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ABSTRACT  
      The goal of this paper is to estimate the states of hydraulic actuator. The system is 
highly nonlinear and one therefore cannot directly use any linear system tools for 
estimation. The standard Kalman filter addresses the problem of estimating the state of 
a linear stochastic controlled process. But the dynamic model of the hydraulic actuator 
to be estimated is non-linear, therefore; for the standard Kalman filter to be applied to 
such nonlinear system the nonlinear system is linearized first and then the recursive 
equations of the standard Kalman filter are applied for time update. The Kalman filter 
which tackles the estimation problem of linearized nonlinear process and linearizes 
about the current mean and covariance is referred extended Kalman filter (EKF). The 
entire state estimated system has been modeled using MATLAB software. The EKF 
could successfully estimates the hydraulic system variables in spite of its high 
nonlinearity. The robustness of the EKF is examined as the system parameters are 
changed. Three critical parameters are selected which actually suffer varying; the spring 
stiffness, the spool valve time constant and the bulk of modulus. The stiffness, spool 
time constant and the bulk of modulus have been hypothetically increased up to 100%, 
300% and 200% over their nominal values, respectively. The results show that the EKF 
is insensitive to both spring stiffness and the bulk of modulus, while its performance 
degrades as changing the value of spool time constant. 
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 خلاصةال
ة       أن ھـذه المنظومـ درلیكي. من المعروف بـ ة ھـذا البحـث ھو لتخمین متغیرات المحفز الھـایـ أن غـایـ

 تمتاز باللاخطیة العالیة ولذلك لا یمكن استخدام اي وسیلة خطیة لغرض التخمین. 
من الجدیر بالذكر بأن مرشــــح كالمان التقلیدي ذو كفاءة عالیة عندما یســــتخدم في تخمین منظومات     

ح كالمان التقلیدي في  تخدام مرشـ ع. ولغرض اسـ یطرة الخطیة المتأثرة بالضـوضـاء ذات الطیف الواسـ السـ
انموذج خطي كي المنظومات اللاخطیة كالمنظومة الھایدرولیكیة، فیجب تحویل الانموذج الریاضــي الى  

 یمكن تنفیذ خوارزمیة مرشح كالمان التقلیدي التكراریة بسھولة.       
یطلق على اســـم مرشـــح كالمان الذي یمكن تطبیقھ لغرض تخمین متغیرات المنظومة اللاخطیة بعد     

 تحویل أنموذجھا الریاضي الى خطي باسم مرشح كالمان المعدل.  

https://doi.org/10.30684/etj.2013.189596
http://creativecommons.org/licenses/by/4.0
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ــتخدام برنامج (     ــح والمنظومة الھایدرولیكیة ونمذجتھما باس ). تم تطبیق  MATLABتم تمثیل المرش
 .  M-file)خوارزمیة المخمن وكذلك الانموذج المتقطع للمنظومة الھایدرولیكیة في ملف من نوع (

اظھرت النتـائج بـأن مرشـــــح كـالمـان المعـدل قـد نجح من تخمین جمیع متغیرات المنظومـة الھـایـدرولیكیـة  
 بالرغم من درجة تعقید العالیة لنموذجھا الریاضي. 

ــح عند تغیر معلمات المنظومة. أذ تم تغیر ثلاثة       ــیة اداء المرشـ ــاسـ تم خلال ھذا البحث فحص حسـ
وثـابـت   (spring)معلمـات والتي غـالبـا"مـا تتعرض الى التغیر في الحـالـة الواقعیـة. فقـد تم تغیر صـــــلادة  

ــتجابة    %200 و  %300و  %100الى    (bulk of modulus)وكذلك تغیر قیمة  (spool)الزمن لاس
أثر بتغیر صـــــلادة  ا" لایتـ دل تقریبـ ان المعـ المـ ان أداء مرشـــــح كـ ائج بـ على الترتیـب. حیـث تبین من النتـ

