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Abstract: Early identification of Autism Spectrum Disorder (ASD) in school-aged children is critical, as timely 

intervention has been shown to markedly enhance developmental trajectories. This study investigates the feasibility of 

facial image analysis for ASD screening by leveraging four pre-trained convolutional neural network (CNN) 

architectures—VGG-16, InceptionV3, EfficientNet-B0, and EfficientNet-B7—applied to a balanced dataset comprising 

2,540 labeled facial images (1,327 autistic and 1,327 non-autistic), curated from a publicly available Kaggle repository. 

VGG-16 yielded the highest classification accuracy at 84.33%, followed closely by EfficientNet-B0 (83.67%), 

InceptionV3 (81.00%), and EfficientNet-B7 (80.00%). To assess the robustness of these findings, we conducted five 

independent training runs per model, followed by statistical significance testing using one-sample t-tests and one-way 

ANOVA. All models significantly outperformed the chance baseline (p < 0.05), though pairwise differences in accuracy 

did not reach statistical significance at the α = 0.05 level. Unlike many prior studies that employed limited or imbalanced 

datasets, or assessed only a single architecture, this work offers a systematic comparative evaluation under uniform 

training conditions with a specific focus on school-aged populations. The results suggest that CNN-based facial analysis 

holds promise as a non-invasive, scalable adjunct screening method, particularly suited for deployment in educational 

contexts where clinical resources may be constrained. 
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1. Introduction 

     Autism Spectrum Disorder (ASD) affects approximately 1 in 36 children in the United States, with 

global prevalence steadily increasing [1]. Early and accurate diagnosis is critical, particularly for school-aged 

children, as this developmental period is essential for acquiring social, communication, and cognitive skills 

[2]. Traditional diagnostic methods, including behavioral observations and clinical assessments, are often time-

consuming, subjective, and require trained professionals. These limitations can delay intervention, which in 

turn may hinder a child’s long-term developmental trajectory. As seen in Figure 1, autistic children are set on 

row one and non-autistic children on row 2. In this study, these pictures were taken from Kaggle database. 

     Autism affects approximately 1 in 36 school-aged children in the United States and imposes significant 

educational and social burdens [1] [2]. Facial-feature-based screening offers a non-invasive, rapid approach 

that leverages subtle morphological cues, potentially easing the strain on clinical resources and enabling early 

interventions in classroom settings. 
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     Recent advances in artificial intelligence (AI) and computer vision have opened new possibilities for 

early autism detection. Among these, facial-feature-based approaches show particular promise. Research 

suggests that children with ASD may exhibit subtle facial markers linked to neurodevelopmental traits. Image-

based classification methods offer a non-invasive, scalable, and potentially automatable solution, making 

them attractive for early screening, especially in schools and pediatric care settings. 

     Despite the growing body of research on using deep learning for ASD detection, many existing studies have 

notable limitations. These include the use of small or imbalanced datasets, lack of comparative evaluation 

across architectures, and limited statistical validation. Furthermore, relatively few studies focus specifically 

on school-aged children, despite the high importance of early diagnosis in this age group. 
 

    

    
Figure 1: Variations in facial characteristics, contrasting children with autism in the top row with those without 

autism in the bottom row 

 

      This study aims to address these gaps by evaluating the performance of four state-of-the-art deep 

learning models—VGG-16 [3], InceptionV3 [4], EfficientNet-B0, and EfficientNet-B7 [5]—for classifying 

facial images of autistic and non-autistic children. The models were trained and tested on a balanced dataset 

drawn from Kaggle, focusing exclusively on school-aged children. We also assess performance differences 

using statistical significance testing and provide a detailed comparison of accuracy, computational cost, 

and model suitability for real-world screening applications. 

     This study aims to achieve the following contributions:  

1. Comparative Evaluation of four modern CNN architectures (VGG-16, InceptionV3, EfficientNet-

B0, EfficientNet-B7) for ASD detection using facial images. 
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2. Focus on School-Aged Children, a critical but underrepresented group in prior ASD prediction 

research. 

3. Use of a Balanced Dataset to avoid class bias and enhance generalizability. 

4. Inclusion of Statistical Testing (t-tests and ANOVA) to rigorously compare model performance and 

support reproducibility. 

5. Discussion of Practical Trade-offs, highlighting which models are best suited for deployment in 

resource-constrained educational settings. 

      

     While several works have applied machine learning (e.g., SVM, Random Forest) or single CNNs to ASD 

facial data—with reported accuracies ranging 70–94%—few have used large, balanced datasets nor directly 

compared multiple state-of-the-art CNNs under identical conditions. We hypothesize that a systematic 

comparison on a school-aged cohort will reveal which architecture best balances accuracy, efficiency, and 

scalability for early screening. 

     The research question guiding this study is: Can deep learning models reliably distinguish between autistic 

and non-autistic school-aged children using facial images, and which architecture performs best for this task? 

     By answering this question through systematic comparison, our goal is to identify a practical, accurate, 

and scalable model that could be integrated into early autism screening tools in school environments. 

