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ABSTRACT
The goal of this paper is to estimate the states of hydraulic actuator. The system is

highly nonlinear and one therefore cannot directly use any linear system tools for
estimation. The standard Kalman filter addresses the problem of estimating the state of
a linear stochastic controlled process. But the dynamic model of the hydraulic actuator
to be estimated is non-linear, therefore; for the standard Kalman filter to be applied to
such nonlinear system the nonlinear system is linearized first and then the recursive
equations of the standard Kalman filter are applied for time update. The Kalman filter
which tackles the estimation problem of linearized nonlinear process and linearizes
about the current mean and covariance is referred extended Kalman filter (EKF). The
entire state estimated system has been modeled using MATLAB software. The EKF
could successfully estimates the hydraulic system variables in spite of its high
nonlinearity. The robustness of the EKF is examined as the system parameters are
changed. Three critical parameters are selected which actually suffer varying; the spring
stiffness, the spool valve time constant and the bulk of modulus. The stiffness, spool
time constant and the bulk of modulus have been hypothetically increased up to 100%,
300% and 200% over their nominal values, respectively. The results show that the EKF
is insensitive to both spring stiffness and the bulk of modulus, while its performance
degrades as changing the value of spool time constant.

Keywords: Kalman Filter, State Estimation, Hydraulic Actuator.
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INTRODUCTION

The application of hydraulic actuation to heavy-duty equipment reflects the ability
S of the hydraulic circuit to transmit larger forces and to be easily controlled.

Especially the electro-hydraulic servo system is perhaps the most important
system for position servo applications because it takes the advantages of both the large
output power of traditional hydraulic systems and the rapid response of electric systems.
However, there are also many challenges in tracking and control of electro-hydraulic
systems. In order to permit tractable algorithms for tracking and control of hydraulic
system, an approximate state estimate must be generated [1].

In 1960, R.E. Kalman published his famous paper describing a recursive solution to
the discrete-data linear filtering problem. Since that time, due in large part to advances
in digital computing, the Kalman filter has been the subject of extensive research and
application, particularly in the area of autonomous or assisted navigation [2].

Many researchers have utilized EKF for different applications. The most famous one
is Dan Simon. He applied the EKF to many problems like satellite, two-phase permanent
magnet synchronous motor (PMSM) and a range measuring device which measures the
altitude of the falling body [3]. On the other hand the work referred in [4] has employed
the EKF in the state estimation of induction machine.

Unfortunately, no work has tackled the estimation problem of hydraulic actuator.
Therefore, the purpose of this work is to include the EKF for estimating hydraulic
actuator parameters.

The connection of estimator with hydraulic actuator is shown in Figure (1). To
estimate such states, the estimator has to receive noise-corrupted actuating current, and,
also, it should measure (noisy) position and, then, based on special algorithms, the
estimator would estimate the states of hydraulic system. Therefore, the estimator gets
the following two important features:

It provides the hydraulic control system with necessary states required for controlling
and tracking.

2. Replacing the hardware sensors with soft algorithms. This in turn would reduce cost,
weight and increase hydraulic control system reliability. Moreover, in defective and
aggressive environments, the measuring sensors might be the weakest parts of the
system.
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Figure (1) The connection of the estimator with
hydraulic actuator.

On the other hand, avoiding sensor means use of additional algorithms and added
computational complexity that requires high-speed processors for real time applications.
As digital signal processors have become cheaper, and their performance greater, it has
become possible to use them for controlling hydraulic sensor as a cost-effective solution.

Figure (2) illustrates the application context in which the Kalman Filter is used. A
physical system, (e.g., a mobile robot, a chemical process, a satellite) is driven by a set
of external inputs or controls and its outputs are evaluated by measuring devices or
sensors, such that the knowledge on the system’s behavior is solely given by the inputs
and the observed outputs. The observations convey the errors and uncertainties in the
process, namely the sensor noise and the system errors.

System error sources
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Figure (2): Typical application of the Kalman Filter.

Based on the available information (control inputs and observations) it is required
to obtain an estimate of the system’s state that optimizes a given criteria. This is the role
played by a filter. In particular situations this filter is a Kalman filter. This basic
Kalman filter is only applicable to linear stochastic systems, and for non-linear systems
the EKF can be used, which can provide estimates of the states of a system or of both
the states and parameters [4-6].
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The EKF is a recursive filter (based on the knowledge of statistics of both the state
and noise created by measurement and system modeling), which can be applied to non-
linear time varying stochastic systems. EKF is insensitive to parameter changes and used
for stochastic systems where measurement and modeling noise is taken into account.

