
Mustansiriyah Journal of Pure and Applied Sciences, Print ISSN: 2957-9910.  Online ISSN: 2957-9929, Vol. 3, No. 4, 2025, Pages 1-15 

DOI: 10.47831/mjpas.v3i4.366  
 

1 
 

  

 

 

 

 

RESEARCH ARTICLE - MATHEMATICS 

Dynamical Behavior of Predator-Prey Model with 'SIS Diseases in Prey Involving 

a Harvesting in Infected Prey 

Khalid Khaleefah Jassim
1
, Haider Ghanem Sufaeh 

2
, Mohammed Salim Ramadhan

  3*
 
 

1
Department of Surveying Techniques, Institute of Technology, Middle Technical University, Baghdad, Iraq. 

2
Department of Civil Techniques, Institute of Technology, Middle Technical University, Baghdad, Iraq. 

3*
 Department of Mathematics, College of Education, Mustansiriyah University, Baghdad, Iraq. 

*
 Corresponding author E-mail: m7md_salim@uomustansiriyah.edu.iq 

Article Info. Abstract 

Article history: 

 

Received 
16  December 2024 

 

Accepted 
24 February  2025 

 

Publishing 
30 September 2025 

The mathematical models suggested in this article accounts for two types of predator-prey 

system. It was suggested that the model includes SIS (susceptible infected susceptible) disease 

in prey types, which is expansion by proximity between infected and susceptible species, and 

there is harvest in predator species.The epidemic cannot be transmitted from prey to predator 

during the predation process. The equations that represent the interaction between infected 

individuals in the prey population and susceptible individuals in the predator population are 

ordinary differential equations. Based on what was assumed above, any Possible balance points 

can be analyzed using methods of mathematical .Depending on the numerical simulations, the 

dynamics of the system’s behavior were studied local and the dynamic behavior was studied 

globally using Lyabnov functions, and the variation of harvest and disease on dynamics of 

model’s behavior was also discussed. 
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1.  Introduction 

          The relationship between prey and predator it will remain one of the most important and prevalent topics 

in mathematical ecology and ecology ratio global presence and importance. Epidemiology is concerned with 

studying the spread of diseases in living organisms [1], [2]. Obviously, when the infected person is still 

infectious and the other person is susceptible all the time, these types of diseases are called, SI (susceptible 

infected) diseases [3], [4].  In addition to infection don't leads to immunity so that infective become susceptible 

again after recovery; the diseases are called SIS diseases, see in [5], [6]. Also, once the infected organisms have 

an immunity of permanent after recovery from the disease, this type of disease is called SIR (susceptible 

infected removable) diseases. Moreover, after work of pioneering of, Kermack, Mckendrick, [7], [8] .An 

epidemiology system based on the classic infected-vulnerable-recovery system has emerged on the horizon and 

has received much research attention, Anderson and May [9], [10]. 

       Also add to that, Majeed , and, Shawka , [11] they discussed the predator-prey system with SIS and SI in 

prey and diseases that can be transMay mitted in the same species through an external source or through contact. 

In addition to [12], [13], many researchers, scientists and engineers interested in this question have studied the 

dynamic system of prey and predator using different stimuli that can change the biological factor in the past 
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decade, example [14], [15]. Naji, Khalaf, and, Majeed [16] and similarly [17], It studies the predator-prey 

system, which includes the SIS in the prey. This epidemic is transmitted from the predator by the predator 

attacking the prey during the predation process. This epidemic is transmitted in the same type of organisms 

through external surrounding sources as well as through contact; Similarly, Naji, and Abdulateef in their papers 

[18] proposed an analysis of predator-prey model that contains SI disease that is infectious in the prey and 

disease that is transmitted in the same species by contact. A predator-prey model with non-local competition can 

produce complex dynamics, such as spatiotemporal patterns and consistently spatially heterogeneous periodic 

solutions [19]. 

       Real-life examples include wolves and sheep, since sheep are somewhat infected with diseases that are 

contagious, while some diseases are not contagious .And also in forest life in terms of tigers and deer, as well as 

lions, wild buffalo, and other organisms present in the ecosystem. 

         In this article, a model consisting of a predator-prey system is proposed that includes SIS in prey and 

harvest groups in the infectious predator. Additionally, in this model, the predator species will consume 

Sensitive prey according to the Holling, type tow response of function and consume infected species according 

to a linear function of response , While an infected species  predator only attacks linearly infected prey with a 

linear infection rate, which in turn describes the transmission of diseases between themThe number of prey 

consumed and the prey population density can be described as a linearly increasing function of its field with 

respect to the number of prey consumed by predators. The effect of Holling type-III functional response can see 

in [20], [21]. 

2. The Formulation of Model  

       This section express on a predator-prey mode involving disease in species prey Proposal for study. 

Let 𝑥(𝑡)  represents density of susceptible prey population at the time  𝑡  𝑎𝑛𝑑 𝑦(𝑡) represent infected 

density of prey population at the time 𝑡, while 𝑧(𝑡) denotes size the population of the predator species 

at the time 𝑡. Now, the assumptions represent the formulating of model    

1)  By assumption, susceptible prey is able to reproduce logistically at a constant growth rate 

represented by the variable (r > 0). 