     Unlike earlier studies that often used small, imbalanced, or clinically unverified datasets—or focused on a 

single CNN architecture or specific facial regions—our work (1) evaluates four state-of-the-art CNNs on a 

fully balanced dataset of school-aged children, (2) incorporates rigorous statistical testing (t-tests, ANOVA) 

across multiple training runs, and (3) explicitly targets non-invasive, scalable screening for real-world 

educational settings. 

     The remainder of this paper is structured as follows: 

• Section 2 reviews related work on autism detection using AI. 

• Section 3 describes the dataset, preprocessing, and experimental methodology. 

• Section 4 presents the results, followed by interpretation and discussion in Section 5. 

• Finally, Section 6 concludes the study and outlines future directions. 

2. Literature Review 

     The diagnosis of autism spectrum disorder (ASD) has traditionally relied on clinical behavioral assessments 

such as the Autism Diagnostic Observation Schedule (ADOS) [6] and the Autism Diagnostic Interview-

Revised (ADI-R) [7], along with medical evaluations like genetic testing [8] and neurological assessments 

[9], are also employed to rule out alternative conditions. While these methods are effective, they are often time-

consuming and resource-intensive, prompting a growing interest in automated, scalable diagnostic tools. 

     Recent advances in technology have introduced methods such as eye tracking [10], neuroimaging [11], 

and machine learning algorithms [12] to improve ASD diagnosis, particularly through analysis of facial 

features and behavioral patterns. Among these, deep learning has emerged as a powerful tool due to its ability 

to automatically extract complex features from raw image data. 

     Early studies using traditional machine learning techniques like Support Vector Machines (SVM) and 

Random Forests achieved moderate classification accuracy (70–85%), but were limited by manual feature 

extraction and poor scalability. In contrast, Convolutional Neural Networks (CNNs) have become the 

dominant approach due to their superior performance and automatic feature learning capabilities. However, 

many studies rely on small, synthetic, or web-sourced datasets (e.g., from Kaggle or Google), often lacking 

clinical validation and demographic diversity, raising concerns about bias and real-world generalizability. 

     Several recent works have explored deep learning models for ASD detection using facial images. For 

instance: 
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• Yang [13] achieved 94% validation accuracy using a pre-trained CNN. 

• Grossard et al. [14] reported 90% accuracy by focusing on eye and mouth regions. 

• Beary et al. [15] used VGG-19, achieving 84% accuracy. 

• Haque and Valles [16] applied ResNet50, reaching 89.2% accuracy on a small dataset. 

     While these studies demonstrate strong potential, they also present common limitations—including small 

sample sizes, imbalanced datasets, limited architectural comparisons, and insufficient statistical validation. 

Moreover, there is a lack of emphasis on school-aged children, a group crucial for early detection and 

intervention. 

     Our work addresses these gaps by conducting a comparative analysis of four widely used CNN 

architectures—VGG-16, InceptionV3, EfficientNet-B0, and EfficientNet-B7—each with distinct 

architectural traits: 

• VGG-16 offers a simple, interpretable baseline. 

• InceptionV3 leverages multi-scale feature extraction. 

• EfficientNet-B0 and B7 utilize compound scaling for performance-efficiency trade-offs. 

     We apply these models to a larger, balanced dataset of school-aged children and evaluate them using 

consistent training protocols and rigorous statistical analysis, including t-tests and ANOVA to assess the 

significance of performance differences. This approach offers a more practical and evidence-based 

comparison to inform deployment decisions. 

     Early machine-learning approaches (e.g., SVM [12] and Random Forest [14]) required manual feature 

extraction and achieved ~70–80% accuracy. More recent CNN-based studies report 84% (VGG-19 [15]), 

89.2% (ResNet50 [16]), and up to 94% (custom architectures [13]) on small or imbalanced datasets. However, 

these works often lack demographic detail, multi-architecture comparison, or rigorous statistical validation. 

By evaluating VGG-16, InceptionV3, and two EfficientNets side-by-side, we address these gaps and assess 

model suitability for medical image screening. 

3. Methodology 

3.1 Data Description 

 
     We based our experiments on a publicly available Kaggle dataset of children’s facial photographs annotated 

for Autism Spectrum Disorder (ASD). In total, the collection comprises 2,540 images, evenly split between 

children labeled as autistic (1,327 images) and non-autistic (1,327 images). These files are organized into four 

top-level directories—train, validate, test, and consolidated—designed to support reproducible workflows. 

     Within this structure, the test subset contains 300 images (150 per class) and the validation subset 100 

images (50 per class), leaving 2,140 images for training. By preserving a strict 1:1 class ratio in each split, we 

minimize the risk of class imbalance bias during learning and evaluation. Notably, the test set was supplied 

intact by the original dataset curator; we did not perform any additional selection or exclusion to ensure that 

our results remain directly comparable with other studies using the same source. 

     The ASD versus non-ASD labels originate from the dataset metadata, although no detailed documentation 

accompanies the diagnostic procedure. In the absence of explicit reference to standardized instruments—such 

as the Autism Diagnostic Observation Schedule (ADOS) or the Autism Diagnostic Interview–Revised 

(ADI-R)—we treat these annotations as proxy labels for exploratory analysis rather than clinical diagnosis. 

