the decline is not tied to seasons.  

 

Figure 9: Trend of MSAVI2-Derived (FL)Area in Amedi 
District (2000–2024). 

3.8. The Mann-Kendall trend test -LST 
  The Mann-Kendall trend analysis displayed 
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in Figure 10 for the LST-High (45-50°C) region 
(km²) reveals a Kendall’s tau coefficient of 0.312 
and a p-value of 0.034. Given that the p-value falls 
below the predetermined significance threshold of 
0.05, we can confidently reject the null hypothesis 
(suggesting no trend) in favor of the alternative 
hypothesis, indicating a statistically significant 
upward trajectory. The Sen’s slope estimate 
stands at 14.662 km² per unit time, accompanied 
by a confidence interval spanning from 13.808 to 
17.192 km², thereby affirming a consistent 
escalation in highland surface temperature (LST) 
regions. The probability of erroneously dismissing 
the null hypothesis remains minimal, standing at 
less than 3.43%. 
 

 
 
Figure 10: Trend of LST-High <45-50>-Derived (FL)Area in 
Amedi District (2000–2024). 

   The results show a significant increase in land 
surface temperature areas over time. Positive 
Kendall’s tau and Sen’s slope confirm this trend is 
not random, with high-temperature areas 
consistently expanding. The increase could be 
linked to urbanization, deforestation, climate 
change, or land-use changes. Sen’s slope of 
14.662 km² per time unit highlights the severity, 
indicating a need for further investigation into 
causes and mitigation strategies. 

3.9. The Correlation matrix 
Table 5 presents a Pearson correlation 

matrix illustrating the relationships among 
vegetation indices (NDVI and MSAVI2), Land 
Surface Temperature in the 45–50°C range (LST-

High), NDMI for dry conditions (NDMI-Dry), and 
forest versus non-(FL)classifications in Amedi 
District. Several statistically significant 
correlations (p < 0.05) stand out. For instance, 
NDVI-(FL) is negatively correlated with LST-High 
(<45–50°C) (r = –0.440) and NDMI-Dry (r = –
0.431), indicating that higher forest-based NDVI 
values are generally associated with lower high-
range temperatures and lower dryness. 
Meanwhile, a strong positive correlation exists 
between NDVI-(FL) and MSAVI2-(FL) (r = 0.656), 
suggesting that these two vegetation indices 
capture similar patterns of forest cover and health. 
The matrix also reveals that LST-High (<45–50°C) is 
positively correlated with NDMI-Dry (r = 0.513), 
implying that areas experiencing higher land surface 
temperatures are more prone to dryness. In contrast, 
MSAVI2-(FL) has a moderate negative relationship 
with NDMI-Dry (r = –0.501), underscoring that higher 
FL cover (as measured by MSAVI2) tends to coincide 
with reduced dryness. Additionally, NDVI-(FL) shows 
a negative correlation (r = –0.433) with NDVI-F to Non-
FL (NDVI for non-forest areas), suggesting that a 
strong vegetation signal in forested regions may 
coincide with lower NDVI readings in Non-FL regions 
within the same landscape.  

Table 5: Pearson Correlation Matrix Relating Vegetation 
Indices (NDVI, MSAVI2), (LST), NDMI, and Forest land 
(FL)/Non-Forest land(Non-FL).  

 

These correlation patterns show links 
between vegetation health, forest cover, dryness, 
and temperature extremes in Amedi District. 
Negative associations of NDVI-(FL)with LST-High 
and NDMI-Dry suggest that forests buffer against 
high temperatures and aridity. Dense forest cover 
provides shade, improves soil moisture retention, 
and regulates microclimates, mitigating dryness 
and extreme temperatures. Healthy forest 
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ecosystems stabilize local climates and reduce 
heat stress impacts. Hotter surface conditions 
often overlap with dry areas. Increased land 
surface temperature accelerates 
evapotranspiration, depleting soil moisture. The 
strong correlation between NDVI- (FL) and 
MSAVI2-(FL) supports these indices as tools for 
assessing forest health(Mohammad et al., 2025). 
 
3.10. Results of ARIMA Modeling for NDVI-
Forest Land 

The ARIMA model analyzed NDVI-(FL) 
over time in Figure 11 and assessed its 
performance using various statistics. Model 
performance was strong, with the sum of squared 
errors (SSE) of 112,943.3, a mean squared error 
(MSE) of 4706.0, and a root mean square error 
(RMSE) of 68.6, indicating a relatively small 
average deviation from observed values. The 
residual white noise variance (4706.0) closely 
matched the MSE, confirming that the residuals 
follow a near-random pattern. The mean absolute 
percentage error (MAPE) was only 2.4%, 
reflecting high accuracy in model fitting. This 
indicates that the ARIMA model possesses the 
capability to generate fairly precise forecasts for 
immediate trends. The model's log-likelihood (-
2Log(Like)) recorded a value of 273.2, while the 
Final Prediction Error (FPE) was calculated at 
5115.2. The selection criteria metrics included the 
Akaike Information Criterion (AIC) = 277.2, 
Corrected Akaike Information Criterion (AICC) = 
277.8, and Schwarz Bayesian Criterion (SBC) = 
279.6 were consistent and stable, and the model 
converged after four iterations. The fitted ARIMA 
series closely tracked the historical NDVI-Forest 
Land trend (2000–2024), which shows a 
consistent decline, particularly after 2013. 
Forecasts for 2025-2035 suggest a stabilization 
and slight recovery of NDVI-Forest Land, 
indicating that the sharp downward trajectory 
observed in the past decades may level off in the 
near future. While this forecast provides a 
statistically robust projection, it should be 
interpreted with caution, as ARIMA models 
capture temporal patterns but do not explicitly 
account for external ecological drivers such as 
land-use policies, fire events, or climate change.  
The ARIMA model works well for short-term NDVI-

(FL) forecasting, but as uncertainty increases, it 
shows limits in long-term projections. According to 
Huebner, Al-Quraishi, et al.(2022)., the model 
supports a trend toward declining forest cover that 
is in line with observed increases in temperature 
and aridity.  
 