2) Disease is transmitted in prey population by contact at infection rate  𝛽 1 
> 0  .        

3) Once the disease subsides and infected individuals become vulnerable to reinfection by the predator, 

this process is characterized by a rate called the rate of recovery.  𝛽 2 
> 0 .    

4) The predation of predator on infected and susceptible prey according to( Lotka-Volterra) responses 

of functional by Attack at maximum rate ( 𝛼 > 0 ),  for susceptible species prey, and Attack at 

maximum rate  (𝛾 > 0),  for infected species  prey. However the constants 0 < 𝑒𝑖 < 1 , 𝑖 = 1,2 . 

represent conversion food rate from the susceptible prey and infected prey to the predator.      

5) The decay of predator is exponentially by the death of natural rate 𝑑 > 0.  

6)   Infected species prey is harvest by the rate  𝑒 > 0 .     

  Now, According to the assumptions The proposal system It can be represented by mathematically 

with   set of differential equations in system (1). 

𝑑𝑥

𝑑𝑡
= 𝑟𝑥 − 𝛼𝑥𝑧 +  𝛽 2

𝑦 −
  𝛽 1

𝑥𝑦

1 + 𝑦
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𝑑𝑦

𝑑𝑡
=

  𝛽 1
𝑥𝑦

1 + 𝑦
 −  𝛽 2

𝑦 − 𝛾 𝑧𝑦 − 𝑒𝑦                                                                                         (1)  

𝑑𝑧

𝑑𝑡
= 𝑒1𝛼𝑥𝑧 + 𝑒2𝛾 𝑧𝑦 − 𝑒𝑧  

Hence they are Lipschitizian. Functions and   system (1) havening a solution of unique for any non-

negative conditions of initial. The theorem is shown the bounded of system. 

 

Table (1): represents the effect of the parameters (𝒆 , 𝒆𝟏, 𝒆𝟐) on the stability of the system. 

 

Parameter Percentage of change Impact on system stability 

𝒆 0 < 𝑒 ≤ 0.009 

0.01 < 𝑒 ≤ 0.08 

0.09 < 𝑒 ≤ 0.1 

The system is stable. 

The system is stable. 

The system is asymptotically 

stable. 

𝒆𝟏 0 < 𝑒1 ≤ 0.03 

 

0.01 < 𝑒1 ≤ 0.08 

0.09 < 𝑒1 ≤ 0.1 

The system is asymptotically 

stable. 

The system is stable. 

The system is stable. 

𝒆𝟐 0 < 𝑒2 ≤ 0.02 

0.05 < 𝑒2 ≤ 0.09 

 

0.09 < 𝑒2 ≤ 0.6 

 

The system is stable. 

The system is asymptotically 

stable. 

The system is asymptotically 

stable. 

 

 

Lemma (2.1): Any solutions in system ( 1 ) which initiate in R+
3  are uniformly bounded. 

Proof:  𝐴𝑠𝑠𝑢𝑚𝑒  𝑡ℎ𝑎𝑡 𝑤(𝑡) = 𝑥(𝑡) + 𝑧(𝑡) + 𝑦(𝑡) is the solution of system (1) with initial conditions  

 𝑥(0) > 0 , 𝑦(0)𝑖 > 0 𝑎𝑛𝑑 𝑧(0) > 0  

  By Differentiating  𝑤 with respect to t we get: 

𝑑𝑤

𝑑𝑡
≤ 2𝑟𝑥 + 𝛼𝑥𝑧(𝑒1 − 1) + 𝛾𝑦𝑧(𝑒2 − 1) − (𝑟𝑥 + 𝑑𝑧 + 𝑒𝑦) ≤ 2𝑟 − 𝑀𝑤  

Where 𝑀 = min {𝑟, 𝑑 , 𝑒} Now, by (Sturm comparison theorem), we get:- 

0 < 𝑤 ≤
2𝑟

𝑀
+ (𝑀(0) −

2𝑟

𝑀
) 𝑒−𝑀𝑡  . 

𝑡ℎ𝑢𝑠 𝑓𝑜𝑟 𝑡 → ∞ 𝑤𝑒 𝑜𝑏𝑡𝑎𝑖𝑛 0 < 𝑤 ≤
2𝑟

𝑀
  Thus, in system (1) all solutions in 𝑅+

3  are bounded 

uniformly. 
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3. The equilibrium points with their stabilities 

     There are four equilibrium points in system (1) and the conditions for the existence of any one of 

them are remember below 

1- The zero point of equilibrium  𝐸1 = (0,0,0) exists constantly    . 