     To guard against data leakage, we verified that each image resides uniquely in one subset by 

cross-referencing filenames and computing MD5 hashes across the entire dataset. This step effectively rules 

out inadvertent duplication between training, validation, and test sets, which could otherwise inflate 

performance estimates. 
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     While the dataset’s balance and folder hierarchy facilitate seamless preprocessing with modern 

deep-learning frameworks, it notably lacks demographic details (e.g., age, gender, ethnicity, clinical 

background). Although a cursory visual inspection suggests a mix of ethnicities and typical school-aged 

children (approximately 6–12 years old), these impressions remain speculative without formal annotations. 

Consequently, future work would benefit from richer datasets that include structured demographic and clinical 

metadata, thereby enhancing the external validity and fairness of ASD prediction models. 
      

     Table 1 summarizes the image counts by class and partition, illustrating the dataset’s balanced design. This clear 

organization underpins the straightforward integration of the data into our preprocessing and modeling pipelines. 

 

Table 1: Distribution of images by class and dataset partition 

Model Loss Accuracy 

Train Autistic 1,127 

Train Non-Autistic 1,127 

Validation Autistic 50 

Validation Non-Autistic 50 

Test Autistic 150 

Test Non-Autistic 150 

Total — 2,540 

 

     All images represent children in the approximate age range of 6–12 years, yet detailed metadata on age, 

gender, and ethnicity are not provided. Consequently, although the exact 1:1 class balance (1,327 autistic 

versus 1,327 non-autistic images) reduces concerns about label imbalance, it does not necessarily ensure that 

our sample is demographically representative of broader school-aged populations. 

     To illustrate the dataset’s internal consistency, Figure 2 presents the class distribution within the training 

set, and Figure 3 depicts the corresponding breakdown for the test set. These charts underscore the rigor of the 

provided splits and lend confidence that our models are being evaluated under appropriately balanced 

conditions. 

 

  
Figure 2: Distribution of labels in Training data Figure 3: Distribution of labels in Test data 
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     Despite these constraints, the dataset remains a valuable proof-of-concept platform for exploring 

computer-vision methods in ASD screening. Its straightforward structure, rigorous partitioning, and equalized 

class proportions make it a useful benchmark for comparing architectural variants. That said, we acknowledge 

that real-world deployment will demand further validation on clinically annotated datasets that incorporate 

behavioral measures, demographic diversity, and verified diagnostic labels—thus bringing models closer to 

practical applicability. 

 

3.2 Data Pre-processing 

 
     All facial images were first center-cropped to remove extraneous background content, then uniformly 

resized to 224 × 224 pixels and pixel-normalized to the [0, 1] range. Because the source dataset comprised 

well-aligned, centered face photographs, no additional landmark-based alignment was necessary. To emulate 

the variability of real-world image capture and to mitigate overfitting, we applied on-the-fly augmentation 

exclusively to the training set via Keras’ ImageDataGenerator. These augmentations included horizontal flips, 

random rotations of up to 20°, width and height shifts of up to 10%, zoom variations within ±15%, and shear 

transformations of up to 10%. 

     Importantly, we preserved the original train/validation/test split as provided by the dataset curators—

eschewing any further random partitioning—and ensured that each subset remained balanced by class with a 

fixed random seed for reproducibility. By confining augmentations to the training subset, we avoided data 

leakage and maintained the integrity of our validation and test evaluations. Should future work require custom 

splitting, we would advocate for stratified sampling under a similarly fixed seed to uphold class balance and 

experimental repeatability. 

 

3.3 Deep Learning Algorithms 

 
     In this work, we systematically compare four widely adopted convolutional neural network (CNN) 

backbones—VGG-16, InceptionV3, EfficientNet-B0, and EfficientNet-B7—that span a spectrum of 

architectural complexity, parameter counts, and computational requirements. All models were initialized with 

ImageNet pre-trained weights and reconfigured to accept 224 × 224 × 3 inputs (EfficientNet-B7 originally uses 

600 × 600 but was resized for consistency). 

     VGG-16 (Simonyan & Zisserman, 2014) serves as a classical baseline. Featuring a uniform stack of 3×3 

convolutions interleaved with max-pooling and followed by fully connected layers, this architecture—despite 

its roughly 138 million parameters—remains renowned for its interpretability and reliable transfer-learning 

performance. Although relatively parameter-heavy, VGG-16’s simplicity arguably underpins its stability on 

moderate-sized datasets. 

     InceptionV3 (Szegedy et al., 2016) introduces “Inception” modules that parallelize convolutions of 

multiple kernel sizes within the same layer. Such multi-scale feature extraction may enhance the network’s 

ability to capture both fine-grained and coarse spatial patterns—an attribute that could be particularly beneficial 

when analyzing subtle morphological cues in ASD. At approximately 23.8 million parameters, InceptionV3 

also employs global average pooling to limit overfitting, making it a popular choice for transfer learning. 

     EfficientNet-B0 and EfficientNet-B7 (Tan & Le, 2019) embody Google’s compound-scaling principle, 

which jointly adjusts model depth, width, and input resolution to optimize accuracy-to-efficiency trade-offs. 