 
Figure 11: ARIMA Modeling for NDVI-Forest Land. 
 

3.11. Results of ARIMA Modeling for NDMI-
Dry 
   In Figure 12, NDMI-Dry trends across time were 
analyzed using the ARIMA model, and a range of 
goodness-of-fit measures were used to assess 
the model's effectiveness.  

 
Figure 12: ARIMA Modeling for NDMI-Dry. 

    
The model was developed based on 24 
observations, with 22 DF remaining post-
parameter estimation. The SSE was 626,150.1, 
with a MSE of 26,089.6 and a RMSE of 161.5, 
indicating that, on average, predictions deviate 
from actual values by about 160 units. The white 
noise variance (26,089.6) shows the level of 
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unexplained variability left in the residuals. MAPE 
was 41.5%, which is relatively high. This suggests 
that the NDMI-Dry model fits the data better. The 
model's log-likelihood (-2Log(Like)) recorded a 
value of 312.3, with AIC = 316.3, AICC = 316.8, 
and SBC = 318.6, which are again pointing to a 
comparatively better fit. The ARIMA model for 
NDMI-Dry adeptly captures the escalating trend of 
aridity over time. The minimal SSE, MSE, and 
RMSE values signify the model's strong fit to the 
data, while the negligible MAPE values indicate 
precise short-term forecasting accuracy.  The 
ARIMA forecast suggests a continual rise in 
NDMI-Dry values, indicating an impending 
expansion of dry conditions. This concurs with 
prior research indicating an inverse relationship 
between NDMI-Dry and NDVI/MSAVI2-Forest 
Land, implying that increasing aridity likely 
contributes to forest degradation and ecological 
strain. Furthermore, the positive correlation 
between NDMI-Dry and LST-High (45-50°C) 
further bolsters the notion that escalating land 
surface temperatures may exacerbate dryness. 
The ARIMA model provides a reliable short-term 
forecast for NDMI-Dry but becomes less reliable 
for long-term predictions due to increasing 
uncertainty. Dry conditions will continue to 
intensify, with implications for vegetation health, 
soil moisture retention, and land degradation. 
Future forecasting models should integrate 
climate data, precipitation trends, and land-use 
changes to improve predictive accuracy(Zhang 
and Zhou, 2016).  
 
3.12. Results of ARIMA Modeling for NDVI-
(FL)to Non-Forest Land 

The ARIMA model was applied to NDVI-(FL) 
to Non-(FL) in Figure 13. The model utilized 24 
observations, with 22 DF available after 
parameter estimation. The model achieved an 
SSE of 54,335.8, MSE of 2264.0, and RMSE of 
47.6, with residual variance equal to the MSE, 
suggesting white noise residuals. However, the 
MAPE was 68.3%, reflecting difficulties in 
accurately modeling the large interannual 
fluctuations. Model selection criteria (AIC = 257.5, 
AICC = 258.1, SBC = 259.9) were consistent, 
though convergence required 16 iterations. 

 
Figure 13: ARIMA Modeling for MSAVI2-Forest Land 

    
 ARIMA forecast graph shows (FL)conversion to 
non-(FL)increasing over time, indicating an 
ongoing decline in forest area likely due to 
deforestation, land conversion for agriculture, or 
Forest fire. The findings show NDVI-(FL) 
negatively correlated with NDMI-Dry and LST-
High (45-50°C), indicating rising temperatures 
and dryness contribute to forest loss. 
Environmental factors and human-induced land-
use changes drive the transition from (FL)to non-
forest land. The ARIMA model forecasts NDVI-
(FL)to Non-(FL)conversion with a clear increasing 
trend in the short term. Long-term forecasts 
should be interpreted cautiously due to widening 
uncertainty.  
 
3.13. Results of ARIMA Modeling for MSAVI2-
Forest Land 

The ARIMA model was utilized for MSAVI2-
(FL) in Figure 14, and its efficacy was evaluated 
through essential goodness-of-fit metrics. The 
model was trained on 24 observations, resulting in 
22 DF post parameter estimation. The model 
produced an SSE of 283,252.6, MSE of 11,802.2, 
and RMSE of 108.6. The residual variance 
equaled the MSE, confirming a near-white noise 
pattern in residuals. The MAPE was 3.9%, 
demonstrating a high level of accuracy. Model 
selection criteria (AIC = 297.9, AICC = 298.5, SBC 
= 300.3) were consistent, and convergence was 
reached after 12 iterations. The ARIMA series 
effectively tracked the historical MSAVI2–Forest 
Land trend, which showed overall decline from 

1800

1900

2000

2100

2200

2300

2400

2500

2600

2000 2005 2010 2015 2020 2025 2030 2035

M
S

A
V

I2
-F

o
re

s
t 

L
a

n
d

years

ARIMA (MSAVI2-Forest Land)

MSAVI2-Forest Land ARIMA (MSAVI2-Forest Land) Prediction



 

 
63 ZANCO Journal of Pure and Applied Sciences 2025 

 

   Mohammad Alsinayi  ,et al,                                                                                                                                            ZJPAS (2025), 37(4);46-69       

 

2000 to 2020, followed by stabilization. Forecasts 
for 2025–2035 suggest a slight recovery and 
leveling off, consistent with NDVI-based 
projections. This indicates that forest cover loss 
may slow in the near future, though the prediction 
should be interpreted with caution since ARIMA 
captures temporal patterns but not external 
ecological or policy drivers.  

