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1. Introduction

The relationship between prey and predator it will remain one of the most important and prevalent topics
in mathematical ecology and ecology ratio global presence and importance. Epidemiology is concerned with
studying the spread of diseases in living organisms [1], [2]. Obviously, when the infected person is still
infectious and the other person is susceptible all the time, these types of diseases are called, Sl (susceptible
infected) diseases [3], [4]. In addition to infection don't leads to immunity so that infective become susceptible
again after recovery; the diseases are called SIS diseases, see in [5], [6]. Also, once the infected organisms have
an immunity of permanent after recovery from the disease, this type of disease is called SIR (susceptible
infected removable) diseases. Moreover, after work of pioneering of, Kermack, Mckendrick, [7], [8] .An
epidemiology system based on the classic infected-vulnerable-recovery system has emerged on the horizon and
has received much research attention, Anderson and May [9], [10].

Also add to that, Majeed , and, Shawka , [11] they discussed the predator-prey system with SIS and Sl in
prey and diseases that can be transMay mitted in the same species through an external source or through contact.
In addition to [12], [13], many researchers, scientists and engineers interested in this question have studied the
dynamic system of prey and predator using different stimuli that can change the biological factor in the past
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decade, example [14], [15]. Naji, Khalaf, and, Majeed [16] and similarly [17], It studies the predator-prey
system, which includes the SIS in the prey. This epidemic is transmitted from the predator by the predator
attacking the prey during the predation process. This epidemic is transmitted in the same type of organisms
through external surrounding sources as well as through contact; Similarly, Naji, and Abdulateef in their papers
[18] proposed an analysis of predator-prey model that contains Sl disease that is infectious in the prey and
disease that is transmitted in the same species by contact. A predator-prey model with non-local competition can
produce complex dynamics, such as spatiotemporal patterns and consistently spatially heterogeneous periodic
solutions [19].

Real-life examples include wolves and sheep, since sheep are somewhat infected with diseases that are
contagious, while some diseases are not contagious .And also in forest life in terms of tigers and deer, as well as
lions, wild buffalo, and other organisms present in the ecosystem.

In this article, a model consisting of a predator-prey system is proposed that includes SIS in prey and
harvest groups in the infectious predator. Additionally, in this model, the predator species will consume
Sensitive prey according to the Holling, type tow response of function and consume infected species according
to a linear function of response , While an infected species predator only attacks linearly infected prey with a
linear infection rate, which in turn describes the transmission of diseases between themThe number of prey
consumed and the prey population density can be described as a linearly increasing function of its field with
respect to the number of prey consumed by predators. The effect of Holling type-111 functional response can see
in [20], [21].

2. The Formulation of Model

This section express on a predator-prey mode involving disease in species prey Proposal for study.
Let x(t) represents density of susceptible prey population at the time t and y(t) represent infected
density of prey population at the time t, while z(t) denotes size the population of the predator species
at the time t. Now, the assumptions represent the formulating of model

1) By assumption, susceptible prey is able to reproduce logistically at a constant growth rate
represented by the variable (r > 0).

2) Disease is transmitted in prey population by contact at infection rate 5, >0 .

3) Once the disease subsides and infected individuals become vulnerable to reinfection by the predator,
this process is characterized by a rate called the rate of recovery. g, > 0.

4) The predation of predator on infected and susceptible prey according to( Lotka-Volterra) responses
of functional by Attack at maximum rate ( « > 0 ), for susceptible species prey, and Attack at
maximum rate (y > 0), for infected species prey. However the constants0 <e; <1, i =1,2.
represent conversion food rate from the susceptible prey and infected prey to the predator.

5) The decay of predator is exponentially by the death of natural rate d > 0.

6) Infected species prey is harvest by the rate e > 0.

Now, According to the assumptions The proposal system It can be represented by mathematically
with set of differential equations in system (1).

dx B Xy

E=rx—axz+ B,y — T+y
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dy  Byxy
E—Hy—ﬁzy—yzy—ey (1)
dz

—=e,axz+e,yzy —ez
dt 1 2Yzy

Hence they are Lipschitizian. Functions and system (1) havening a solution of unique for any non-
negative conditions of initial. The theorem is shown the bounded of system.

Table (1): represents the effect of the parameters (e, e4, e;) on the stability of the system.