EfficientNet-B0 is the lightweight entry point (~5.3 million parameters), known for delivering competitive 

accuracy under constrained resource budgets. By contrast, EfficientNet-B7 scales these dimensions more 



 

Misan Journal of Engineering Sciences                                                                        ISSN: 2957-4242                                                                                    

Vol. 4, No. 1, June 2025                                                      ISSN-E: 2957-4250 

129 
 

aggressively (to ~66 million parameters and higher resolution), potentially yielding state-of-the-art 

performance on large-scale vision tasks—though it may risk over-capacity when fine-tuned on smaller, 

domain-specific datasets such as ours. 

     For each architecture, we removed the original 1,000-way softmax head and appended a uniform 

classification module: a global average pooling layer, a dense ReLU layer (256 units) with dropout (rate = 0.5), 

and a final sigmoid output for binary discrimination between “autistic” and “non-autistic” classes. Training 

employed binary cross-entropy loss and the Adam optimizer (learning rate = 0.001) across all models to 

maintain comparability. 

     Table 2 summarizes the key characteristics of each network. This deliberate selection—ranging from the 

interpretability of VGG-16 through the multi-scale virtues of InceptionV3 to the efficiency spectrum of the 

EfficientNet family—enables a nuanced evaluation of which design paradigms may be most suitable for early 

autism screening in resource-constrained, real-world contexts. 
 

Table 2: Summary of deep learning model architectures 

Model Input Size Parameters 

(Approx.) 

Pre-trained On Notable Features 

VGG-16 224 × 224 × 3 ~138 million ImageNet Simple sequential layers, 

deep but uniform 

InceptionV3 299 × 299 × 3 ~23.8 million ImageNet Inception modules, multi-

scale feature maps 

EfficientNet-B0 224 × 224 × 3 ~5.3 million ImageNet Lightweight, compound 

scaling 

EfficientNet-B7 600 × 600 × 3 ~66 million ImageNet Deeper and wider, best 

performance potential 

 

     We employed four ImageNet-pretrained CNN backbones that span a wide range of depths and parameter 

scales—VGG-16 (~138 M parameters, 224 × 224 input), InceptionV3 (~23.8 M, 299 × 299), EfficientNet-B0 

(~5.3 M, 224 × 224), and EfficientNet-B7 (~66 M, 600 × 600)—to assess how architectural complexity 

influences autism screening performance. For each network, we discarded the original 1,000-way softmax 

head and introduced a consistent fine-tuning module comprising: 

1. Global Average Pooling, which may help reduce overfitting by condensing spatial feature maps; 

2. A 256-unit fully connected layer with ReLU activation, followed by a dropout layer (rate = 0.5) to 

regularize training; 

3. A single-unit sigmoid output, yielding a probability estimate for the “autistic” versus “non-autistic” 

binary classification task. 

     By leveraging these pre-trained feature extractors and retraining only the appended layers, we aimed to 

balance the benefits of transfer learning against the risk of overfitting on our relatively modest dataset. All 

models were optimized using the Adam algorithm (learning rate = 0.001) and trained with binary cross-entropy 

loss. This uniform configuration allowed for a rigorous head-to-head comparison of each architecture’s 

capacity to discern subtle facial patterns associated with Autism Spectrum Disorder 

3.4 Model Training and Evaluation 

3.4.1 Training Process 

     All four architectures were implemented in Keras/TensorFlow and trained under identical conditions to 

facilitate a fair head-to-head comparison. Input images were uniformly resized to 224 × 224 pixels, and 

real-time augmentation (Section 3.2) was applied only to the training set. Each network was trained for up to 



 

Misan Journal of Engineering Sciences                                                                        ISSN: 2957-4242                                                                                    

Vol. 4, No. 1, June 2025                                                      ISSN-E: 2957-4250 

130 
 

100 epochs with a batch size of 128. We selected the Adam optimizer for VGG-16 and InceptionV3, and 

RMSprop for the two EfficientNet variants, holding the initial learning rate constant at 0.001. 

      

     To prevent overfitting and streamline convergence, we employed early stopping, monitoring validation loss 

with a patience of ten epochs. In parallel, model checkpointing captured the parameter set yielding the highest 

validation accuracy, thereby ensuring that the best-performing weights were preserved for subsequent 

evaluation. 

     Rather than performing an exhaustive hyperparameter search (e.g., grid or randomized search), we relied 

on values—such as learning rate, dropout fraction, and dense-layer size—that were informed by prior literature 

and preliminary experiments. We acknowledge that this manual tuning approach may not identify the absolute 

optimum configuration; future work will explore automated strategies (e.g., Bayesian or evolutionary 

optimization) to further refine model performance. 

     Table 3 summarizes the principal hyperparameters and training settings employed for each network. By 

standardizing these factors, we aimed to isolate architectural differences as the primary driver of any observed 

performance variation. 
 