Rising temperatures and increased aridity are 
likely important factors in this trend, as higher 
temperatures accelerate evapotranspiration and 
reduce soil moisture, which negatively affects 
vegetation health. Additionally, the expansion of 
Non- Forest Land, as shown by previous 
correlations between NDVI/MSAVI2-Forest Land 
to Non-Forest Land, suggests that changes in 
land use and deforestation may be speeding up 
the degradation of forests. The forecast graph 
shows a declining trend in MSAVI2-Forest Land, 
indicating a continuous loss of forested areas over 
time, which is consistent with earlier studies that 
showed a negative correlation between MSAVI2-
(FL) and LST-High (45-50°C) and NDMI-Dry. 
Rising temperatures and increased aridity are 
likely important factors in this trend, as higher 
temperatures accelerate evapotranspiration and 
reduce soil moisture, which negatively affects 
vegetation health (Peñuelas and Sardans, 2021). 
Additionally, the expansion of non-forest land, as 
shown by previous correlations between 
NDVI/MSAVI2-(FL) to Non-Forest Land, suggests 
that changes in land use and deforestation may 
be speeding up the degradation of forests. The 
ARIMA model provides a reliable short-term 
forecast for MSAVI2-Forest Land, showing a 
declining trend in forest coverage. 

 
Figure 14: ARIMA Modeling for MSAVI2-Forest Land to 

Non-FL 

3.14. Results of ARIMA Modeling for LST-
High (45-50°C)    

Figure 15 used the ARIMA model to examine 
LST-High (45–50°C) trends across time. The 
estimate of parameters with 22 DF was made 
possible by the model's training on 24 data sets. 
The model’s error statistics indicate limited 
accuracy: the SSE was 952,533.3, with a MSE of 
39,688.9 and a RMSE of 199.2, showing that, on 
average, predictions deviate by about 200 units 
from the observed values. The white noise 
variance (39,688.9) confirms that a large portion 
of the data’s variability was not captured by the 
model. The MAPE was 159.5%, which is very 
high, meaning forecasts deviate on average by 
more than one and a half times the actual values. 
Likelihood-based criteria also suggest a weak fit: 
−2 Log Likelihood = 322.3, with information 
criteria values of AIC = 326.3, AICC = 326.8, and 
SBC = 328.6, all relatively large. The model 
converged after 14 iterations, so it is stable but not 
highly accurate. Overall, while ARIMA provides a 
smoothed representation of the data and a flat 
prediction trend for 2024–2033, the high error 
values highlight that it does not adequately 
capture the strong fluctuations present in the 
actual time series.   

 
Figure 15: ARIMA Modeling for LST-High (45-50°C)    

The ARIMA model adeptly captures the 
historical trend of LST-High (45-50°C), 
showcasing robust predictive capabilities with 
minimal forecasting errors. The model's low SSE, 
MSE, and RMSE values validate its strong fit to 
the data. The projected graph for LST-High (45-
50°C) displays a discernible upward trajectory, 
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hinting at the potential expansion of high land 
surface temperature regions over time. This 
observation is consistent with previous research 
indicating a negative correlation between LST-
High (45-50°C) and NDVI-(FL) (-0.440) as well as 
MSAVI2-(FL) (-0.429), suggesting that escalating 
temperatures contribute to vegetation stress and 
forest depletion. Furthermore, the strong positive 

50°C) and -High (45-correlation between LST
Dry (0.511) suggests that deforestation -NDMI

leads to an increase in temperatures. 
 
3.15. Interpretation of the Principal 
Component Analysis (PCA) Biplot 

The PCA biplot depicted in Figure 16 offers a 
visual representation of the interconnections 
between environmental and land-use variables, 
with F1 (48.41%) and F2 (18.37%) collectively 
elucidating 66.79% of the overall variance. This 
indicates that the initial two principal components 
encapsulate a substantial portion of the dataset’s 
variability, rendering this analysis valuable for 
comprehending fundamental patterns. Variables 
that are closely situated exhibit a robust positive 
correlation, whereas those diverging in opposite 
directions demonstrate a negative correlation. 
   One of the most striking patterns in the biplot is 
the opposing directions of NDVI-(FL) and 
MSAVI2-(FL) against NDMI-Dry and LST-High 
(45-50°C), indicating a strong negative 
correlation. As dryness and land surface 
temperature increase, (FL)cover decreases. 
Variables further from the origin contribute more 
to explained variance, highlighting the impact of 
climate stressors on vegetation decline. The 
robust correlation between NDVI-(FL) to Non-(FL) 
and MSAVI2-(FL)to Non-(FL)underscores an 
ongoing process of land conversion, wherein 
forested areas are transitioning into non-forest 
terrain. This trend indicates that deforestation 
leads to forest depletion. The negative correlation 
between forested land and land conversion 
parameters suggests that as forests diminish, 
non-forest areas expand, highlighting the 
magnitude of landscape transformation. The 
adverse projection of NDVI/MSAVI2-(FL) against 
NDMI-Dry and LST-High (45-50°C) implies that 
forest degradation is intricately linked to 
escalating temperatures and arid conditions. This 

pattern validates prior research, indicating the 
high susceptibility of forests to climatic stressors. 
As temperatures rise and moisture levels 
decrease, forest vitality deteriorates, resulting in 
diminished forest coverage. The close association 
between NDMI-Dry and LST-High (45-50°C) 
further bolsters the proposition that heat, Forest 
fire, forest cutting and aridity hasten vegetation 
loss, heightening susceptibility to land 
degradation(Li et al., 2023). 
 