)(spring    ولا بتغیر(bulk of modulus)    ة ت الزمني لاســـــتجـابـ ابـ أثر بتغیر الثـ ا یتـ  (spool)وانمـ
  .وبالامكان ملاحظة الانحدار في اداء المخمن عند تغیر ھذا المتغیر

 
INTRODUCTION 

The application of hydraulic actuation to heavy-duty equipment reflects the ability 
of the hydraulic circuit to transmit larger forces and to be easily controlled. 
Especially the electro-hydraulic servo system is perhaps the most important 

system for position servo applications because it takes the advantages of both the large 
output power of traditional hydraulic systems and the rapid response of electric systems. 
However, there are also many challenges in tracking and control of electro-hydraulic 
systems. In order to permit tractable algorithms for tracking and control of hydraulic 
system, an approximate state estimate must be generated [1]. 
    In 1960, R.E. Kalman published his famous paper describing a recursive solution to 
the discrete-data linear filtering problem. Since that time, due in large part to advances 
in digital computing, the Kalman filter has been the subject of extensive research and 
application, particularly in the area of autonomous or assisted navigation [2]. 
     Many researchers have utilized EKF for different applications. The most famous one 
is Dan Simon. He applied the EKF to many problems like satellite, two-phase permanent 
magnet synchronous motor (PMSM) and a range measuring device which measures the 
altitude of the falling body [3]. On the other hand the work referred in [4] has employed 
the EKF in the state estimation of induction machine.  
    Unfortunately, no work has tackled the estimation problem of hydraulic actuator. 
Therefore, the purpose of this work is to include the EKF for estimating hydraulic 
actuator parameters.  
     The connection of estimator with hydraulic actuator is shown in Figure (1). To 
estimate such states, the estimator has to receive noise-corrupted actuating current, and, 
also, it should measure (noisy) position and, then, based on special algorithms, the 
estimator would estimate the states of hydraulic system. Therefore, the estimator gets 
the following two important features: 
It provides the hydraulic control system with necessary states required for controlling 
and tracking.  
2. Replacing the hardware sensors with soft algorithms. This in turn would reduce cost, 
weight and increase hydraulic control system reliability. Moreover, in defective and 
aggressive environments, the measuring sensors might be the weakest parts of the 
system.  
 
 

S 
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Figure (1) The connection of the estimator with 

hydraulic actuator. 
      On the other hand, avoiding sensor means use of additional algorithms and added 
computational complexity that requires high-speed processors for real time applications. 
As digital signal processors have become cheaper, and their performance greater, it has 
become possible to use them for controlling hydraulic sensor as a cost-effective solution. 
    Figure (2) illustrates the application context in which the Kalman Filter is used. A 
physical system, (e.g., a mobile robot, a chemical process, a satellite) is driven by a set 
of external inputs or controls and its outputs are evaluated by measuring devices or 
sensors, such that the knowledge on the system’s behavior is solely given by the inputs 
and the observed outputs. The observations convey the errors and uncertainties in the 
process, namely the sensor noise and the system errors. 
 

 
Figure (2): Typical application of the Kalman Filter. 

 
        Based on the available information (control inputs and observations) it is required 
to obtain an estimate of the system’s state that optimizes a given criteria. This is the role 
played by a filter. In particular situations this filter is a Kalman filter.     This basic 
Kalman filter is only applicable to linear stochastic systems, and for non-linear systems 
the EKF can be used, which can provide estimates of the states of a system or of both 
the states and parameters [4-6].  
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     The EKF is a recursive filter (based on the knowledge of statistics of both the state 
and noise created by measurement and system modeling), which can be applied to non-
linear time varying stochastic systems. EKF is insensitive to parameter changes and used 
for stochastic systems where measurement and modeling noise is taken into account. 
    Therefore, the first objective of the work is to describe the mathematical model of 
hydraulic actuator. Then, the nonlinear model has to be linearized to permit the KF to be 
used for estimating the load position, velocity, spool position and load pressure.  
Moreover to show the effectiveness and robustness of this filter against variation of 
system parameters, three critical parameters have been varied; the bulk of modulus, 
spring stiffness and the time constant of spool response. It is worth to mention that these 
parameters are the most probable parameters that may change in practical realization.  
 