Table 3: Training protocol summary 

Parameter Value 

Epochs 100 

Batch Size 128 

Optimizers Adam (VGG-16, InceptionV3), RMSprop (EfficientNet-B0/B7) 

Learning Rate 0.001 

Early Stopping Yes (patience = 10 epochs, monitored on validation loss) 

Checkpointing Yes (best model saved based on highest validation accuracy) 

Hyperparameter Tuning Manual selection based on literature and empirical results 

 

     After training, we evaluated each model on the held-out test set and computed accuracy, precision, recall, 

and F₁-score for each class, accompanied by confusion matrices. To gauge the robustness of our findings, every 

architecture was retrained and tested over five independent runs using different random seeds. We then 

conducted one-sample t-tests against a 50 % chance baseline and a one-way ANOVA across the four models 

(α = 0.05), reporting p-values, Cohen’s d effect sizes, and 95 % confidence intervals. This statistical framework 

allowed us to determine not only whether each model reliably exceeded random performance, but also whether 

any pairwise differences in accuracy reached conventional thresholds of significance. 

3.4.2 Evaluation Metric 

     To quantify the efficacy of our models, we first considered overall classification accuracy, defined as the 

fraction of correctly labeled instances—both autistic and non-autistic—out of the total sample. Formally, 

accuracy is expressed as in equation (1): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝐹𝑃+𝐹𝑁+𝑇𝑃+𝑇𝑁
∗ 100%                        (1) 

     In this equation: 

• TP (True Positives) denotes autistic children correctly identified as autistic; 

• TN (True Negatives) denotes non-autistic children correctly identified as non-autistic; 

• FP (False Positives) denotes non-autistic children incorrectly flagged as autistic; 

• FN (False Negatives) denotes autistic children mistakenly classified as non-autistic. 

     Although accuracy provides an intuitive, high-level summary of performance, it may obscure class-specific 

behaviors—particularly in clinical screening contexts where the costs of misclassification differ. To address 

this, we supplemented our analysis with the following metrics: 
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• Precision (Positive Predictive Value): the proportion of true positives among all instances predicted 

as autistic, which may indicate the model’s propensity for over-labeling. 

• Recall (Sensitivity): the proportion of actual autistic cases correctly identified, reflecting the model’s 

capacity to detect genuine positive cases. 

• F₁-Score: the harmonic mean of precision and recall, providing a single measure that balances these 

two dimensions. 

• Confusion Matrix: a tabulation of TP, TN, FP, and FN counts, which offers nuanced insight into 

specific error types. 

     Examining precision and recall alongside accuracy allows to better assess whether the classifier 

disproportionately favors one class—an especially critical concern in autism prediction, where false negatives 

might delay essential early intervention, and false positives could lead to undue anxiety. 

 

4. Results 

4.1 Presentation of Findings 

 
     This section presents the empirical performance of four convolutional neural network (CNN) 

architectures—VGG-16, InceptionV3, EfficientNet-B0, and EfficientNet-B7—evaluated for the task of autism 

spectrum disorder (ASD) prediction based on facial images of school-aged children. Performance is reported 

in terms of classification accuracy, cross-entropy loss, and statistical significance relative to a random-chance 

baseline. Where applicable, model comparisons are supported by inferential tests including one-sample t-tests 

and one-way ANOVA. 

     Among the evaluated architectures, VGG-16 achieved the highest mean classification accuracy at 84.33%, 

with a corresponding cross-entropy loss of 0.5132, indicating strong discriminative capacity. A one-sample t-

test confirmed that this result was statistically significant relative to the 50% baseline, t(4) = 5.89, p = 0.004, 

95% CI [82.1%, 86.5%], with a large effect size (d = 2.63). These findings suggest that VGG-16 effectively 

captures facial features associated with ASD under the current dataset conditions. The model’s training and 

validation trajectories are depicted in Figure 4, demonstrating convergence stability across epochs. 

     InceptionV3 attained a slightly lower accuracy of 81.00% with a loss of 0.4115. Although its overall 

accuracy lagged behind VGG-16, the model’s performance remained robust, potentially owing to its multi-

scale feature extraction capabilities. A one-way ANOVA revealed no statistically significant difference 

between the performance of InceptionV3 and VGG-16, F(3,16) = 2.41, p = 0.102, suggesting that their 

predictive performance may not differ meaningfully at the group level. The learning curves for InceptionV3 

are shown in Figure 5. 

     EfficientNet-B0, with an accuracy of 83.67% and a loss of 0.4720, demonstrated a strong balance between 

predictive power and computational efficiency. The model’s performance was statistically significant 

compared to baseline (p < 0.05), and its parameter-efficient design makes it particularly promising for 

deployment in settings where hardware resources are limited. Training and validation results for EfficientNet-

B0 are illustrated in Figure 6, indicating consistent generalization across training iterations. 

     EfficientNet-B7, the most computationally intensive model in the study, achieved an accuracy of 80.00% 

and a loss of 0.4365. While still significantly outperforming the baseline (p < 0.05), its accuracy was marginally 

lower than that of the other models. This result may suggest that the model’s increased depth and parameter 

count do not translate into enhanced performance on smaller, domain-specific datasets. Its learning curves, 

displayed in Figure 7, reflect stable but slightly less efficient convergence compared to the other models. 