2-  The infected species-free point of equilibrium  , 𝐸2 = (
𝑑

𝑒1𝛼
, 0,

𝑟

𝛼
) 

3- The free of predator equilibrium point , 𝐸3 = (𝑥̂, 𝑦̂, 0) exist provided that there is a positive root 

to the   equations: 

 

𝑟𝑥 −
𝛽1𝑥𝑦

 𝑦 + 1
+ 𝛽2𝑦 = 0                                                                                                         (2) 

𝛽1𝑥𝑦

1+𝑦
− (𝑒 + 𝛽2)𝑦 = 0                                                                                               (3) 

from  (3) wefined   𝑥 =
(1 + 𝑦)(𝑒 + 𝛽2)

𝛽1
                                                                       (4)  

By 

putting (4)in (2)we get 

 𝑦̂ =
𝑟(𝑒+𝛽2)

𝛽1𝛽2−(𝑒+𝛽2)(𝑟−𝛽1)
                                                                                                           (5)   

By substituting the value of 𝑦̂ in (4)   𝑊𝑒 𝑓𝑖𝑛𝑑  𝑥̂ =
(1+𝑦̂)(𝑒+𝛽2)

𝛽1
   

Now, 𝑥̂ 𝑎𝑛𝑑 𝑦̂ are positive if the following conditions holds  

𝑟 > 𝛽1  𝑎𝑛𝑑 𝛽1𝛽2 > (𝑒 + 𝛽2)(𝑟 − 𝛽1)                                                                              (6)               

4- The positive (coexistence) equilibrium point is given by 𝐸4 = (𝑥 .∗, 𝑦 .∗, 𝑧 .∗)  

Where  𝑥∗ =
𝑑−𝑒2𝛾𝑦

𝛼𝑒1
  and  𝑧∗ =

𝛽1(𝑑−𝑒2𝛾𝑦)−𝛼𝑒1(1+𝑦)(𝑒+𝛽2)

𝛼𝛾𝑒1(1+𝑦)
  while 𝑦∗ is a positive root of the 

following equation  

 A  𝑦2 + 𝐵𝑦 + 𝐶 = 0                                                                                                                (7)   

Here 

 𝐴 = 𝑒1𝑒2𝛾
2(𝛽1 − 𝑟) − 𝛽1𝑒2

2𝛾2 − 𝛼𝑒𝑒1𝑒2𝛾 − 𝛼𝑒1𝑒2𝛾𝛽2 . 

𝐵 = 𝑟𝑒1𝛾𝑑 − 𝑟𝑒1𝑒2𝛾
2 − 𝛽1𝑒1𝛼𝑑 + 2𝛽1𝑑𝑒2𝛾 − 𝛼𝛾𝑒𝑒1𝑒2 − 𝛼𝛾𝑒1𝑒2𝛾𝛽2 + 𝛼𝑒1𝑒2𝑑 + 𝛼𝑒1𝛽2𝑑  

𝐶 = (𝑟𝑒1𝛾 − 𝛽1𝑑)𝑑 + 𝛼𝑒𝑒1𝑑 .  

Clearly equation (7) has solution of a unique positive represented by 𝑦∗ if the condition (𝐴 < 0 ) hold 

  𝑤𝑖𝑡ℎ ( 𝐶 > 0) , now (𝐴 < 0 ) is holds by condition  (6)  Hence 𝐸4 exists uniquely in 𝑅+
3  if 𝐶 > 0  

which is hold by the condition:   

𝛽1 <
 𝑟𝑒1𝛾

𝑑
                                                                                                                             (8) 
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 Putting the value of 𝑦∗ in the equations of 𝑥∗ 𝑎𝑛𝑑 𝑧∗ so 𝑥∗ 𝑎𝑛𝑑 𝑧∗ are positive if the conditions hold  

𝑑 > 𝑒2𝛾𝑦∗                                                                                                                                 (9)   

 𝛽1(𝑑 − 𝑒2𝛾𝑦∗) > 𝛼𝑒1(𝛽2 + 𝑒)(1 + 𝑦∗)                                                                           (10)  

 

4.  Analysis of Locally Stability  

       For the purpose of studying the local stability of each of the above-mentioned points of 

equilibrium, the Jacobian matrix of system (1) was obtained at the general point (x, y, z), written as 

follow  

𝐽(𝑥, 𝑦, 𝑧) =

[
 
 
 
 𝑟 −

𝛽1𝑦

(1+𝑦)
− 𝛼𝑧

𝛽1𝑥𝑦

(1+𝑦)(1+𝑦) 
−

𝛽1𝑥

(𝑦+1)
+ 𝛽2 −𝛼𝑥

𝛽1𝑦

(1+𝑦)

𝛽1𝑥

 (𝑦+1)
−

𝛽1𝑥𝑦

(1+𝑦)(1+𝑦) 
− (𝛾𝑧 + 𝑒 + 𝛽2) −𝛾𝑦

𝑒1𝛼𝑧 𝑒2𝛾𝑧 𝑒1𝛼𝑥 + 𝑒2𝛾𝑦 − 𝑑]
 
 
 
 

     (11) 

 Thus, system (1) has the following matrix near 𝐸1 = (0,0,0) 

𝐽(𝐸1) = [
𝑟 𝛽2 0
0 −(𝛽2 + 𝑒) 0
0 0 −𝑑

]   Then, the equation of characteristic of 𝐽(𝐸1) is given as 

( 𝜆1 − 𝑟)(𝜆2 + (𝑒 + 𝛽2))( 𝜆3 + 𝑑) = 0                                               

 The Eigen value are ( 𝜆1 = 𝑟 ,  𝜆2 = −(𝑒 + 𝛽2) 𝑎𝑛𝑑 𝜆3 = −𝑑 ) , 

 Since   𝜆1 > 0 𝑎𝑛𝑑   𝜆2 ,  𝜆3 < 0 

Therefore 𝐸1 = (0,0,0) is unstable point. 