MATHEMATICAL ANALYSIS FOR ELECTRO-HYDRAULIC SERVO 
SYSTEM [7-10] 

     The system under consideration is depicted in Figure (3), where the mass-spring 
system is the external load and is driven by a hydraulic cylinder controlled by a servo 
valve. It is assumed that the servo valve is a zero-lap quadrilateral sliding spool valve 
and the compressibility of the liquid is neglected.  

 
Figure (3) One DOF Electro-Hydraulic Servo System 

The dynamics of the inertia load can be described by [7,10] 
   𝑥̈𝑥 = −𝑘𝑘  

𝑚𝑚
𝑥𝑥 + 𝐴𝐴

𝑚𝑚
𝑃𝑃𝐿𝐿 −

𝐹𝐹
𝑚𝑚
𝑥̇𝑥 − 𝐹𝐹𝐿𝐿

𝑚𝑚
                                                                                  (1) 

where 𝑥𝑥 and m represent the displacement and the mass of the load respectively, 𝑃𝑃𝐿𝐿 =
𝑃𝑃1 − 𝑃𝑃2 is the load pressure of the cylinder, A is the ram area of the cylinder, F represents 
the combined coefficient of the modeled damping and viscous friction forces on the load 
and the cylinder rod, k is the elastic load stiffness and 𝐹𝐹𝐿𝐿 is the external disturbance. 
    Neglecting the effect of external leakage flows in the cylinder and the actuator (or the 
cylinder) dynamics can be written as  

� 𝑉𝑉𝑡𝑡 
4 𝛽𝛽𝑒𝑒 

� 𝑃̇𝑃𝐿𝐿 = −𝐴𝐴 𝑥̇𝑥 − 𝐶𝐶𝑡𝑡𝑡𝑡  𝑃𝑃𝐿𝐿 + 𝑄𝑄𝐿𝐿                                                                             (2) 
where 𝑉𝑉𝑡𝑡 is the total volume of the cylinder and the hoses between the cylinder and the 
servovalve,  𝛽𝛽𝑒𝑒  is the effective bulk modulus, 𝐶𝐶𝑡𝑡𝑡𝑡 is the coefficient of the total internal 
leakage of the cylinder due to pressure, and 𝑄𝑄𝐿𝐿  is the load flow. 𝑄𝑄𝐿𝐿   is related to the spool 
valve displacement of the servovalve, 𝑥𝑥𝑣𝑣 by 

  𝑄𝑄𝐿𝐿 = 𝐶𝐶𝑑𝑑  ⍵ 𝑥𝑥𝑣𝑣 �𝑃𝑃𝑠𝑠−𝑠𝑠𝑠𝑠𝑠𝑠( 𝑥𝑥𝑣𝑣) 𝑃𝑃𝐿𝐿
𝜌𝜌

                                                                                                (3) 

where  𝐶𝐶𝑑𝑑   is the discharge coefficient, 𝜌𝜌 is the oil density, w is the spool valve area 
gradient, and  𝑃𝑃𝑠𝑠  is the supply pressure of the fluid. 
    Substituting Eq.(3) into Eq.(2), one can get  
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 𝑃̇𝑃𝐿𝐿 = −4 𝐴𝐴 𝛽𝛽𝑒𝑒
𝑉𝑉𝑡𝑡