Parameter Percentage of change  Impact on system stability
e 0<e<0.009 The system is stable.
0.01<e<0.08 The system is stable.
0.09<e<0.1 The system is asymptotically
stable.
e, 0<e <0.03 The system is asymptotically
stable.
0.01 <e; £0.08 The system is stable.
0.09<e <0.1 The system is stable.
e, 0<e, <0.02 The system is stable.
0.05<e, <0.09 The system is asymptotically
stable.
0.09<e, 0.6 The system is asymptotically
stable.

Lemma (2.1): Any solutions in system ( 1) which initiate in R3 are uniformly bounded.

Proof: Assume that w(t) = x(t) + z(t) + y(t) is the solution of system (1) with initial conditions
x(0) >0,y(0) >0and z(0) >0

By Differentiating w with respect to t we get:

dw
s <2rx+axz(e; — 1) +yyz(e,— 1) — (rx + dz + ey) < 2r — Mw

Where M = min{r, d , e} Now, by (Sturm comparison theorem), we get:-

2r 2r _
O<WSH+(M(O)_E)6 Mt

thus for t — oo we obtain 0 <ws;—r Thus, in system (1) all solutions in R3 are bounded
uniformly.
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3. The equilibrium points with their stabilities
There are four equilibrium points in system (1) and the conditions for the existence of any one of

them are remember below

1- The zero point of equilibrium E; = (0,0,0) exists constantly

2- The infected species-free point of equilibrium |, E, = (ﬁ, 0, 2)

1
3- The free of predator equilibrium point , E5 = (X, 9, 0) exist provided that there is a positive root
to the equations:

Bixy
_ _ )
rx— gt By =0 @
ﬁlTxy)/—(e‘l'ﬁz)y:O (3)
1+ e+
from (3) wefined x = (1 +y)(e+fa) 4)
B1
By
putting (4)in (2)we get
~ r(e+B2)
Y = B (erB B (5)
By substituting the value of § in (4) We find % = %
1

Now, X and y are positive if the following conditions holds

r >, and B1B; > (e + ) (r — B1) (6)

4- The positive (coexistence) equilibrium point is givenby E, = (x*,y ",z ™)

Where x* = 229212 ang z* = Brld-eayn)—aes0ty)(e+hs) |\ ije 1, s a positive root of the

ae; ayei(1+y)

following equation
Ay>+By+C=0 (7)
Here

A = ejey* (B — 1) — Brejy” — aeejey — aejeyyf;.

B =reyd —reje,¥y? — Biejad + 2B,de,y — ayee e, — aye e,y B, + aeje,d + aeyfrd

C = (reqy — f1d)d + aeed .

Clearly equation (7) has solution of a unique positive represented by y* if the condition (A < 0) hold
with (C > 0) , now (4 < 0) is holds by condition (6) Hence E4 exists uniquely in R3 ifC >0

which is hold by the condition:

reiy
b <— ©)
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Putting the value of y* in the equations of x* and z* so x* and z* are positive if the conditions hold
d > eyyy* 9)

Bi(d —eyy™) > ae (B, +e)(1+y7) (10)

4. Analysis of Locally Stability

For the purpose of studying the local stability of each of the above-mentioned points of
equilibrium, the Jacobian matrix of system (1) was obtained at the general point (X, y, z), written as
follow

_ By B1ixy _ Pix _ 1
e @z Gasy o+n T P ax |
J(x,y,2) = By Bix  Bixy B (1)
(1+y) +1)  A+y)(A+y) (rz+te+tf) Yy
G102 €yz ejax +eyy —d

Thus, system (1) has the following matrix near E; = (0,0,0)

r B 0
J(E)) = [0 —(B,+e) 0 | Then, the equation of characteristic of J(E;) is given as
0 0 —d

(A4 —7”)(/12 + (e + 32))(13 +d)=0
The Eigenvalueare (A, =71, 1, = —(e+ [,)and A3 =—d ),
Since 4, >0and 1,, ;<0
Therefore E; = (0,0,0) is unstable point.
The matrix of Jacobian of system (1) around E, = (¥, 0, Z) is written as
J(E3) = (mij)3x3 (12)
Where

1 _
my; =0,my; = —(fresa — f1d) ,myz=— ,my; =0,
e,a e,

1
Ma2 =2 [aBid — (eqayr + (e + By)e,a’] ,mys = 0,m3; = ey1, Mg, = % ,M33 =0
The equation of characteristic of J(E,) is given as
A2+ B3+ 4,1 +4;=0 (13)