Therefore, the first objective of the work is to describe the mathematical model of
hydraulic actuator. Then, the nonlinear model has to be linearized to permit the KF to be
used for estimating the load position, velocity, spool position and load pressure.
Moreover to show the effectiveness and robustness of this filter against variation of
system parameters, three critical parameters have been varied; the bulk of modulus,
spring stiffness and the time constant of spool response. It is worth to mention that these
parameters are the most probable parameters that may change in practical realization.

MATHEMATICAL ANALYSIS FOR ELECTRO-HYDRAULIC SERVO
SYSTEM [7-10]

The system under consideration is depicted in Figure (3), where the mass-spring
system is the external load and is driven by a hydraulic cylinder controlled by a servo
valve. It is assumed that the servo valve is a zero-lap quadrilateral sliding spool valve
and the compressibility of the liquid is neglected.

|~
1 I I
| |
Q1 Ql
I P.=P1-P: I
‘l |
[P P, |

Figure (3) One DOF Electro-Hydraulic Servo System
The dynamics of the inertia load can be described by [7,10]

X=—x+—P ——X—— @Y
where x and m represent the displacement and the mass of the load respectively, P, =
P; — P, is the load pressure of the cylinder, A is the ram area of the cylinder, F represents
the combined coefficient of the modeled damping and viscous friction forces on the load
and the cylinder rod, k is the elastic load stiffness and F; is the external disturbance.

Neglecting the effect of external leakage flows in the cylinder and the actuator (or the
cylinder) dynamics can be written as

Vi . .
(4ée)PL=_Ax_Ctp PL+QL (2)

where V; is the total volume of the cylinder and the hoses between the cylinder and the
servovalve, B, is the effective bulk modulus, Cy,, is the coefficient of the total internal
leakage of the cylinder due to pressure, and @Q; is the load flow. Q;, is related to the spool
valve displacement of the servovalve, x,, by

0= Coox, [N 3

where C; is the discharge coefficient, p is the oil density, w is the spool valve area
gradient, and P; is the supply pressure of the fluid.
Substituting Eq.(3) into Eq.(2), one can get
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5 — _AABe 4 . 4 BeCip 4 BeCaw Ps—sgn(xy) Py,
P = v Ax v PL+( 7 )x,, f—p (4)

For simplicity, the spool valve displacement x,, is related to the current input i by a
first-order system given by [8]
Xy = =Ty Xy + Ky, (T 4+ AD)
or
Xy = =Ty Xy + Ky i+ ky Al (5)
where 7, and k,, are the time constant and gain of the servo-valve, respectively. Ai is
the noise term due to errors in i . Defining the state variables as x =
[x x P, x,]T=[x1 X2 X3 X4]7, then Egs. (1), (4) and (5) can be expressed
in state space form as;

f1(x1, %2, X3, X4) = X1 = X3

f2(%1, %2, X3, X4) = X3 = Qp1 X + Az2 X2 + Az3 X3

f3 (X1, X2, X3, X4) = X3 = A3y X, +033 X3 + Az4 X4/ P — sgn(xy) X3
fa(x1,%2,X3,%4) = %4 = Qua X4+ b1

Where
Uy = = 4y, =2, ay3 = ——
21 =02 =, 03 = Iz
4 Be A) (4 e Ctp) 4BeCaw
a = — a = — a — e -a
32 ( v, ) @33 v ) @34 Ve Jp
a44_ - _TU ) b - kv

It is assumed that the measurement of the load speed may be performed by a speed
sensor. The measurement is distorted by measurement noises, which are due to things
like sense resistance uncertainty, electrical noise or quantization errors. Then, the noise
corrupted measurement can be given by

y =%+ Ax, (6)
Then, the system equation can be described by
X = f(x1,%2,%3, %) + W (7)
y = h(xq,X%3,%3,%4) +V
where
X2
A1 X1+ A2 X + Az3 X3
fCer, 0z, X3, 20) = (32 Xz +a33 X3 + Az X4y Py — 5gN(X4) X3 ®)
Aga X4+ b i
h(xy,%2,X3, %) =[x, 0 0 0 ]T 9)

the process noise vector w and measurement noise vector v are given by

A T
w=[o 0o -t kvm] , v=[Ax 0 0 0] (10)
Here, the disturbance exerting on the load has been assumed to be of noisy type.
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THE KALMAN FILTER ALGORITHM
In any Kalman-based filter, both a model of the process and a model measurement
are required, [3, 11]

X1 = f (Xour) + wy (11)
Vi = h(xpug) + v

where wy, is the process noise and vy, is the measurement noise. xj, is called the state of
the system. u;, is a known input to the system (called the control signal) and Vi 18
the measured output.