The matrix of Jacobian of system (1) around  𝐸2 = (𝑥̅, 0̅, 𝑧̅) is written as 

𝐽(𝐸2) = (𝑚𝑖𝑗)3×3                                                                                         (12)     

Where                                                                                                                                                         

 𝑚11 = 0 , 𝑚12 =
1

𝑒1𝛼
(𝛽2𝑒1𝛼 − 𝛽1𝑑) ,𝑚13 =

−𝑑

𝑒1
  , 𝑚21 = 0 ,                                                 

 𝑚22 =
1

𝑒1𝛼2 [𝛼𝛽1𝑑 − (𝑒1𝛼𝛾𝑟 + (𝑒 + 𝛽2)𝑒1𝛼
2] , 𝑚23 = 0 ,𝑚31 = 𝑒1𝑟,  𝑚32 =

𝑒1𝛾𝑟

𝛼
 , 𝑚33 = 0 

 The equation of characteristic of 𝐽(𝐸2) is given as 

𝐴1𝜆
2 + 𝜆3 + 𝐴2𝜆

 + 𝐴3 = 0                                                                                                 (13)     

 Where  

  𝐴1 = −𝑚22 =
1

𝑒1𝛼2 [−𝛼𝛽1𝑑 + (𝑒1𝛼𝛾𝑟 + (𝑒 + 𝛽2)𝑒1𝛼
2], 

𝐴2 = 𝑚13𝑚31 = −𝑑𝑟 , 𝐴3 = −𝑚13𝑚31(𝑚22 + 𝑚12) = −𝑟𝑑 (𝑒 +
𝛾𝑟

𝛼
), 

Now, by Roth-Hurwitz criterion 𝐸2 is asymptotically of locally stable available that 
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(𝐴1 > 0 , 𝐴 3 > 0 𝑎𝑛𝑑  𝐴 1𝐴 2 − 𝐴 3 > 0) , so since (𝐴 3 < 0) , then 𝐸2 is unstable. 

The matrix of Jacobian of system (1) around  𝐸3 = (𝑥̂, 𝑦̂, 0̂) is written as 

𝐽(𝐸3) = (𝑘𝑖𝑗)3×3                                                                             (14)      

 Where                                                                                                                                                          

𝑘11 =
−𝛽1𝑦̂

 1+𝑦̂
  , 𝑘12 =

𝛽1𝑥̂𝑦̂

(1+𝑦̂)2
− 𝑒 , 𝑘13 = −𝛼𝑥̂  , 𝑘21 =

𝛽1𝑦̂

1+𝑦̂
  , 𝑘22 = −

𝛽2𝑥̂𝑦̂

(1+𝑦̂)2
  , 𝑘23 = −𝛾𝑦̂ ,  𝑘13 = 𝑘23 =

0 , 𝑘33 = 𝑒1𝛼𝑥̂ + 𝑒2𝛾𝑦̂ − 𝑑 

The equation of characteristic of 𝐽(𝐸3) is given by 

𝜆3𝑝 + 𝐿1𝜆
2 + 𝐿2𝜆

 + 𝐿3 = 0                                                                                                   (15)   

Where                                                                                                                                                                  

 𝐿1 = −(𝑘11 + 𝑘22 + 𝑘33), 𝐿2 = 𝑘11𝑘22 + 𝑘11𝑘33 + 𝑘22𝑘33 − 𝑘12𝑘21 ,  𝐿3 = 𝑘12𝑘21𝑘33 − 𝑘11𝑘22𝑘33   

By to Roth-Hurwiz criterion 𝐸3 is locally stable if and only if 

𝐿1 > 0 , 𝐿3 > 0 𝑎𝑛𝑑 𝐿1𝐿2 − 𝐿3 > 0  , 

Now, 𝐿1 = −(𝑘11 + 𝑘22 + 𝑘33) =
𝛽2𝑦̂

𝑥̂
+

𝛽1𝑥̂𝑦̂

(1+𝑦̂)2
+ 𝑑 − (𝑒1𝛼𝑥̂ + 𝑒2𝛾𝑦̂), 

𝐿1 > 0 𝑖𝑓 𝑑 > 𝑒1𝛼𝑥̂ + 𝑒2𝛾𝑦̂                                                                                                 (16) 

𝐿3 = 𝑘12𝑘21𝑘33 − 𝑘11𝑘22𝑘33 = 𝑘33(𝑘12𝑘21 − 𝑘11𝑘22) , 

𝐿3 = [−𝑑 + (𝑒1𝛼𝑥̂ + 𝑒2𝛾𝑦̂)][(
𝛽1𝑥̂𝑦̂

(1+𝑦̂)2
− 𝑒)