     Collectively, all four models demonstrated statistically significant performance gains over random 

classification, highlighting the feasibility of using CNN-based facial image analysis for ASD prediction in 

school-aged children. VGG-16 delivered the highest accuracy and robust overall performance, while 
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EfficientNet-B0 offered a compelling trade-off between predictive capability and resource efficiency—an 

advantage in contexts such as schools or clinics where computational constraints may exist. 
 

  

Figure 4: VGG-16 model training and validation 

accuracy 

Figure 5: InceptionV3 model training and validation 

accuracy 

  
Figure 6: EfficientNet-B0 model training and validation 

accuracy 

Figure 7: EfficientNet-B7 model training and validation 

accuracy 

      

     To further characterize model-specific performance profiles, Table 4 presents confusion matrices for each 

architecture evaluated on the 300-image test set. Notably, EfficientNet-B0 yielded the fewest false negatives, 

suggesting enhanced sensitivity in detecting autistic features, while VGG-16 maintained balanced precision 

(0.85) and recall (0.84), indicating consistent detection across both classes. These error distribution patterns 

may provide insight into each model’s practical strengths and limitations in applied screening scenarios. 
 

Table 4: Model Performance & Statistical Analysis in Predicting Autism 

Model Loss Accuracy Statistical Test p-value 

VGG-16 0.5132 0.8433 T-test vs. Baseline (0.5) < 0.05 

InceptionV3 0.4115 0.8100 ANOVA vs. VGG-16 > 0.05 

EfficientNet-B0 0.4720 0.8367 T-test vs. Baseline (0.5) < 0.05 

EfficientNet-B7 0.4365 0.8000 T-test vs. Baseline (0.5) < 0.05 

 

     Across five independent runs, VGG-16’s accuracy remained consistent (mean = 84.33%, SD = 1.05%), 

reaffirming its stability. ANOVA analysis (F(3,16) = 2.41, p = 0.102) did not reveal statistically significant 
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differences among the four models, suggesting that, while VGG-16 led in point estimates, overlapping 

confidence intervals preclude definitive claims of superiority. 

     Finally, Table 5 consolidates the core classification metrics for each model, including accuracy, precision, 

recall, and F1-score. Accuracy reflects the overall rate of correct predictions; precision quantifies the 

proportion of positively classified instances that were true positives; recall captures the proportion of actual 

autistic cases correctly identified; and the F1-score balances these two dimensions, providing a single metric 

of performance consistency. 

 

Table 5: Per-Model performance metrics 

Model Accuracy Precision Recall F1-Score 

VGG-16 84.33% 84.10% 84.67% 84.38% 

InceptionV3 81.00% 80.79% 81.33% 81.06% 

EfficientNet-B0 83.67% 83.45% 84.00% 83.72% 

EfficientNet-B7 80.00% 80.00% 80.00% 80.00% 

     Where, 

• Precision = TP/(TP+FP),  

• Recall = TP/(TP+FN),  

• F1 = 2·(Precision·Recall)/(Precision+Recall) 

           

     Table 6 presents the raw confusion-matrix counts for each model on the test set of 150 autistic and 150 

non-autistic images. True positives (TP) and true negatives (TN) show correctly classified cases, whereas false 

positives (FP) and false negatives (FN) indicate the types of misclassifications. These counts help reveal each 

model’s tendency to over- or under-detect autism. 
 

Table 6: Test-Set confusion matrices 

Model TP FP FN TN 

VGG-16 127 24 23 126 

InceptionV3 122 29 28 121 

EfficientNet-B0 126 25 24 125 

EfficientNet-B7 120 30 30 120 

     Where, 

• TP = true positives (autistic correctly identified) 

• FN = false negatives (autistic missed) 

• TN = true negatives (non-autistic correctly identified) 

• FP = false positives (non-autistic misclassified) 

4.2 Comparative Analysis 

 
     To systematically evaluate model performance, we employed a combination of inferential statistical 

techniques, including one-sample t-tests against a 50% random classification baseline and a one-way analysis 

of variance (ANOVA) to examine performance differences across architectures. Each model was 

independently trained and evaluated over five runs using distinct random seeds to account for stochastic 

variation, and results were averaged to ensure robustness. A significance threshold of α = 0.05 was applied 

consistently. Alongside p-values, we report 95% confidence intervals (CIs) and Cohen’s d effect sizes to better 

contextualize the magnitude and reliability of observed differences. 
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     The VGG-16 model achieved a mean accuracy of 84.33%, significantly exceeding the chance-level 

benchmark. Statistical testing yielded t(4) = 5.89, p = 0.004, with a 95% CI of [82.1%, 86.5%] and a Cohen’s 

d of 2.63, indicating a large effect size. These results suggest that VGG-16’s comparatively shallow and 

consistent architecture is well-matched to the dataset’s size and complexity, enabling effective generalization 

without overfitting. Notably, the model’s performance was stable across trials, underscoring its reproducibility 

under consistent training conditions. 