𝐴𝐴 𝑥̇𝑥 −  4  𝛽𝛽𝑒𝑒  𝐶𝐶𝑡𝑡𝑡𝑡
𝑉𝑉𝑡𝑡

 𝑃𝑃𝐿𝐿 + �4  𝛽𝛽𝑒𝑒𝐶𝐶𝑑𝑑 ⍵ 
𝑉𝑉𝑡𝑡

�  𝑥𝑥𝑣𝑣  �𝑃𝑃𝑠𝑠−𝑠𝑠𝑠𝑠𝑠𝑠( 𝑥𝑥𝑣𝑣) 𝑃𝑃𝐿𝐿
𝜌𝜌

                                         (4) 

      For simplicity, the spool valve displacement 𝑥𝑥𝑣𝑣  is related to the current input 𝑖𝑖 by a 
first-order system given by [8]  
     𝑥̇𝑥𝑣𝑣 = −𝜏𝜏𝑣𝑣  𝑥𝑥𝑣𝑣 + 𝑘𝑘𝑣𝑣 (𝑖𝑖 + ∆𝑖𝑖)   

or                                                                            
      𝑥̇𝑥𝑣𝑣 = −𝜏𝜏𝑣𝑣 𝑥𝑥𝑣𝑣 + 𝑘𝑘𝑣𝑣 𝑖𝑖 + 𝑘𝑘𝑣𝑣 ∆𝑖𝑖                                                                                                    (5) 
where 𝜏𝜏𝑣𝑣   and  𝑘𝑘𝑣𝑣  are the time constant and gain of the servo-valve, respectively.  ∆𝑖𝑖 is 
the noise term due to errors in 𝑖𝑖 . Defining the state variables as  𝒙𝒙 =
[𝑥𝑥 𝑥̇𝑥    𝑃𝑃𝐿𝐿 𝑥𝑥𝑣𝑣  ]𝑇𝑇 = [𝑥𝑥1 𝑥𝑥2    𝑥𝑥3 𝑥𝑥4 ]𝑇𝑇, then Eqs. (1), (4) and (5) can be expressed 
in state space form as; 

 
   𝑓𝑓1(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4) = 𝑥̇𝑥1 = 𝑥𝑥2 
   𝑓𝑓2(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4) = 𝑥̇𝑥2 = 𝑎𝑎21 𝑥𝑥1 + 𝑎𝑎22 𝑥𝑥2 + 𝑎𝑎23 𝑥𝑥3 
  𝑓𝑓3(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, 𝑥𝑥4) = 𝑥̇𝑥3 = 𝑎𝑎32 𝑥𝑥2 +𝑎𝑎33 𝑥𝑥3 + 𝑎𝑎34 𝑥𝑥4�𝑃𝑃𝑠𝑠 − 𝑠𝑠𝑠𝑠𝑠𝑠( 𝑥𝑥4) 𝑥𝑥3  
   𝑓𝑓4(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, 𝑥𝑥4) = 𝑥̇𝑥4 = 𝑎𝑎44 𝑥𝑥4 + 𝑏𝑏 𝑖𝑖 

 
Where  
 𝑎𝑎21 = −𝑘𝑘  

𝑚𝑚
 , 𝑎𝑎22 = 𝐴𝐴

𝑚𝑚
 , 𝑎𝑎23 = − 𝐹𝐹

𝑚𝑚
 

 𝑎𝑎32 = −�4 𝛽𝛽𝑒𝑒 𝐴𝐴
𝑉𝑉𝑡𝑡

� , 𝑎𝑎33 = −�4 𝛽𝛽𝑒𝑒 𝐶𝐶𝑡𝑡𝑡𝑡
𝑉𝑉𝑡𝑡

� , 𝑎𝑎34 = 4 𝛽𝛽𝑒𝑒 𝐶𝐶𝑑𝑑 𝜔𝜔 
𝑉𝑉𝑡𝑡 �𝜌𝜌

  