𝛽1𝑦̂

(1+𝑦̂)
+ (

𝛽2𝑦̂

𝑥̂
)(- 

𝛽1𝑥̂𝑦̂

(1+𝑦̂)2
 )],  

Now, 𝐿3 > 0 ,  if condition (16) holds with the condition  

𝛽1𝑥̂𝑦̂

( 𝑦̂ + 1)2
< 𝑒                                                                                                                            (17) 

 ∆= 𝐿1𝐿2 − 𝐿3 𝑠𝑖𝑛𝑐𝑒 𝐿1 > 0 𝑎𝑛𝑑 𝐿3 > 0 , 

Now, ∆= 𝐿1𝐿2 − 𝐿3 = (𝐿1 + 𝑘33)(𝑘11𝑘22 − 𝑘12𝑘21) + 𝐿1(𝑘22𝑘33 + 𝑘11𝑘33) , 

The first and second term is positive if condition (17) holds with the condition  

  𝐿1 > −𝑘33                                                                                                                              (18)  

Thus, 𝐸3 = (𝑥̂, 𝑦̂, 0) is locally asymptotically stable. 

The Jacobean matrix of system (1) around the point 𝐸4 = (𝑥∗, 𝑦∗, 𝑧∗) 

Is written as 

𝐽(𝐸4) = (𝑎𝑖𝑗)3×3                                                                                    (19) 

 Here 
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 𝑎11 =
−𝛽2𝑦∗

𝑥∗
 , 𝑎12 =

𝛽1𝑥∗𝑦∗

(1+𝑦∗)2
− (𝛾𝑧∗ + 𝑒), 𝑎13 = −𝛼𝑥∗ , 

𝑎21 =
𝛽1𝑦

∗

(1 + 𝑦∗)
  , 𝑎22 =

−𝛽1𝑥
∗𝑦∗

(1 + 𝑦∗)2
  , 𝑎23 = −𝛾𝑦∗  , 𝑎31 = 𝑒1𝛼𝑧∗  , 𝑎32 = 𝑒2𝛾𝑧∗  , 𝑎33 = 0  

The equation of characteristic of 𝐽(𝐸4) is given by     

𝜆3𝑢 + 𝑀1𝜆
2 + 𝑀2𝜆

 + 𝑀3 = 0                                                                                          (20)  

 Where  

 𝑀1 = −(𝑎11 + 𝑎22 + 𝑎33) > 0 ,𝑀2 = 𝑎11𝑎22 − 𝑎12𝑎21 − 𝑎23𝑎32 − 𝑎13𝑎31 , 

𝑀3 = 𝑎13𝑎22𝑎31 − 𝑎12𝑎23𝑎31 − 𝑎13𝑎21𝑎32 + 𝑎11𝑎23𝑎32  , 

Now, Roth-Hurwitz criterion 𝐸4 𝑖s locally asymptotically provided that  

𝑀1 > 0 ,𝑀2 > 0  𝑎𝑛𝑑   ∆= 𝑀1𝑀2 − 𝑀3 > 0  , We have  𝑀1 > 0 , 

𝑀3 = 𝑎13𝑎22𝑎31 − 𝑎12𝑎23𝑎31 − 𝑎13𝑎21𝑎32 + 𝑎11𝑎23𝑎32 , 

The first, last term and third terms of 𝑀3 are positive without condition and secondi s positive if the 

conditions hold  

 
𝛽1𝑥∗𝑦∗

(1+𝑦∗)2
> 𝛾𝑧∗ + 𝑒                                                                                                                   (21)    

Now,  ∆= 𝑀1𝑀2 − 𝑀3 

∆= 𝑎13(𝑎31𝑎11 + 𝑎21𝑎32) + 𝑎23(𝑎22𝑎32 + 𝑎12𝑎31) + (𝑎11 + 𝑎22)(𝑎12𝑎21 − 𝑎11𝑎22) 

The first term of ∆ is positive if the condition hold 

 
𝛼𝑒1𝛽2

𝑥∗
>

𝛾𝑒2𝛽1

(1+𝑦∗)
                                                                                                                      (22)    

The second and third terms are positive if the condition holds 

𝛽1𝑥∗𝑦∗𝑒2𝛾

𝛼𝑒1(1+𝑦∗)2
< 𝑎12 <

𝛽2𝑦∗

(1+𝑦∗)
                                                                                                     (23)    

Thus, 𝐸4 = (𝑥∗, 𝑦∗, 𝑧∗) is a locally asymptotically stable . 

 5. Global Stability 

     These following theorems describe the global stability of all existing equilibrium points was studied 

above 
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Theorem (5.1): assume that the equilibrium point 𝐸3 = (𝑥̂, 𝑦̂, 0) is locally stable of asymptotically, 

then 𝐸3 is asymptotically of globally stable in 𝑅+
3  when this condition holds 

 𝜃1 < 𝜃2                                                                                                                                  (24) 

Where  

  𝜃1 =
𝛽1𝑥𝑦̂

(1+𝑦̂)
+

𝛽2𝑥̂𝑦

𝑥
+

𝛽2𝑥𝑦̂

𝑥̂
+

𝛽1𝑥̂𝑦

(1+𝑦)
+ (𝛼𝑥̂ + 𝛾𝑦̂) ∗ 𝑧 

And  

𝜃2 = − [
𝛽1𝑥̂𝑦

(1 + 𝑦.̂ )
+ 𝛽2(𝑦 + 𝑦̂) +

𝛽1𝑥𝑦̂

(1 + 𝑦)
+ 𝑑𝑧] 