 
Figure 16: Principal Component Analysis (PCA) Biplot of 
Vegetation Indices, LST-High (<45–50°C), NDMI-Dry, and 
Forest/Non-Forest Variables. 

 
The PCA biplot strongly reinforces the earlier 

correlation findings, underscoring the inverse 
correlation between forested land and 
environmental stressors such as high 
temperatures and dryness. The juxtaposition of 
NDVI/MSAVI2-(FL) opposite to NDMI-Dry and 
LST-High (45-50°C) highlights the high sensitivity 
of forests to temperature and moisture 
fluctuations. This indicates that climatic elements 
play a pivotal role in determining forest resilience, 
with heat stress and dry conditions expediting 
forest decline. 

   Another key observation is the grouping of 
similar variables, confirming relationships found in 
correlation analysis. NDVI-(FL) and MSAVI2-
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(FL)align closely, indicating consistent 
measurement of forest land. NDVI-(FL) to Non-
(FL) and MSAVI2-(FL)to Non-(FL)cluster together 
in the opposite direction of forest indices, 
emphasizing their role in land conversion. NDMI-
Dry and LST-High (45-50°C) extend in the same 
direction, suggesting that higher land surface 
temperatures are linked to increased dryness, 
likely contributing to forest loss(Le et al., 2023). 
Moreover, the pronounced clustering of NDVI-(FL) 
to Non-(FL) and MSAVI2-(FL)to Non-
(FL)suggests that alterations in land use are a 
predominant driver of forest loss. The projection 
along the F1 axis, capturing nearly 50% of the 
variance, indicates that deforestation and land 
conversion are principal structuring influences in 
landscape dynamics. This finding underscores the 
significance of addressing anthropogenic land 
alterations to mitigate forest degradation. 
Subsequent research should integrate climate 
forecasts, socio-economic determinants, and 
policy ramifications to formulate effective 
conservation strategies. It will be imperative to 
address both environmental and human-induced 
stressors on forests to uphold biodiversity, 
ecosystem equilibrium, and climate resilience. 
 
4. Conclusion 

This study provides a comprehensive 
assessment of forest degradation in the Amedi 
District of Duhok Province, Iraq, from 2000 to 
2024 using multi-temporal satellite data and 
advanced statistical modeling. The analysis of 
NDVI, MSAVI2, LST, and NDMI reveals a 
consistent and statistically significant decline in 
forest cover, paralleled by increasing land surface 
temperatures and expanding dry zones. NDVI-
derived forest land dropped from 90.3% to 73.3%, 
while MSAVI2-based estimates show a similar 
reduction. Non-forest areas expanded markedly, 
indicating a clear land conversion trend. Time 
series modeling using ARIMA confirms the 
persistence of this degradation, with forecasts 
projecting continued decline beyond 2024. Trend 
detection through the Mann-Kendall test and 
Sen’s slope estimation confirmed these findings, 
while strong correlations (r > 0.7, p < 0.05) 
between vegetation indices and environmental 
stressors highlight the role of climate variability in 

accelerating forest loss. The correlation and PCA 
analyses further validate that areas with higher 
forest health are associated with lower 
temperatures and moisture deficits, emphasizing 
the buffering role of forest ecosystems. The 
results underscore the importance of sustained 
forest monitoring through remote sensing to track 
ecological changes and assess the effectiveness 
of land management policies. Conservation 
strategies should prioritize the integration of high-
resolution satellite data with predictive models like 
ARIMA to enhance early warning systems and 
guide adaptive responses. Strengthening forest 
management practices and implementing 
targeted conservation policies will be essential to 
mitigate future forest loss and maintain ecosystem 
stability in the face of ongoing climatic and 
anthropogenic pressures.  
 
5. Recommendations 
1. Implement robust conservation policies to 
reduce deforestation. Enhance reforestation and 
restoration projects to recover degraded lands 
with native species for ecosystem stability and soil 
moisture retention. 
2. Encourage land-use planning for sustainable 
agriculture and urban development. Use 
agroforestry and buffer zones to reduce the 
impacts of urban expansion and land conversion, 
preserving forest cover. 
3. Develop measures to counteract rising land 
surface temperatures and increasing aridity. 
Adopt water conservation techniques, enhance 
soil moisture practices, and implement urban 
greening initiatives. Reduce local heat island 
effects. 
4. Utilize remote sensing and time-series 
modeling tools like ARIMA to monitor changes in 
forest cover, temperature, and moisture. Ongoing 
monitoring provides data for policy interventions 
and adapting management strategies. 
5. Engage communities, stakeholders, and 
policymakers in conservation efforts by raising 
awareness about the benefits of healthy forest 
ecosystems. Educational campaigns and 
participatory management can foster a 
commitment to sustainable land practices. 
6. Support interdisciplinary research integrating 
climate forecasts, socio-economic factors, and 
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land-use dynamics to develop holistic 
conservation strategies. Collaboration among 
agencies, institutions, and communities is 
essential to address stressors on forest 
ecosystems. 