 𝑎𝑎44 = −𝜏𝜏𝑣𝑣  ,  𝑏𝑏 = 𝑘𝑘𝑣𝑣        
 
It is assumed that the measurement of the load speed may be performed by a speed 
sensor. The measurement is distorted by measurement noises, which are due to things 
like sense resistance uncertainty, electrical noise or quantization errors. Then, the noise 
corrupted measurement can be given by 
y = 𝑥𝑥2 + ∆𝑥𝑥2                                                                                                                                (6) 
Then, the system equation can be described by 
𝒙̇𝒙 = 𝒇𝒇(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4) + 𝒘𝒘                                                                                                          (7) 
𝒚𝒚 = 𝒉𝒉(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4) + 𝒗𝒗 
where 

𝒇𝒇(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, 𝑥𝑥4) =

⎣
⎢
⎢
⎡

𝑥𝑥2
𝑎𝑎21 𝑥𝑥1 + 𝑎𝑎22 𝑥𝑥2 + 𝑎𝑎23 𝑥𝑥3

𝑎𝑎32 𝑥𝑥2 +𝑎𝑎33 𝑥𝑥3 + 𝑎𝑎34 𝑥𝑥4�𝑃𝑃𝑠𝑠 − 𝑠𝑠𝑠𝑠𝑠𝑠( 𝑥𝑥4) 𝑥𝑥3 
𝑎𝑎44 𝑥𝑥4 + 𝑏𝑏 𝑖𝑖 ⎦

⎥
⎥
⎤
                                    (8) 

 
h(x1, x2, x3, x4) = [x2 0     0 0 ]T                                                                             (9) 

 
the process noise vector w and measurement noise vector v are given by 
                                                    

 𝒘𝒘 = �0 0    −∆𝐹𝐹𝐿𝐿
𝑚𝑚

𝑘𝑘𝑣𝑣  ∆𝑖𝑖 �
𝑇𝑇

  ,     𝒗𝒗 = [∆ 𝑥𝑥 0    0 0 ]𝑇𝑇                                            (10) 
Here, the disturbance exerting on the load has been assumed to be of noisy type.   
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THE KALMAN FILTER ALGORITHM 
      In any Kalman-based filter, both a model of the process and a model measurement 
are required, [3, 11] 
 
 𝑥𝑥𝑘𝑘+1 = 𝑓𝑓(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘) + 𝑤𝑤𝑘𝑘                                                                                                             (11) 
 𝑦𝑦𝑘𝑘 = ℎ(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘) + 𝑣𝑣𝑘𝑘 
 
where 𝑤𝑤𝑘𝑘 is the process noise and 𝑣𝑣𝑘𝑘 is the measurement noise. 𝑥𝑥𝑘𝑘 is called the state of 
the system. 𝑢𝑢𝑘𝑘 is a known input to the system (called the control signal) and          𝑦𝑦𝑘𝑘 is 
the measured output. 
      If either the process or measurement equation is nonlinear, this violates the linear 
assumption of the standard Kalman filter. The extended Kalman filter (EKF) is an ad 
hoc technique to provide to use the standard Kalman filter on non-linear process or 
measurement models resulting in sub-optimal estimates. The measurement model and 
process model are linearized about the mean and covariance (the current operating point) 
at each iteration and the standard Kalman filter is applied to the linearized models. The 
linearization has been approximated in the extended Kalman filter using a first order 
Taylor expansion. To accomplish this, the Jacobian matrix of both the process model 
and the measurement model need to be calculated [1, 4, 5]. 
      In order to use an EKF, one need to find the derivatives of 𝑓𝑓(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘) and ℎ(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘) 
with respect to 𝑥𝑥𝑘𝑘 at each time step and evaluated at the current state estimate, i.e    
    
 𝐴𝐴𝑘𝑘 = 𝑓́𝑓(𝑥𝑥�𝑘𝑘 ,𝑢𝑢𝑘𝑘) = 𝜕𝜕𝜕𝜕(𝑥𝑥�𝑘𝑘,𝑢𝑢𝑘𝑘)

𝜕𝜕𝜕𝜕
                                                                                                    (12) 