Where

1
A = —my, = era? [—afid + (e;ayr + (e + 32)3132],
yr
Ay = myzmyy = —dr, Az = —myzmz(My; + myp) = —1d (9 + ;)'

Now, by Roth-Hurwitz criterion E, is asymptotically of locally stable available that

5
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(A;>0,A;>0and A{A, —A;>0),s0since (A3 < 0),then E, is unstable.
The matrix of Jacobian of system (1) around E; = (&, 7, 0) is written as
J(E3) = (kij)3xs3 (14)

Where

—B1Y B1%9 B1Y B2xY “
kll = 1:)7 ’k12 = _(115})2 — e ,k13 = (lx k21 1iy , k22 = (lj-y)z ,k23 = —)/y, k13 = k23 =

0,ks3 =ejaX +e,yy —d

The equation of characteristic of J(E5) is given by

B +LA2+ L, +L;=0 (15)

Where

Ly = —(kay + koz + k33), Ly = kyikay + kyikas + kaokss — kigkar, Ly = kigkaikss — ki1kaookss
By to Roth-Hurwiz criterion Ej5 is locally stable if and only if

Ly >0,L;>0and LiL, —L; >0

Now, Ly = — (k1 + kaz + k33) = % + (fixl)]z

+d — (e;ax + eyyy),
Li>0if d>eaX +eyyy (16)

Ly = k12k21k33 - k11k22k33 = k33(k12k21 - k11k22),

9 B19 | B9\, B1%9
Ly = [—d + (e;ak + esz)][((lfgz —e) @;) + (%y)(' (1132 )

Now, L; > 0, if condition (16) holds with the condition
B1Xy
(9 +1)2

A= L;L, — Ly sinceL; >0and L; >0,

<e (17)

Now, A= LyL, — L3 = (L1 + k33)(k11kay — ki2ko1) + Li(kayokss + ki1kss3),
The first and second term is positive if condition (17) holds with the condition

Ly > —k33 (18)
Thus, E; = (%,9,0) is locally asymptotically stable.

The Jacobean matrix of system (1) around the point £, = (x*,y*, z")

Is written as
J(E4) = (aij)sxs (19)
Here
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— _ﬁZy* _ le*y* * _ *
A1 = Q12 = RO (yz* +e),a;3 = —ax”,
* * . %
By _ —Bixy

Ay =———— ,0yy = —————— ,0y3 = =YY" ,031 = €,0Z" ,03, = e,¥Z" ,a33 =0
21 (1+y") 22 (1+y")? 23 vy 31 1 32 2V 33

The equation of characteristic of J(E,) is given by

13 + Mllz + le‘l + M3 == 0 (20)
Where
M; = —(ay1 +ayy +azz) > 0,M, = ay1a;, — Q12051 — Ap3a32 — Q13031 ,

M3 = a13077031 — Q12073031 — Q13021032 + 011023037

Now, Roth-Hurwitz criterion E, is locally asymptotically provided that
M;>0,M, >0 and A= M;M, — M5 >0 ,Wehave M; >0,

M3 = ay3077031 — Q12073031 — Q13021032 + 011023033 ,

The first, last termand third terms of M5 are positive without condition and secondi s positive if the

conditions hold

Bix"y* *
%>yz +e (21)

NOW, A: M]_Mz - M3
A= ay3(az1a41 + az103;) + az3(a2203; + a12a31) + (ag1 + az3)(a12021 — a11057)
The first term of A is positive if the condition hold

aeyf3; vez2B1

The second and third terms are positive if the condition holds

B1x*y exy B2y"
ael(1+y*)2 < a12 < (1+y*) (23)

Thus, E, = (x*,y*, z") is a locally asymptotically stable .
5. Global Stability

These following theorems describe the global stability of all existing equilibrium points was studied
above
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Theorem (5.1): assume that the equilibrium point E; = (X, 9,0) is locally stable of asymptotically,

then E; is asymptotically of globally stable in R3 when this condition holds

6, <0, (24)

52?37 + B1xy

T+ x 2 (1+y)

+ (ax +yy) *xz

_ [.319?3’ B1xy
, = —

0, = —(1+y)+ﬁz(y+y)+(1+y)+dz]

Proof: consider the function
— 1 X o sinY _ 5
F3(x,y,z) = (x — xln; - x) + (y - yln;— y) +z
Straightforward computation shows the derivative of F; with respect to time t given by

B1

dFy _ P1xy  BiXy ﬁzfy+ B2xy
(1+y)

it +1)  (9+1) x £

B2y + B29) + Ry —x9) + (e, — Dazx + (e, —
Dyyz—dz+ (ax +yy)z.
Now, by Situation (24 ) and the facts of biological (e; < 1) with (e, < 1), We get that

p1xy
1+y)

dF; p1xy L2xy p1xy
dt (1+79) X A+y)

:§1+é2

+dz

b @2 419)7 = [ B0+ )+

Thus, %<O.under the condition (24), clearly%is negative definite due to localy stability

condition. Hence F; is a lyapunov function with respect to the point E5 and E5 is asymptotically of

globally stable.