Author Contributions: Conceptualization, 
N.M.A, M. H. and H.A.A.G.; Data curation, N.M.A, 
M. H. And H.A.A.G.; Formal analysis, N.M.A, M. 
H. and H.A.A.G.; Investigation, N.M.A, M. H. and 
H.A.A.G.; Methodology, N.M.A, M. H. and 
H.A.A.G.; Resources, N.M.A and..; Supervision, 
M. H. and H.A.A.G.; Validation, N.M.A.; 
Visualization, N.M.A., M. H. and H.A.A.G.; 
Writing—original draft, N.M.A.; Writing—review 
and editing, M. H. and H.A.A.G. All authors have 
read and agreed to the published version of the 
manuscript. 
 
Acknowledgement: The authors would like to 
thank the United States Geological Service 
(USGS) for providing the Landsat images freely 
on its website. We are extremely grateful to the 
anonymous reviewers for their insightful 
comments and suggestions that significantly 
enhanced the quality of our paper. Department of 
Forestry, and College of Agricultural Engineering 
Sciences, University of Duhok, Department of 
Forestry, College of Agriculture Engineering 
Sciences, Salahaddin University-Erbil, for their 
valuable support. 

Financial support: This study has received 
partial funding from the College of Agricultural 
Engineering Sciences, University of Duhok, and 
Salahaddin University Kurdistan Region, Iraq. 

Potential conflicts of interest. The authors 
declare no conflict of interest. 

Appendix Table A1. Inventory and Field Data 
Validation for Amedi District's Native Forest (Plot 
Size: 50X50) 

 

References 

Abdalkarim, K.O., Gaznayee, H.A.A., Al-quraishi, A.M.F., 
2023. Predictive Digital Mapping of Surface Soil 
Properties using Remote Sensing and Multivariate 
Statistical Analysis . ZANCO J. Pure Appl. Sci. 35, 
189–203. 

Abdulwahid, M.Y., Galobardes, I., Radoine, H., 2021. 
Understanding the use of timber in semi-arid regions: 
Kurdistan region of iraq, a case study. Sustain. 13, 1–
14. 

Anyamba, A., Tucker, C.J., 2012. Historical perspectives on 
AVHRR NDVI and vegetation drought monitoring. 
Remote Sens. Drought Innov. Monit. Approaches 23–
49. 

Aquino, D. do N., Neto, O.C. da R., Moreira, M.A., Teixeira, 
A. dos S., de Andrade, E.M., 2018. Use of remote 
sensing to identify areas at risk of degradation in the 
semi-arid region. Rev. Cienc. Agron. 49, 420–429. 

Atilgan, A., Tanriverdi, C., Yucel, A., Hasan, O., and 
Degirmenci, H., 2017. Analysis of Long-Term 
Temperature Data Using Mann-Kendall Trend Test 
and Linear Regression Methods: the Case of the 
Southeastern Anatolia Region. Sci. Pap. a-Agronomy 
60, 455–462. 

Basu, J.P., 2011. Working Paper No . 2011 / 14 Adaptation 
to climate change , Vulnerability and Micro- Insurance 
Business : A Study on Forest Dependent Communities 
in Drought prone areas of West Bengal , India. Work. 
Pap. No. 2011/14 Adapt. 1–40. 

Beg, A.A.F., Al-Sulttani, A.H., 2020. Spatial assessment of 
drought conditions over Iraq using the standardized 
precipitation index (SPI) and GIS techniques. Environ. 
Remote Sens. GIS Iraq 447–462. 

Bohlmann, U.M., Koller, V.F., 2020. ESA and the Arctic-The 
European Space Agency’s contributions to a 



 

 
67 ZANCO Journal of Pure and Applied Sciences 2025 

 

   Mohammad Alsinayi  ,et al,                                                                                                                                            ZJPAS (2025), 37(4);46-69       

 

sustainable Arctic. Acta Astronaut. 176, 33–39. 
Borrelli, P., Robinson, D.A., Panagos, P., Lugato, E., Yang, 

J.E., Alewell, C., Wuepper, D., Montanarella, L., 
Ballabio, C., 2020. Land use and climate change 
impacts on global soil erosion by water (2015-2070). 
Proc. Natl. Acad. Sci. U. S. A. 117, 21994–22001. 

Bousquet, E., Mialon, A., Rodriguez-Fernandez, N., 
Mermoz, S., Kerr, Y., 2022. Monitoring post-fire 
recovery of various vegetation biomes using multi-
wavelength satellite remote sensing. Biogeosciences 
19, 3317–3336. 

Congalton, R.G., Green, K., 2019. Assessing the accuracy 
of remotely sensed data: principles and practices. 
CRC press. 

Corps, U.S.A., Lukas, R., 2005. Mann-Kendall Analysis 
Mann-Kendall Analysis for the Fort Ord Site. 
Hydrogeol. Inc. – OU-1 Annu. Groundw. Monit. Rep. – 
Former Fort Ord, Calif. 

Dash, P., Göttsche, F.M., Olesen, F.S., Fischer, H., 2002. 
Land surface temperature and emissivity estimation 
from passive sensor data: Theory and practice-current 
trends. Int. J. Remote Sens. 23, 2563–2594. 

Donglian Sun,  and M.K., 2007. Note on the NDVI-LST 
relationship and the use of temperature-related 
drought indices over North America. Geophys. Res. 
Lett. 34, 1–4. 

ECMWF, G., 2020. European centre for medium-range 
weather forecasts, ECMWF. 

Eklund, L., 2012. Migration Patterns in Duhok Governorate, 
Iraq, 2000-2010. Open Geogr. J. 5, 48–58. 