If either the process or measurement equation is nonlinear, this violates the linear
assumption of the standard Kalman filter. The extended Kalman filter (EKF) is an ad
hoc technique to provide to use the standard Kalman filter on non-linear process or
measurement models resulting in sub-optimal estimates. The measurement model and
process model are linearized about the mean and covariance (the current operating point)
at each iteration and the standard Kalman filter is applied to the linearized models. The
linearization has been approximated in the extended Kalman filter using a first order
Taylor expansion. To accomplish this, the Jacobian matrix of both the process model
and the measurement model need to be calculated [1, 4, 5].

In order to use an EKF, one need to find the derivatives of f(x;,u;) and h(x,ug)
with respect to x, at each time step and evaluated at the current state estimate, i.e

Fra Of (Rjeuie)

A = f R ug) = % (12)
[ dh (R

Ck = h(Zp, wye) = (;—J’;uk) (13)

After linearizing the nonlinear model of synchronous motor, one can execute the
algorithm shown in Figure (4). In the figure, the superscripts "-1", "T", "+" and "-"
indicate matrix inversion, matrix transposition, posteriori and priori of variable
respectively. The K matrix is called the Kalman gain and the P matrix is called the

estimation error covariance. The flowchart includes the initialization of state *0 in the
absence of any observed data at k=0, and the initial value of the a posteriori covariance

matrix Fo [10].
The timing diagram of the various quantities involved in the discrete optimal filter
equations is shown in Figure (5). The figure shows that after we process the

At
measurement at time (k-1), we have an estimate of ¥+ (denoted *#-1) and the

N
covariance of that estimate (denoted Pk—l) [12].
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Figure (4) Recursive Algorithm of Discrete
Kalman Filter
When time k arrives, before we process the measurement at time k we compute an
estimate of *# (denoted *# ) and the covariance of that estimate (denoted Py ). Then the
measurement is processed at time k to refine our estimate of ** . The resulting estimate

A +
of ** is denoted ** and its covariance is denoted F¥ [12].

C-‘f‘l,LRk— i Cfﬁi Ry
P R I
Xg-1| X X | Xk
A}T—l' Qk—l ll: '4:’:'- Q,r.- [:
Py Py P P
> Time
= I

Figure (5) Timeline showing a priori and a posteriori
state estimates and estimation- error covariance.
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APPLICATION OF EKF TO HYDRAULIC ACTUATOR SYSTEM

In case of hydraulic actuator, one can easily deduce from Eq. (8) and (9) that the
process equation is nonlinear and the measurement is linear. Therefore, calculation of
Jacobian matrix for measurement is trivial, while for process is nontrivial. The matrix
(%1, x5, %3, x4) and h(xq, X,, x3, x4) in Eq. (8) and (9) can be written as

f1(x1, %2, X3, X4)
f2(%1, %2, X3, X4)
f3(x1, %2, X3, X4)
fa(x1, %3, X3, %4)

[ (xq, %2, %3, x4) =

s h(xq, %3, %3, x4) =

hy(x1, X2, X3, X4)
ha (%1, X2, X3, X4)
h3(x1, X2, X3, X4)
ha(x1, %2, X3, X4)

The Jacobian matrix for the process A using Eq. (12)

0 0h Oh M7

0xq 0x; 0x3 0xy

% 02 9 0f2

A af _ |0xq 0x; 0x3 0xy
KT ox T |ofs s O Ofs
0xq 0x; 0x3 0xy

Ofs  Ofa Ofa Ofa

L0 x4 0x; 0x3 0x4

Using Eq. (8), one can easily show from that

d
However, the f can be found as follows;
3
( (34 Xy
Q33 — —— x4, >0
; 3375 P = x. 4
s _ { az3 xs=0 -
0%s + 34 %4 <0
a _ X
B
Also,
ra34 VP — x3 X4 >0
% =} a3s \/Fs x4 =0 N
x4 Asq /P + x5 x4 <0