Proof: consider the function  

  𝐹3(𝑥, 𝑦, 𝑧) = (𝑥 − 𝑥̂𝑙𝑛
𝑥

𝑥̂
− 𝑥̂) + (𝑦 − 𝑦̂𝑙𝑛

𝑦

𝑦̂
− 𝑦̂) + 𝑧  

Straightforward computation shows the derivative of  𝐹3 with respect to time t given by 

𝑑𝐹3

𝑑𝑡
=

𝛽1𝑥𝑦̂

(𝑦̂+1)
−

𝛽1𝑥̂𝑦

( 𝑦̂+1)
+

𝛽2𝑥̂𝑦

 𝑥
+

𝛽2𝑥𝑦̂

 𝑥̂
− (𝛽2𝑦 + 𝛽2𝑦̂ ) +

𝛽1

(1+𝑦)
(𝑥̂𝑦 − 𝑥𝑦̂) + (𝑒1 − 1)𝛼𝑧𝑥 + (𝑒2 −

1)𝛾𝑦𝑧 − 𝑑𝑧 + (𝛼𝑥̂ + 𝛾𝑦̂)𝑧 .  

Now, by Situation (24 ) and the facts of biological  (𝑒1 < 1) with  (𝑒2 < 1) , We get that  

𝑑𝐹3

𝑑𝑡
<

𝛽1𝑥𝑦̂

(1 + 𝑦̂)
+

𝛽2𝑥𝑦̂

𝑥̂
+

𝛽1𝑥̂𝑦

(1 + 𝑦)
+ (𝛼𝑥̂ + 𝛾𝑦̂)𝑧 − [

𝛽1𝑥̂𝑦

(1 + 𝑦̂)
+ 𝛽2(𝑦 + 𝑦̂) +

𝛽1𝑥𝑦̂

(1 + 𝑦)
+ 𝑑𝑧]

= 𝜃1 + 𝜃2  

Thus, 
𝑑𝐹3

𝑑𝑡
< 0 . under the condition (24), clearly 

𝑑𝐹3

𝑑𝑡
 is negative definite due to localy stability 

condition. Hence 𝐹3 is a lyapunov function with respect to the point 𝐸3 and  𝐸3  is asymptotically of 

globally stable. 

Theorem (5.2): assume that the equilibrium point 𝐸3 = (𝑥∗, 𝑦∗, 𝑧∗) is locally stable of asymptotically, 

then 𝐸3 is asymptotically of globally stable in 𝑅+
3  when this condition holds 

𝜃1
∗ < 𝜃2

∗                                                                                                                                  (25 )   

Where 

 𝜃1
∗ =

𝛽1(𝑥𝑦∗+𝑥∗𝑦)

(1+𝑦)
+ 𝛽2 [

𝑥

𝑥∗
𝑦∗ +

𝑥∗

𝑥
𝑦] + 𝛼(𝑥𝑧∗ + 𝑥∗𝑧) + 𝛾(_𝑦𝑧∗ + 𝑦∗𝑧 )  



Jassim. et. al, MJPAS, Vol. 3, No. 4, 2025 

  

9 
 

𝜃2
∗ = −[[

𝑥∗𝑦 𝛽1

1 + 𝑦∗
+

𝛽1𝑥 𝑦∗

1 + 𝑦∗
] + (𝑦𝛽2 + 𝑦∗𝛽2) + (𝛼𝑒1𝑥 𝑧∗ + 𝛼𝑒1𝑥

∗𝑧) + (𝛾𝑒2𝑦 𝑧∗ + 𝛾𝑒2𝑦
∗𝑧)] 

Proof: consider the function 

 𝐹4(𝑥, 𝑦, 𝑧𝑎) = (𝑥 − 𝑥∗𝑙𝑛
𝑥

𝑥∗
− 𝑥∗) + (𝑦 − 𝑦∗ − 𝑦∗𝑙𝑛

𝑦

𝑦∗
) + (−𝑧∗ + 𝑧 − 𝑧∗ ln  

𝑧

𝑧∗
)  

 A straight forward computation shows the derivative of 𝐹4 with respect to t given by 

𝑑𝐹4

𝑑𝑡
=

𝛽1𝑦𝑥∗

(1+𝑦)
−

𝛽1𝑥𝑦∗

(𝑦+1)
+

𝛽1𝑥𝑦∗

(1+𝑦∗)
−

𝛽1𝑦𝑥∗

( 𝑦∗+1)
+ 𝛽2

𝑥∗𝑦

𝑥 
− 𝛽2𝑦 + 𝛽2

𝑥𝑦∗

 𝑥∗ − 𝛽2𝑦
∗ +  𝛼(𝑥𝑧∗ + 𝑥∗𝑧) +

𝛼(𝑒1 − 1)(𝑥𝑧 + 𝑥∗𝑧∗) + 𝛾(1 − 𝑒2)(𝑧
∗𝑦 + 𝑧𝑦∗) + 𝛾(𝑒2 − 1) (𝑦𝑧 + 𝑦∗𝑧∗). 