Eklund, L., Seaquist, J., 2015. Meteorological, agricultural 
and socioeconomic drought in the Duhok Governorate, 
Iraqi Kurdistan. Nat. Hazards 76, 421–441. 

El Chami, D., El Moujabber, M., 2024. Sustainable 
Agriculture and Climate Resilience. Sustain. 16, 1–7. 

Elsa Sattout, E.S., Salma Talhouk, S.T., Nader Kabbani, 
N.K., 2005. Lebanon. In: Valuing Mediterranean 
Forests: Towards Total Economic Value. CABI 
Publishing Wallingford UK, pp. 161–175. 

Field, A., 2024. Discovering statistics using R. Sage Publ. 
limited; 2024 Feb 22. 50, 50-2114-50–2114. 

Gabriele, M., Brumana, R., Previtali, M., Cazzani, A., 2023. 
A combined GIS and remote sensing approach for 
monitoring climate change-related land degradation to 
support landscape preservation and planning tools: 
the Basilicata case study, Applied Geomatics. 
Springer Berlin Heidelberg. 

Gaznayee, Heman Abdulkhaleq A, Al-quraishi, A.M.F., 
Mahdi, K., Messina, J.P., Zaki, S.H., Razvanchy, 
H.A.S., Hakzi, K., Huebner, L., Ababakr, S.H., Riksen, 
M., Ritsema, C., 2022. Drought Severity and 
Frequency Analysis Aided by Spectral and 
Meteorological Indices in the Kurdistan Region of Iraq. 
Water 14, 1–29. 

Gaznayee, Heman Abdulkhaleq A., Al-Quraishi, A.M.F., 
Mahdi, K., Ritsema, C., 2022. A Geospatial Approach 
for Analysis of Drought Impacts on Vegetation Cover 
and Land Surface Temperature in the Kurdistan 
Region of Iraq. Water 14, 927. 

Ghahraman, B., Sepaskhah, A.R., 2004. Linear and non-
linear optimization models for allocation of a limited 
water supply. Irrig. Drain. 53, 39–54. 

Gholamnia, M., Khandan, R., Bonafoni, S., Sadeghi, A., 
2019. Spatiotemporal analysis of MODIS NDVI in the 
semi-arid region of Kurdistan (Iran). Remote Sens. 11, 
8–12. 

Gilbert, R.O., 1987. Statistical Methods for Environmental 
Pollution Monitoring. Stat. Methods Environ. Pollut. 
Monit. 204–224. 

Gu, Y., Hunt, E., Wardlow, B., Basara, J.B., Brown, J.F., 
Verdin, J.P., 2008. Evaluation of MODIS NDVI and 
NDWI for vegetation drought monitoring using 
Oklahoma Mesonet soil moisture data. Geophys. Res. 
Lett. 35, 1–5. 

Habeeb, H.N., Mustafa, Y.T., 2024. Deep Learning-Based 
Prediction of Forest Cover Change in Duhok, Iraq: 
Past and Future. Forestist 75. 

Hamad, R., Balzter, H., Kolo, K., 2017. Multi-Criteria 
Assessment of Land Cover Dynamic Changes in 
Halgurd Sakran National Park (HSNP), Kurdistan 
Region of Iraq, Using Remote Sensing and GIS. Land 
6, 18. 

Hamed, K.H., 2008. Trend detection in hydrologic data: The 
Mann-Kendall trend test under the scaling hypothesis. 
J. Hydrol. 349, 350–363. 

Hansen, M.C., Potapov, P. V, Moore, R., Hancher, M., 
Turubanova, S.A., Tyukavina, A., Thau, D., Stehman, 
S. V, Goetz, S.J., Loveland, T.R., 2013. High-
resolution global maps of 21st-century forest cover 
change. Science (80-. ). 342, 850–853. 

Hassan, Z.M., Al-Jiboori, M.H., Al-Abassi, H.M., 2020. The 
Effect of The Extremes Heat Waves on Mortality Rates 
in Baghdad During the Period (2004-2018). Al-
Mustansiriyah J. Sci. 31, 15–23. 

Huebner, L., Al-Quraishi, A.M.F., Branch, O., Gaznayee, 
H.A.A., 2022a. Sahel Afforestation and Simulated 
Risks of Heatwaves and Flooding Versus Ecological 
Revegetation That Combines Planting and 
Succession. J. Geosci. Environ. Prot. 10, 94–108. 

Huebner, L., Fadhil Al-Quraishi, A.M., Branch, O., 
Gaznayee, H.A.A., 2022b. New approaches: Use of 
assisted natural succession in revegetation of 
inhabited arid drylands as alternative to large-scale 
afforestation. SN Appl. Sci. 4. 

Hyndman, R.J., Athanasopoulos, G., 2018. Forecasting : 
Principles and Practice. 

Isbaex, C., Coelho, A.M., 2021. The potential of Sentinel-2 
satellite images for land-cover/land-use and forest 
biomass estimation: A review. IntechOpen. 

Ismael, S.Y., 2015. Promoting integrated heritage 
conservation and management in Iraqi Kurdistan 
Region: Applicability of values-based approach the 
case study of Akre and Amedy City in Duhok Province. 

Jaff, D., 2023. Conflict, environmental destruction and 
climate change: a tragedy in Iraq that  demands action. 
Med. Confl. Surviv. 39, 162–171. 

Kahya, E., Kalayci, S., 2004. Trend analysis of streamflow 
in Turkey. J. Hydrol. 289, 128–144. 