 𝐶𝐶𝑘𝑘 = ℎ́(𝑥𝑥�𝑘𝑘,𝑢𝑢𝑘𝑘) = 𝜕𝜕ℎ (𝑥𝑥�𝑘𝑘,𝑢𝑢𝑘𝑘)
𝜕𝜕𝜕𝜕

                                                                                                   (13) 
 

After linearizing the nonlinear model of synchronous motor, one can execute the 
algorithm shown in Figure (4). In the figure, the superscripts "-1", "T", "+" and "-" 
indicate matrix inversion, matrix transposition, posteriori and priori of variable 
respectively.  The K matrix is called the Kalman gain and the P matrix is called the 
estimation error covariance. The flowchart includes the initialization of state 0x̂  in the 
absence of any observed data at k=0, and the initial value of the a posteriori covariance 
matrix 0P  [10].  
      The timing diagram of the various quantities involved in the discrete optimal filter 
equations is shown in Figure (5). The figure shows that after we process the 

measurement at time (k-1), we have an estimate of 1+kx  (denoted 
+
−1ˆ kx ) and the 

covariance of that estimate (denoted 
+
−1kP ) [12].  
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Figure (4) Recursive Algorithm of Discrete 

 Kalman Filter 
 

When time k arrives, before we process the measurement at time k we compute an 

estimate of kx (denoted
−
kx̂ ) and the covariance of that estimate (denoted

−
kP ). Then the 

measurement is processed at time k to refine our estimate of kx . The resulting estimate 

of kx  is denoted 
+
kx̂  and its covariance is denoted

+
kP  [12]. 

 

 
Figure (5) Timeline showing a priori and a posteriori  

state estimates and estimation- error covariance. 



Eng. &Tech. Journal, Vol.31, Part (A), No.21, 2013                     EKF for State Estimation of   Electro 
Hydraulic Servo Systems   

 

4051 
 

 
APPLICATION OF EKF TO HYDRAULIC ACTUATOR SYSTEM      
    In case of hydraulic actuator, one can easily deduce from Eq. (8) and (9) that the 
process equation is nonlinear and the measurement is linear. Therefore, calculation of 
Jacobian matrix for measurement is trivial, while for process is nontrivial. The matrix 
𝒇𝒇(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, 𝑥𝑥4) and 𝒉𝒉(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, 𝑥𝑥4) in Eq. (8) and (9) can be written as 
 

𝒇𝒇(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, 𝑥𝑥4) = �

𝑓𝑓1(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3,𝑥𝑥4)
𝑓𝑓2(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3,𝑥𝑥4)
𝑓𝑓3(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3,𝑥𝑥4)
𝑓𝑓4(𝑥𝑥1, 𝑥𝑥2,𝑥𝑥3,𝑥𝑥4)

�, 𝒉𝒉(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, 𝑥𝑥4) = �

ℎ1(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, 𝑥𝑥4)
ℎ2(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3,𝑥𝑥4)
ℎ3(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3,𝑥𝑥4)
ℎ4(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3,𝑥𝑥4)

� 

The Jacobian matrix for the process  𝐴𝐴𝑘𝑘 using Eq. (12)  

 𝐴𝐴𝑘𝑘 =  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥1
𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥1
𝜕𝜕𝑓𝑓3
𝜕𝜕𝑥𝑥1
𝜕𝜕𝑓𝑓4
𝜕𝜕𝑥𝑥1

      

𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥2
𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥2
𝜕𝜕𝑓𝑓3
𝜕𝜕𝑥𝑥2
𝜕𝜕𝑓𝑓4
𝜕𝜕𝑥𝑥2

      

𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥3
𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥3
𝜕𝜕𝑓𝑓3
𝜕𝜕𝑥𝑥3
𝜕𝜕𝑓𝑓4
𝜕𝜕𝑥𝑥3

      

𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥4
𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥4
𝜕𝜕𝑓𝑓3
𝜕𝜕𝑥𝑥4
𝜕𝜕𝑓𝑓4
𝜕𝜕𝑥𝑥4⎦

⎥
⎥
⎥
⎥
⎥
⎤

                                                                    (14) 

Using Eq. (8), one can easily show from that  𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥1

= 𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥3

= 𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥4

= 0 and 𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥2

= 1. 