Therefore, the matrix of Eq.(14) can be given by
0

0 1 a
A 3 a_F_ a21 az2 23
k ox | 0 asz Az —sgn(x,)
0 0 2
0

(14)
9 _ A _9A _ on _
dx,  O8xs  0x4 0and dx; L.
% _ _ Q34 sgn(x,)
oxs; > 2P — x3
df3
(’)_x4 = Q34 \/Ps — sgn(x,) x3
0
A34 X4 0
aszs \/Ps — sgn(xs)x;
P — x3 (a

Similarly, the Jacobian matrix for measurement C}, can be deduced using Eq. (13)
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Applying the obtained Jacobian matrices Ay, Cj in the recursive algorithm of Figure

(3), one can computerize and then estimates the hydraulic actuator.

SIMULATED RESULTS
Simulation results are obtained for a hydraulic cylinder having the parameters shown
in Table (1):
Table (1) Parameters Hydraulic Actuator

Parameter value

The elastic load stiffness k 16010

The effective bulk modulus S, 1x 10°

The coefficient of the total internal leakage Cy, 2x 10712

The discharge coefficient Cy4 0.6

The spool valve area gradient w 0.022

The oil density p 840

The time constant of the servo-valve 1, 0.01 sec.

The total volume of the cylinder and the hoses V; 6.535 X 1075

The combined coefficient of friction F 60

The gain of the servo valve k, 0.45¢e-8

The load mass m 24 kg

The system is actuated with step current of height 1mA at the input solenoid during
the period 0 < t < 0.95 second. Then the current is forced to go to zero between the
period 0.95 <t < 4 seconds. The system has been simulated at sampling time (T=0.1
ms).

Figure (6) shows different measured and estimated states of the hydraulic actuator.
One can easily notice that the EKF estimator could successively estimate the hydraulic
states and the estimator showed an excellent noise rejection capability.

It is interesting to show the effectiveness of the EKF against variation of system
parameters. It is shown that the pressure state is the most sensitive variable to any
parameter change; therefore, the pressure will be considered only. It is worth to mention
that all changes of system parameters have occurred or applied to the plant during the
period 0.95 <t < 4 seconds.

The system parameter, expected to change during the operation of hydraulic actuator,
is bulk modulus £,. In Figure (7), the bulk modulus has been increased 10% over its
rated and then, for worst condition, its value has been doubled. One can see from the
figure that the EKF still works properly and shows good robustness against the variation
of the parameter of bulk modulus.
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Figure (7) Estimated and actual pressure behaviors at different system change of
Bulk of modulus S, of hydraulic servo.
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CONCLUSION
Based on the observations of the simulated results one might highlights the following
points:

o One can easily conclude that the EKF estimator could successively estimate the
hydraulic actuator states and the estimator showed an excellent noise rejection
capability.

o The EKF estimator shows good tracking performance in spite of its parameter variation
during estimation process.

a The application of Kalman Filter is resticted by the limitation of sampling period.
Serious stability problems will arise as the sampling time is increased to a specified
value. As the Kalman gain K suffers singularity at the increased sampling time.

The spring stiffness k is known to be changed from its nominal value for long
operation of hydraulic actuator. Therefore, the robustness of the EKF against the
variation of k has been examined in Figure (8). The stiffness is hypothetically changed
and increased to 20% and 100% from its nominal value. It is clear from the figure that
the filter could successively estimates the states in spite of this large change in spring
stiffness.

The time constant 7, of servo valve is the other candidate for the next test. It gives
the indication of how well the servo valve responds quickly to input change. It depends
mainly on the electric circuit time constant of the solenoid and also on the oil density. In
this test, the change of time constant has been increased to 100% and to 300% over its
nominal value. It is seen from Figure (9) that the estimator degrade slightly especially
during the period of parameter change (0.95 <t < 4). However, the degradation due
to further increase is evident in Figure (10). To show the projection and change of this
parameter variation on all states, the figure has depicted the miscellaneous responses of

states.
6 10° Measured and Estimated Load Pressure (K=1.2K) x10° Measured and Estimated Load Pressure (k=2k)
T T T T T T T 12 T T T T T T T

- N T ESSNS SOON puny eroevryry B R Estimeted | |
| § Measured i Measured i
i : ; i ! ! !
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Figure (8) Estimated and actual pressure behaviors at different system change of
Spring stiffness of hydraulic servo
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Figure (10) Estimated and actual states of hydraulic actuator due to excessive
change in spool valve time constant
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