Now, by condition (25 ) and the biological facts mentioned (𝑒1 < 1)𝑎𝑛𝑑 (𝑒2 < 1) 

We obtain that 

𝑑𝐹4

𝑑𝑡
<

𝛽1𝑦𝑥∗

(1 + 𝑦)
−

𝛽1𝑥𝑦∗

(𝑦 + 1)
+

𝛽1𝑥𝑦∗

(𝑦∗ + 1)
−

𝛽1𝑦𝑥∗

(1 + 𝑦∗)
+ 𝛽2

𝑥∗𝑦

 𝑥
− 𝛽2𝑦 + 𝛽2

𝑥𝑦∗

 𝑥∗
− 𝛽2𝑦

∗ +  𝛼(𝑔𝑥𝑧∗ + 𝑥∗𝑧)

− 𝛼𝑒1(𝑥 𝑧∗ + 𝑥∗𝑧) +  𝛾(𝑦𝑧∗ + 𝑦∗𝑧𝑙) − 𝛾𝑒2(𝑖𝑦𝑧∗ + 𝑦∗𝑧𝐿) = 𝜃1
∗ + 𝜃2

∗ . 

 Thus, 
𝑑𝐹4

𝑑𝑡
< 0 , by condition  (25 ) clearly 

𝑑𝐹4

𝑑𝑡
 is negative definite due to locally stability condition 

hence 𝐹4 is a lyapunov  function with respect to 𝐸4 and the point 𝐸4  is  a globally asymptotically 

stable .   

6. The Numerical Simulation      

    This section describes the dynamics of globally of system (1) by using different groups of parameter 

and the sets of different of initial  points which is studied by numerical simulation, this study  leads to 

objectives which is searching the value of uneven of all Factors on the conduct of dynamics of model 

(1) and analytical results of assert our acquired. It is observed that, for the groups of virtual factors, the 

set of parameters hypothetical observed that 

       𝑟 = 0.5, 𝛼 = 0.8,  𝛽 1
= 0.11 ,  𝛽 2

= 0.4, 𝑒 = 0.009  

             𝑒 1
= 0.03,  𝑒 2

= 0.02 , 𝑑 = 0.002 , 𝛾 = 0.5                                                                                 

 

 

 

 

(26) 
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As we see in the following figure: 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure (6.1) Series of time of the solution of system (1) that started from three different initial points  

 (0.09 , 0.2 , 0.27 )  , (0.1 ,1 , 0.3 ) , and (0.9 , 0.2 , 1)   For data contained in(26). (a) the function of the time  

which is Sensitive prey tracks , (b) the function of the time   which is infected prey tracks , (c) the function of 

the time  which is tracks of  predator . 

Fig. (6.1) express system (1) has an asymptotically of globally stable and the solution oncoming 

asymptotically point 𝐸4 =  ( 0.234,0.095,0.021 )asymptotically from starting three initial of different 

points. 

    Varying of  growth rate 𝑟 in the interval 0.1 ≤ 𝑟 < 2.5 and  the rest of parameters are keeping as 

data in  (2 6)   observed that the system has solution(1) which is approaches as asymptotically to 𝐸4, 

as1show in Fig.(6.2), for typical value 𝑟 = 0.7 . 
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As we see in the following figure: 

 

 

 

 

 

 

 

 

 

Figure (6.2)Series of time of the solution of system1(1)    For data contained in.(26) with 𝑟 = 0.7 , which 

oncoming to 𝐸4=(0.265,0.054,0.082) in  R+
3  

. 

Now, varying  of the rate of infection of prey  𝛽 1  and the break of Factors are keeping as data take in   

(2 6) .it is notice  for  0.2≤ 𝛽 1
<0.951  the solution (1) approaches to 𝐸4 , if we increasing  the  

parameter for 0.951≤ 𝛽 1
< 2 ,  it is observed that the system (1) asymptotically as approaches  to  

E1=(0,0,0), as shown in1Fig(6.3),for typical1value   𝛽 1
= 0.9 .   

As we see in the following figure: 

 

 

 

 

 

 

 

 

 

Figure.(6.3) : Series of time of the solution of system1(1) )  For data contained in.(26)  for   𝛽 1
= 0.9 ,  which 

oncoming to E0=(0,0,0) in the interior of R+ 
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The varying the factor  𝛼 which represent the rate of predation on vulnerable prey, and the break of 

Factors are keeping as data take in  (2 6)  , it is notice for  0.3 ≤ 𝛼 <1.5 the system (1) have a solution  

approaches to E4.  

  Now,  the varying the factor 𝛾 which represent the rate of predation   on infected of prey , and the 

break of Factors are keeping as data take in  (2 6)  , it is notice for  0.5 ≤ 𝛾 <2  the system(1) have a  

solution approaches to E4 .    

 Moreover  Parameter tolerance 𝒅 which represent the rate of death of predator  , and the break of 

Factors are keeping as data take in  (2 6) it is notice for  0.09 ≤ 𝑑 <1  , the system(1) have a  solution 

approaches to a predator free Balance point  𝐸3 = (𝑥̂, 𝑦̂, 0) as appears in Fig(3.4),For my model value  

𝑑 = 0.7 .  