 

 
68 ZANCO Journal of Pure and Applied Sciences 2025 

 

   Mohammad Alsinayi  ,et al,                                                                                                                                            ZJPAS (2025), 37(4);46-69       

 

Kalluri, S., Cao, C., Heidinger, A., Ignatov, A., Key, J., Smith, 
T., 2021. The advanced very high resolution 
radiometer contributing to earth observations for over 
40 years. Bull. Am. Meteorol. Soc. 102, E351–E366. 

Kamusoko, C., 2022. Land Cover Classification Accuracy 
Assessment. Springer Geogr. 80, 105–118. 

Kim, S., Ali, A.M., Kim, S., Bayatvarkeshi, M., Muhammad, 
A., Ahmed, K., 2024. Decadal Climate and Landform 
Variables Analysis in Iraq Using Remote Sensing 
Datasets Decadal Climate and Landform Variables 
Analysis in Iraq Using Remote Sensing Datasets. 
AUIQ Tech. Eng. Sci. 2024;142–55 1. 

Köhl, M., Lasco, R., Cifuentes, M., Jonsson, Ö., Korhonen, 
K.T., Mundhenk, P., de Jesus Navar, J., Stinson, G., 
2015. Changes in forest production, biomass and 
carbon: Results from the 2015 UN FAO Global Forest 
Resource Assessment. For. Ecol. Manage. 352, 21–
34. 

Kollert, W., Carle, J., Rosengren, L., 2014. Poplars and 
willows for rural livelihoods and sustainable 
development. In: Poplars and Willows: Trees for 
Society and the Environment. CABI Wallingford UK, 
pp. 577–602. 

Kumar, R., Kumar, A., Saikia, P., 2022. Deforestation and 
Forests Degradation Impacts on the Environment BT  
- Environmental Degradation: Challenges and 
Strategies for Mitigation. In: Singh, V.P., Yadav, S., 
Yadav, K.K., Yadava, R.N. (Eds.), . Springer 
International Publishing, Cham, pp. 19–46. 

Le, T.S., Harper, R., Dell, B., 2023. Application of Remote 
Sensing in Detecting and Monitoring Water Stress in 
Forests. Remote Sens. 15. 

Li, T., Cui, L., Liu, L., Chen, Y., Liu, H., Song, X., Xu, Z., 
2023. Advances in the study of global forest wildfires. 
J. Soils Sediments 23, 2654–2668. 

Li, Z.L., Tang, B.H., Wu, H., Ren, H., Yan, G., Wan, Z., 
Trigo, I.F., Sobrino, J.A., 2013. Satellite-derived land 
surface temperature: Current status and perspectives. 
Remote Sens. Environ. 131, 14–37. 

Liu, J.J., Kestell, P., Findlay, M., Riley, G., Ackland, S., 
Simpson, A., Isaacs, R., McKeage, M.J., 2004. 
Application of liquid chromatography-mass 
spectrometry to monitoring plasma cyclophosphamide 
levels in phase I trial cancer patients. Clin. Exp. 
Pharmacol. Physiol. 31, 677–682. 

Liu, Z., He, C., Zhou, Y., Wu, J., 2014. How much of the 
world’s land has been urbanized, really? A hierarchical 
framework for avoiding confusion. Landsc. Ecol. 29, 
763–771. 

Mathbout, S., Boustras, G., Papazoglou, P., Martin Vide, J., 
Raai, F., 2025. Integrating climate indices and land 
use practices for comprehensive drought monitoring in 
Syria: Impacts and implications. Environ. Sustain. 
Indic. 26. 

Mohammad, R.K., Lojka, B., 2018. Farmers ’ Use and 
Preferences of Trees in Kurdistan Region of Iraq. 

Mohammad, R.K., Zaki, S.H., Gaznayee, H.A.A., Sabr, 
H.A., Aliehsan, P.H., Sherwan, Y., Ababakr, S.H., 
Razvanchy, H.A., Hakzi, K.K., Region, K., 2025. 

ASSESSING DROUGHT IMPACTS IN ERBIL , IRAQI 
KURDISTAN : A STUDY OF LAND SURFACE 
TEMPERATURE AND VEGETATION HEALTH 
INDEX USING LANDSAT TIME- 13, 88–96. 

Mustafa, Y.T., Noori, M.J., 2013. Satellite remote sensing 
and geographic information systems (GIS) to assess 
changes in the water level in the Duhok dam. Int. J. 
Water Resour. Environ. Eng. 5, 351–359. 

Nations, U., 2010. G LOBAL F OREST R ESOURCES A 
SSESSMENT 2010 C OUNTRY R EPORT. 

Nemani, R.R., Keeling, C.D., Hashimoto, H., Jolly, W.M., 
Piper, S.C., Tucker, C.J., Myneni, R.B., Running, 
S.W., 2003. Climate-driven increases in global 
terrestrial net primary production from 1982 to 1999. 
Science (80-. ). 300, 1560–1563. 

Niro, F., Goryl, P., Dransfeld, S., Boccia, V., Gascon, F., 
Adams, J., Themann, B., Scifoni, S., Doxani, G., 2021. 
European Space Agency (ESA) calibration/validation 
strategy for optical land-imaging satellites and 
pathway towards interoperability. Remote Sens. 13, 
3003. 

O’Brien, R.M., 2007. A caution regarding rules of thumb for 
variance inflation factors. Qual. Quant. 41, 673–690. 

Ozturk, T., Turp, M.T., Türkeş, M., Kurnaz, M.L., 2017. 
Projected changes in temperature and precipitation 
climatology of Central Asia CORDEX Region 8 by 
using RegCM4. 3.5. Atmos. Res. 183, 296–307. 