Theorem (5.2): assume that the equilibrium point E5 = (x*, y*, z*) is locally stable of asymptotically,

then E; is asymptotically of globally stable in R when this condition holds
0] <65 (25)

Where

. B(xy*+X*y) x . x* * * * *
0; = B2+ B[Sy + Ty HaGr + x4y (v +y'2)
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x*y B1
1+y*

*_

=

+ 11+ y*] + (VP + ¥ B2) + (aeyx z" + aeyx*z) + (ye,y z° + ye,y*z)

Proof: consider the function
F,(x,y,2 )—(x—xlnx* x)+<y y ylny*>+( z*+z—2z"1n Z*)

A straight forward computation shows the derivative of F, with respect to t given by

AF, _ Piyx"  Bixy’ | Bixy*  Biyx”

at — (1+y)  (+1)  (1+y"  (y*+1)

ale; —Dxz+xz)+y(A—ey) @y +zy") +y(e; — 1) (yz+y*z").

x*y xy” ¥ * *
+327—52)’+ﬁz?—ﬁz)’ + a(xz" +x"z) +

Now, by condition (25 ) and the biological facts mentioned (e; < 1)and (e, < 1)

We obtain that

* *

dF,  piyx*  Bixy” B1xy” p1yx* x*y Xy
+ b, " — By + b e

< — + —
ad (1+y) @+ @+1) @A+y)
—ae(xz"+x'2)+ y(yzr+y'z) —vye,(yz" +y'z ) =607+ 6.

— By + a( xz"+x"z)

Thus, % < 0, by condition (25) clearly % is negative definite due to locally stability condition

hence F, is a lyapunov function with respect to E, and the point E, is a globally asymptotically

stable .

6. The Numerical Simulation

This section describes the dynamics of globally of system (1) by using different groups of parameter
and the sets of different of initial points which is studied by numerical simulation, this study leads to
objectives which is searching the value of uneven of all Factors on the conduct of dynamics of model
(1) and analytical results of assert our acquired. It is observed that, for the groups of virtual factors, the
set of parameters hypothetical observed that

r=05a=08 B, =011, f,=04,e =0.009

(26)
e, =003 e,=002,d=0002,y =05
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As we see in the following figure:
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Figure (6.1) Series of time of the solution of system (1) that started from three different initial points
(0.09,0.2,0.27), (0.1,1,0.3),and (0.9,0.2,1) For data contained in(26). (a) the function of the time
which is Sensitive prey tracks , (b) the function of the time which is infected prey tracks , (c) the function of
the time which is tracks of predator .

Fig. (6.1) express system (1) has an asymptotically of globally stable and the solution oncoming
asymptotically point E, = ( 0.234,0.095,0.021 )asymptotically from starting three initial of different
points.

Varying of growth rate r in the interval 0.1 < r < 2.5 and the rest of parameters are keeping as
data in (2 6) observed that the system has solution(1) which is approaches as asymptotically to E,,
as show in Fig.(6.2), for typical value r = 0.7 .
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As we see in the following figure:
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0.2 R

L
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Figure (6.2)Series of time of the solution of system (1) For data contained in.(26) with » = 0.7 , which
oncoming to E£,=(0.265,0.054,0.082) in R.*

Now, varying of the rate of infection of prey ., and the break of Factors are keeping as data take in
(2 6) .it is notice for 0.2<f <0.951 the solution (1) approaches to E, , if we increasing the
parameter for 0.951<p < 2, it is observed that the system (1) asymptotically as approaches to
E1=(0,0,0), as shown in Fig(6.3),for typical value 5,=0.9.

As we see in the following figure:
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0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time
Figure.(6.3) : Series of time of the solution of system1(1) ) For data contained in.(26) for g,=0.9, which
oncoming to Eq=(0,0,0) in the interior of R, 3 .
11



Jassim. et. al, mupAs, Vol. 3, No. 4, 2025

The varying the factor a which represent the rate of predation on vulnerable prey, and the break of
Factors are keeping as data take in (2 6) , it is notice for 0.3 <a <1.5 the system (1) have a solution
approaches to Eg.