As we see in the following figure: 

 

 

 

 

 

 

 

 

 

 

Figure (6.4): Series of time of the solution of system (1) For data contained in.(26)    for d = 0.7  ,  which 

approaches to 𝐸3 = (𝑥, 𝑦̂, 0) in  R+ 
3 
 . 

The change parameter  𝒆 , represent the harvesting Of the injured individual, and the break of Factors 

are keeping as data take in  (2 6) it is notice for , 0.01 ≤ 𝒆 < 0.8   the system (1) have a  solution 

approaches to E2 as it shown in Fig.(6.5),for typical value   𝑒 = 0.67 .  
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As we see in the following figure: 

 

 

 

 

 

 

 

 

 

figure(6.5)Series of time of the solution of system (1) for the data given in eq.(26) , for  𝑒 = 0.67,  which 

approaches to E2=(x,0,z) in  R+ 
3 
 . 

The change of the parameter  𝒆𝟏 , the  rate  of Food conversion from susceptible of   prey to Individual 

of predator , and the break of Factors are keeping as data take in  (2 6) it is notice for  0.01≤ 𝑒1 <0.4 the 

system (1)  have a solution approaches E4 .   

Variance of Parameter 𝑒2 , the rate of conversion of food from infected prey individual of predator, 

and the break of Factors are keeping as data take in  (2 6) it is notice for   0.05≤ 𝑒2< 0.6 the system (1)  

have a solution approaches E4 .    

Finally, varying of  the rate of recovery  of prey  𝛽 2
 , and the break of Factors are keeping as data take 

in  (2 6) it is notice for  0.02 ≤  𝛽 2 < 0.11 , the system (1)  have a solution approaches E4  , by 

increasing the parameter in the interval 0.11≤  𝛽 2 < 2 , the system (1)  have a solution approaches E2 . 

7.   Conclusion with Discussion  

     The Predator-prey model, have a harvest and SIS disease in prey, proposed for studied analytical as 

well as numerically .By assumption the transmitted of the disease is by contact in the individual.  

Conditions with sufficient of the stability in system (1) by equilibrium points are obtained. The effect 

of all parameters are studied numerically on the dynamics behavior of the system (1) also drawn the 

trajectories in the typically figures which represent the solutions and according to the solutions of 

system (1) for the data   given by (26) the conclusions obtain. 

1-  The system (1) does not have periodic dynamics for the set of data as given in eq. (26).    

2- The varying for the values of the set parameters in eq. (2 6), system (1) have an approaches to 

asymptotically of globally stable point  𝐸4 = ( 0.234,0.095,0.021 ) .     

0 0.5 1 1.5 2 2.5 3 
x 10 4 

 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

Time 

P
o

p
u

la
ti
o
n
 

  

  
Susceptible prey  
Infected prey  
 Predator  
 



Jassim. et. al, MJPAS, Vol. 3, No. 4, 2025 

  

14 
 

3- The effect of the parameters 𝑟 , 𝛼 , 𝛾, 𝑒1 , 𝑒2   which represent, the growth rate of a prey ,the 

predation rate on a susceptible individual in prey ,the rate of  predation on individual of infected  

in prey, the rate of  conversion of the food from sensitive prey to individual of predator and the 

rate of  conversion of the food from  infected  prey  to individual of predator, at all time and the 

rest of parameter keeping as data in eq.(2 6),there is not any effect on the dynamical of the 

behavior of system(1) and system (1)have a solution  approaches to E4=(x*,y*,z*). 

4-  The effect of the rate of individuals infection in prey 𝛽 1
 , in the interval for 0.2 ≤ 𝛽 1

< 0.951 and 

the rest of the parameters keeping as data in eq.(2 6),   system (1)  have a solution  approaches to  

E4. However for increase the value in the interval  0.951 ≤ 𝛽 1
< 2 ,the system(1) have a solution 

approaches to 𝐸0 = ( 0,0 ,0 ) thus , the   𝛽 1
= 0.951  is  bifurcation point.  

5- By effect the rate of mortality of predator (𝒅) , and the break of Factors are keeping as data take in  

(2 6) it is notice for    0.09 ≤ 𝑑 <1 ,system (1) have a solution  approaches to 𝐸3 = (𝑥̂, 𝑦̂, 0) .  

6- The change of the parameter (𝒆) , the rate of the harvest of infected individuals in prey , and the 

break of Factors are keeping as data take in  (2 6) it is notice for 0.1 ≤ 𝒆 <0.8 ,system (1) have a 

solution  approaches to 𝐸3  . 

7- Finally, effect the rate of recovery of prey  𝛽 2 , and the break of Factors are keeping as data take in  

(2 6) it is notice for ( 0.02 ≤  𝛽 2 < 0.11) ,  system (1) have a solution  approaches to 𝐸4  , as   

increase  the  value of the parameter (0.11≤  𝛽 2 < 2 )the solution of system(1) will approach to  

E2=(x,0,z)   thus , the   𝛽 2
= 0.11 is  bifurcation point.     
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