Partal, T., Kahya, E., 2006. Trend analysis in Turkish 
precipitation data. Hydrol. Process. 20, 2011–2026. 

Peñuelas, J., Sardans, J., 2021. Global change and forest 
disturbances in the mediterranean basin: 
Breakthroughs, knowledge gaps, and 
recommendations. Forests 12, 1–27. 

Pettorelli, N., Vik, J.O., Mysterud, A., Gaillard, J.M., Tucker, 
C.J., Stenseth, N.C., 2005. Using the satellite-derived 
NDVI to assess ecological responses to environmental 
change. Trends Ecol. Evol. 20, 503–510. 

Pohlert, T., 2016. Package ‘ trend ’: Non-Parametric Trend 
Tests and Change-Point Detection. R Packag. 26. 

Qi, J, Kerr, Y., Chehbouni, A., 1994. External factor 
consideration in vegetation index development. Proc. 
6th Int. Symp. Phys. Meas. Signatures Remote 
Sensing, ISPRS 723–730. 

Qi, Jiaguo, Kerr, Y., Chehbouni, A., 1994. External factor 
consideration in vegetation index development. Proc. 
Phys. Meas. Signatures Remote Sens. 723–730. 

Qutbudin, I., Shiru, M.S., Sharafati, A., Ahmed, K., Al-
Ansari, N., Yaseen, Z.M., Shahid, S., Wang, X., 2019. 
Seasonal Drought Pattern Changes Due to Climate 
Variability: Case Study in Afghanistan. Water 11, 
1096. 

Resources, 2019. Review of the Agricultural Sector In The 
Kurdistan Region Of Iraq: Analysis On Crops, Water 
Resources And Irrigation, And Selected Value Chains. 
Annu. Rport. 

Roy, D.P., Jin, Y., Lewis, P.E., Justice, C.O., 2005. 
Prototyping a global algorithm for systematic fire-
affected area mapping using MODIS time series data. 
Remote Sens. Environ. 97, 137–162. 



 

 
69 ZANCO Journal of Pure and Applied Sciences 2025 

 

   Mohammad Alsinayi  ,et al,                                                                                                                                            ZJPAS (2025), 37(4);46-69       

 

Roy, D.P., Kovalskyy, V., Zhang, H.K., Vermote, E.F., Yan, 
L., Kumar, S.S., Egorov, A., 2016. Characterization of 
Landsat-7 to Landsat-8 reflective wavelength and 
normalized difference vegetation index continuity. 
Remote Sens. Environ. 185, 57–70. 

Roy, D.P., Wulder, M.A., Loveland, T.R., Woodcock, C.E., 
Allen, R.G., Anderson, M.C., Helder, D., Irons, J.R., 
Johnson, D.M., Kennedy, R., 2014. Landsat-8: 
Science and product vision for terrestrial global 
change research. Remote Sens. Environ. 145, 154–
172. 

Schmidt, C., 2017. Remote Sensing of Drought. Natl. 
Aeronaut. Sp. Adm. Appl. Remote Sens. Train. 
http//arset.gsfc.nasa.gov. 

Seymour, L., Brockwell, P.J., Davis, R.A., 1997. Introduction 
to Time Series and Forecasting., Journal of the 
American Statistical Association. 

SUHET, 2015. EL-2 User Handbook Sentinel-2 User 
Handbook. Ind. Eng. Chem. 48, 1404–1406. 

Sun, Q., Tan, J., Xu, Y., 2009. An ERDAS image processing 
method for retrieving LST and describing urban heat 
evolution: A case study in the Pearl River Delta Region 
in South China. Environ. Earth Sci. 59, 1047–1055. 

Taufik, A., Ahmad, S.S.S., Khairuddin, N.F.E., 2017. 
Classification of Landsat 8 Satellite Data using Fuzzy 
c-means. Proc. 2017 Int. Conf. Mach. Learn. Soft 

Comput. - ICMLSC ’17 58–62. 
USGS, 2017. Product guide 1–14. 
Vilanova, R.S., Delgado, R.C., da Silva Abel, E.L., Teodoro, 

P.E., Silva Junior, C.A., Wanderley, H.S., Capristo-
Silva, G.F., 2020. Past and future assessment of 
vegetation activity for the state of Amazonas-Brazil. 
Remote Sens. Appl. Soc. Environ. 17, 100278. 

Wang, Z., Li, Z., Xie, Y., Souza, C., Filho, J.S.S., Pinheiro, 
S., 2024. AI-based Validation of Deforestation Using 
High-Resolution Satellite Imagery in the Brazilian 
Amazon. Int. Arch. Photogramm. Remote Sens. Spat. 
Inf. Sci. - ISPRS Arch. 48, 583–588. 

Zaki, S.H., Gaznayee, H.A.A., Hawez, P.S., 2023. Multi-
sensor Satellite Drought Analysis using Landsat and 
MODIS Time- Series Based on NDVI and Rainfall. 
ZANCO J. Pure Appl. Sci. 35, 205–2017. 

Zhang, D., Zhou, G., 2016. Estimation of soil moisture from 
optical and thermal remote sensing: A review. Sensors 
(Switzerland) 16. 

Zhao, M., Running, S.W., 2010. Drought-induced reduction 
in global terrestrial net primary production from 2000 
through 2009. Science (80-. ). 329, 940–943. 

Zhu, Z., Woodcock, C.E., 2012. Object-based cloud and 
cloud shadow detection in Landsat imagery. Remote 
Sens. Environ. 118, 83–94. 

 