Now, the varying the factor y which represent the rate of predation on infected of prey , and the
break of Factors are keeping as data take in (2 6) , it is notice for 0.5 <y <2 the system(1) have a
solution approaches to E, .

Moreover Parameter tolerance d which represent the rate of death of predator , and the break of
Factors are keeping as data take in (2 6) it is notice for 0.09 <d <1 , the system(1) have a solution
approaches to a predator free Balance point E; = (%, 9, 0) as appears in Fig(3.4),For my model value
d=0.7.

As we see in the following figure:
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Figure (6.4): Series of time of the solution of system (1) For data contained in.(26) ford=0.7 , which
approaches to E; = (£,7,0) in R,® .

The change parameter e , represent the harvesting Of the injured individual, and the break of Factors
are keeping as data take in (2 6) it is notice for , 0.01 <e < 0.8 the system (1) have a solution
approaches to E; as it shown in Fig.(6.5),for typical value e =0.67.
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As we see in the following figure:
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figure(6.5)Series of time of the solution of system (1) for the data given in eq.(26) , for e = 0.67, which

approaches to E,=(x,0,z) in R, .

The change of the parameter eq , the rate of Food conversion from susceptible of prey to Individual
of predator , and the break of Factors are keeping as data take in (2 6) it is notice for 0.01<e; <0.4 the
system (1) have a solution approaches E, .

Variance of Parameter e, , the rate of conversion of food from infected prey individual of predator,
and the break of Factors are keeping as data take in (2 6) it is notice for 0.05<e,< 0.6 the system (1)
have a solution approaches E, .

Finally, varying of the rate of recovery of prey g, ,and the break of Factors are keeping as data take
in (2 6) it is notice for 0.02 < g, < 0.11 , the system (1) have a solution approaches E, , by
increasing the parameter in the interval 0.11< g, < 2, the system (1) have a solution approaches E; .

7. Conclusion with Discussion

The Predator-prey model, have a harvest and SIS disease in prey, proposed for studied analytical as
well as numerically .By assumption the transmitted of the disease is by contact in the individual.
Conditions with sufficient of the stability in system (1) by equilibrium points are obtained. The effect
of all parameters are studied numerically on the dynamics behavior of the system (1) also drawn the
trajectories in the typically figures which represent the solutions and according to the solutions of
system (1) for the data given by (26) the conclusions obtain.

1- The system (1) does not have periodic dynamics for the set of data as given in eq. (26).

2- The varying for the values of the set parameters in eq. (2 6), system (1) have an approaches to
asymptotically of globally stable point E, = (0.234,0.095,0.021) .

13
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The effect of the parameters r,a,y,e;,e, which represent, the growth rate of a prey ,the
predation rate on a susceptible individual in prey ,the rate of predation on individual of infected
in prey, the rate of conversion of the food from sensitive prey to individual of predator and the
rate of conversion of the food from infected prey to individual of predator, at all time and the
rest of parameter keeping as data in eq.(2 6),there is not any effect on the dynamical of the
behavior of system(1) and system (1)have a solution approaches to E4=(x*,y*,z*).

The effect of the rate of individuals infection in prey g, , in the interval for 0.2 << 0.951 and
the rest of the parameters keeping as data in eq.(2 6), system (1) have a solution approaches to
E4. However for increase the value in the interval 0.951 < < 2 ,the system(1) have a solution
approaches to £, = (0,0,0) thus, the §,=0.951 is bifurcation point.

By effect the rate of mortality of predator (d) , and the break of Factors are keeping as data take in
(2 6) itis notice for 0.09 <d <1 ,system (1) have a solution approachesto E; = (X,9,0) .

The change of the parameter (e) , the rate of the harvest of infected individuals in prey , and the
break of Factors are keeping as data take in (2 6) it is notice for 0.1 <e <0.8 ,system (1) have a
solution approaches to E5 .

Finally, effect the rate of recovery of prey £, and the break of Factors are keeping as data take in
(2 6) it is notice for ( 0.02 < g, < 0.11) , system (1) have a solution approaches to E, , as
increase the value of the parameter (0.11< g, < 2 )the solution of system(1) will approach to
E»=(x,0,2) thus,the p,=0.11is bifurcation point.
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