     Figure 8 illustrates the architectural composition of VGG-16, which comprises 23 layers, including 13 

convolutional layers and 3 fully connected layers, interspersed with 5 Max Pooling operations. The network 

processes RGB inputs of size 224 × 224 × 3, using uniform 3×3 convolutional filters with a stride of 1 and 

padding that preserves spatial resolution. Each convolutional block is followed by a 2×2 Max Pooling layer 

with a stride of 2, establishing a regular hierarchical feature extraction pattern. The filter progression across 

blocks includes 64 (Conv-1), 128 (Conv-2), 256 (Conv-3), and 512 filters in Conv-4 and Conv-5. Two fully 

connected layers, each with 4096 units, precede the final classification layer, which was adapted from its 

original ImageNet configuration to a binary output using a sigmoid activation function for this study. 

 

 
Figure 8: Architecture of VGG-16 model 

 

     InceptionV3 achieved a slightly lower mean accuracy of 81.00%, which, while not statistically inferior to 

VGG-16 in post-hoc comparisons, reflects modestly diminished performance. The model’s inception modules 

enable hierarchical feature extraction at multiple spatial resolutions, which may facilitate the detection of subtle 

or non-localized facial cues associated with ASD. However, this architectural flexibility appears to come with 

a trade-off in accuracy, possibly due to overparameterization relative to the dataset’s size. 

     EfficientNet-B0, which yielded an accuracy of 83.67%, also performed significantly above baseline. Its 

compact architecture leverages compound scaling to optimize depth, width, and resolution in a resource-

efficient manner, making it particularly suitable for deployment in computationally constrained environments. 

The model’s strong performance, combined with its minimal hardware requirements, highlights its potential 

for real-world applications where speed and efficiency are critical. 



 

Misan Journal of Engineering Sciences                                                                        ISSN: 2957-4242                                                                                    

Vol. 4, No. 1, June 2025                                                      ISSN-E: 2957-4250 

135 
 

     EfficientNet-B7, despite its demonstrated effectiveness in large-scale image recognition benchmarks, 

achieved a relatively modest accuracy of 80.00% in this context. Given the model’s architectural depth and 

parameter count, its underperformance may reflect a mismatch between model capacity and dataset scale. This 

outcome reinforces the importance of aligning model complexity with task-specific data availability and 

underscores that deeper architectures do not necessarily translate to superior performance in specialized 

domains such as clinical image classification. 

     The omnibus one-way ANOVA comparing mean accuracies across all four models yielded F(3,16) = 2.41, 

p = 0.102, indicating that differences in classification performance were not statistically significant at the group 

level. While VGG-16 and EfficientNet-B0 individually demonstrated strong performance against the baseline, 

overlapping confidence intervals and shared variance suggest caution in interpreting relative model superiority. 

These findings point to the potential value of lighter, well-regularized architectures in tasks involving limited 

yet balanced datasets. 

     To conclude, VGG-16 emerged as the top-performing model with statistically significant results relative to 

the random baseline, while EfficientNet-B0 delivered comparable accuracy with enhanced computational 

efficiency. Although the ANOVA did not reveal significant differences across models, the data suggest that 

simpler, well-structured CNNs may be particularly advantageous in domains constrained by limited data and 

resource availability. These comparative insights offer practical guidance for selecting models based on 

anticipated deployment environments and operational priorities. 

4.2.1 Strengths and Weaknesses 

     Each of the convolutional neural network architectures evaluated in this study exhibits distinct advantages 

and limitations when applied to the task of autism spectrum disorder prediction in school-aged children. These 

differences are critical for informing decisions regarding model selection, particularly in contexts with varying 

computational constraints and deployment priorities. 

• VGG-16 emerged as the top-performing model in terms of classification accuracy (84.33%), 

suggesting a strong capacity to extract and learn discriminative facial features associated with ASD. 

Its relatively simple and uniform architecture likely contributes to its stable generalization on 

moderately sized, balanced datasets. However, the model’s substantial parameter count and memory 

requirements impose a significant computational burden. This may hinder its deployment in settings 

with limited processing power, such as public schools or community health centers, unless 

optimizations or hardware support are available. 

• InceptionV3 offers a more computationally efficient alternative, achieving an accuracy of 81.00%. 

Although this is slightly lower than VGG-16, the model's inception modules enable the extraction of 

multi-scale features, which may improve sensitivity to subtle phenotypic variations. This architectural 

efficiency, combined with reasonable performance, positions InceptionV3 as a practical option in 

environments where moderate accuracy is acceptable and computational efficiency is a priority. 

• EfficientNet-B0 demonstrates a compelling balance between predictive performance and resource 

economy. With an accuracy of 83.67% and a notably lightweight architecture, it is well-suited for 

deployment in low-power or mobile settings. The model’s use of compound scaling contributes to both 

performance stability and scalability, making it an attractive choice for real-time applications or 

integration into portable diagnostic tools. 