However, the  𝜕𝜕𝑓𝑓3
𝜕𝜕𝑥𝑥3

  can be found as follows; 

      
𝜕𝜕𝑓𝑓3
𝜕𝜕𝑥𝑥3

=

⎩
⎪
⎨

⎪
⎧𝑎𝑎33 −

𝑎𝑎34 𝑥𝑥4
2�𝑃𝑃𝑠𝑠 −  𝑥𝑥3

          𝑥𝑥4 > 0    

𝑎𝑎33                                       𝑥𝑥4 = 0  

𝑎𝑎33 +
𝑎𝑎34 𝑥𝑥4

2�𝑃𝑃𝑠𝑠 + 𝑥𝑥3
          𝑥𝑥4 < 0  

        

→        
𝜕𝜕𝑓𝑓3
𝜕𝜕𝑥𝑥3

= 𝑎𝑎33 −
𝑎𝑎34  𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥4)
2�𝑃𝑃𝑠𝑠 −  𝑥𝑥3

 

Also,  

      
𝜕𝜕𝑓𝑓3
𝜕𝜕𝑥𝑥4

=

⎩
⎪
⎨

⎪
⎧𝑎𝑎34  �𝑃𝑃𝑠𝑠 −  𝑥𝑥3          𝑥𝑥4 > 0    
𝑎𝑎34  �𝑃𝑃𝑠𝑠                    𝑥𝑥4 = 0  
𝑎𝑎34  �𝑃𝑃𝑠𝑠 + 𝑥𝑥3          𝑥𝑥4 < 0  

       

      →        
𝜕𝜕𝑓𝑓3
𝜕𝜕𝑥𝑥4

= 𝑎𝑎34  �𝑃𝑃𝑠𝑠 − 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥4) 𝑥𝑥3 

Therefore, the matrix of Eq.(14) can be given by 

     𝐴𝐴𝑘𝑘 =  
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=

⎣
⎢
⎢
⎢
⎡ 0
 𝑎𝑎21 

0
0

      

1  
 𝑎𝑎22 
𝑎𝑎32 
0

      

0
 𝑎𝑎23 

𝑎𝑎33 − 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥4)
𝑎𝑎34  𝑥𝑥4 

2�𝑃𝑃𝑠𝑠 −  𝑥𝑥3
0

      

0 
0

𝑎𝑎34  �𝑃𝑃𝑠𝑠 − 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥4)𝑥𝑥3
𝑎𝑎44 ⎦

⎥
⎥
⎥
⎤

 

Similarly, the Jacobian matrix for measurement 𝐶𝐶𝑘𝑘 can be deduced using Eq. (13)  
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     𝐶𝐶𝑘𝑘 =
 𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

= �
1
0
0
0

�

𝑇𝑇

 

Applying the obtained Jacobian matrices  𝐴𝐴𝑘𝑘 , 𝐶𝐶𝑘𝑘 in the recursive algorithm of Figure 
(3), one can computerize and then estimates the hydraulic actuator.  
 
SIMULATED RESULTS  
     Simulation results are obtained for a hydraulic cylinder having the parameters shown 
in Table (1):  
                                    Table (1) Parameters Hydraulic Actuator  

 
       The system is actuated with step current of height 1mA at the input solenoid during 
the period 0 ≤ 𝑡𝑡 ≤ 0.95 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. Then the current is forced to go to zero between the 
period 0.95 ≤ 𝑡𝑡 ≤ 4 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. The system has been simulated at sampling time (T=0.1 
ms).  
      Figure (6) shows different measured and estimated states of the hydraulic actuator.  
One can easily notice that the EKF estimator could successively estimate the hydraulic 
states and the estimator showed an excellent noise rejection capability.  
     It is interesting to show the effectiveness of the EKF against variation of system 
parameters. It is shown that the pressure state is the most sensitive variable to any 
parameter change; therefore, the pressure will be considered only. It is worth to mention 
that all changes of system parameters have occurred or applied to the plant during the 
period 0.95 ≤ 𝑡𝑡 ≤ 4 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.   
     The system parameter, expected to change during the operation of hydraulic actuator, 
is bulk modulus  𝛽𝛽𝑒𝑒. In Figure (7), the bulk modulus has been increased 10% over its 
rated and then, for worst condition, its value has been doubled. One can see from the 
figure that the EKF still works properly and shows good robustness against the variation 
of the parameter of bulk modulus. 
 
 
 
 

Parameter value 
The elastic load stiffness  𝑘𝑘 16010 
The effective bulk modulus  𝛽𝛽𝑒𝑒 1× 109 
The coefficient of the total internal leakage  𝐶𝐶𝑡𝑡𝑡𝑡 2 × 10−12  
The discharge coefficient 𝐶𝐶𝑑𝑑    0.6 
The spool valve area gradient  w 0.022 
The oil density 𝜌𝜌 840 
The time constant of the servo-valve   𝜏𝜏𝑣𝑣    0.01 sec.  
The total volume of the cylinder and the hoses  𝑉𝑉𝑡𝑡 6.535 × 10−5 
The combined coefficient of friction  F 60 
The gain of the servo valve     𝑘𝑘𝑣𝑣  0.45e-8 
The load mass m  24 kg 
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Figure (6) Estimated and actual states (position, speed, pressure and spool 
deviation) of the hydraulic servo. 

 

 

Figure (7) Estimated and actual pressure behaviors at different system change of  
Bulk of modulus  𝜷𝜷𝒆𝒆  of hydraulic servo. 
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CONCLUSION 
     Based on the observations of the simulated results one might highlights the following 
points:   
 One can easily conclude that the EKF estimator could successively estimate the 

hydraulic actuator states and the estimator showed an excellent noise rejection 
capability. 

 The EKF estimator shows good tracking performance in spite of its parameter variation 
during estimation process.     

 The application of Kalman Filter is resticted by the limitation of sampling period. 
Serious stability problems will arise as the sampling time is increased to a specified 
value. As the Kalman gain K suffers singularity at the increased sampling time.   

        The spring stiffness  𝑘𝑘 is known to be changed from its nominal value for long 
operation of hydraulic actuator. Therefore, the robustness of the EKF against the 
variation of 𝑘𝑘 has been examined in Figure (8). The stiffness is hypothetically changed 
and increased to 20% and 100% from its nominal value. It is clear from the figure that 
the filter could successively estimates the states in spite of this large change in spring 
stiffness.  
        The time constant 𝜏𝜏𝑣𝑣   of servo valve is the other candidate for the next test. It gives 
the indication of how well the servo valve responds quickly to input change. It depends 
mainly on the electric circuit time constant of the solenoid and also on the oil density. In 
this test, the change of time constant has been increased to 100% and to 300% over its 
nominal value. It is seen from Figure (9) that the estimator degrade slightly especially 
during the period of parameter change (0.95 ≤ 𝑡𝑡 ≤ 4 ). However, the degradation due 
to further increase is evident in Figure (10). To show the projection and change of this 
parameter variation on all states, the figure has depicted the miscellaneous responses of 
states.    

 

Figure (8) Estimated and actual pressure behaviors at different system change of  
Spring stiffness of hydraulic servo 
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Figure (9) Estimated and actual pressure behaviors at different system change of  
Spring stiffness of hydraulic servo 

 

 
       Figure (10) Estimated and actual states of hydraulic actuator due to excessive 

change in spool valve time constant 
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