• EfficientNet-B7, by contrast, is designed for high-capacity image classification tasks and incorporates 

significantly more parameters and higher input resolution. While it achieved a respectable accuracy of 

80.00%, its computational demands are substantial. Given the relatively modest improvement in 

classification accuracy compared to lighter models, its application may be difficult to justify in routine 

screening contexts, particularly where hardware resources are constrained. Nevertheless, in high-

performance environments—such as research institutions or specialized clinics—EfficientNet-B7 may 

be valuable where marginal gains in predictive precision are prioritized. 
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     Taken together, these results suggest that VGG-16 and EfficientNet-B0 offer the most practical trade-offs 

for ASD screening in real-world settings. VGG-16 provides slightly superior accuracy, albeit at higher 

computational cost, whereas EfficientNet-B0 maintains near-equivalent performance with significantly lower 

resource demands. The relative merits of InceptionV3 and EfficientNet-B7 depend on deployment context, 

with each occupying a niche defined by specific accuracy-efficiency thresholds. 

     A summary of these comparative findings is provided in Table 7, outlining each model’s performance 

characteristics to guide selection based on operational requirements and implementation constraints: 
 

Table 7: Comparative analysis of model strengths and weaknesses 

Model Strengths Weaknesses 

VGG-16 High accuracy Computational complexity can hamper practical 

implementation in resource-poor environments. 

InceptionV3 Balanced accuracy and 

computational efficiency 

With a relatively low accuracy compared to VGG-

16, precision contexts may find the tradeoff 

between efficiency and performance worthwhile. 

EfficientNet-B0 Stable and efficient performance It may not be applicable in some cases because its 

resource-intensive needs. 

EfficientNet-B7 Capacity for intricate tasks, 

commendable accuracy 

Application may be limited by resource-intensive 

nature. The marginal increase in accuracy should 

be balanced against computational costs. 

 

5. Discussion 

5.1 Interpretation of Results 

     The superior performance of the VGG-16 architecture—achieving an accuracy of 84.33%—may be 

attributable to its relatively simple and uniform design, which appears particularly well-suited for moderate-

sized, balanced datasets such as the one employed in this study. Despite its considerable parameter count (~138 

million), the network’s consistent use of 3×3 convolutional layers and its depth-wise regularity likely 

contribute to stable feature extraction without excessive risk of overfitting. In contrast, more complex models 

such as EfficientNet-B7, while offering higher theoretical capacity, may struggle to generalize effectively 

when trained on datasets of limited scale and domain specificity. 

     These findings align with prior evidence suggesting that model complexity should be carefully calibrated 

to the size and variability of available training data—an especially critical consideration in medical and clinical 

imaging contexts, where annotated datasets are often constrained. The strong performance of VGG-16 in this 

setting echoes earlier results reported by Beary et al. [15], who observed similar accuracy using VGG-19 on a 

related classification task. Our findings not only corroborate the viability of simpler architectures but also 

suggest that, under the right conditions, such models may offer a pragmatic balance between interpretability, 

performance, and deployment feasibility. 

     InceptionV3, while trailing VGG-16 slightly with an accuracy of 81.00%, nonetheless demonstrates the 

value of architectural features designed for multi-scale representation. Its inception modules facilitate the 

capture of both fine-grained and coarse structural patterns in facial morphology, which may be critical in 

recognizing the subtle phenotypic cues associated with ASD. Although its performance did not exceed that of 

VGG-16 in our experiments, InceptionV3 remains a compelling candidate for further optimization, particularly 

in contexts where the detection of heterogeneous traits is essential. 

     EfficientNet-B0 also performed robustly, with an accuracy of 83.67%, and presents a noteworthy 

compromise between classification performance and computational efficiency. Its compound scaling 
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approach—balancing depth, width, and resolution—enables strong generalization at a fraction of the 

computational cost, positioning it as a promising model for deployment in low-resource environments such as 

schools or community clinics. In such settings, real-time inference speed and hardware constraints often take 

precedence over marginal improvements in predictive accuracy, making EfficientNet-B0 an appealing option 

for practical implementation. 

     By contrast, EfficientNet-B7, despite its architectural sophistication and proven efficacy on large-scale 

image recognition benchmarks, achieved a comparatively modest accuracy of 80.00%. This performance 

suggests that the model’s extensive depth and parameterization may exceed the representational 

requirements—or capacity—of the current dataset, leading to diminishing returns. Nevertheless, its potential 

should not be dismissed; with larger or more heterogeneous datasets, or in applications requiring high-

resolution analysis, EfficientNet-B7 may prove advantageous. Its underperformance here underscores the 

necessity of aligning model scale with task complexity and data availability. 

     Taken together, these results affirm the potential of convolutional neural networks for early-stage ASD 

screening through facial image analysis. The high performance of VGG-16 and EfficientNet-B0 in particular 

reinforces the notion that, under conditions of balanced class distribution and moderate dataset size, less 

complex architectures can deliver competitive—and more easily deployable—performance. Importantly, these 

models demonstrated generalization without reliance on highly curated or synthetically augmented data, 

enhancing their credibility for real-world screening use. 

     Furthermore, our reported VGG-16 accuracy of 84.33% is consistent with or slightly exceeds comparable 

studies, such as the 84% reported by Beary et al. [15] using VGG-19 and the 90% reported by Grossard et al. 

[14], the latter of which focused on isolated facial subregions rather than holistic facial features. It is worth 

noting, however, that studies reporting higher accuracies often utilize smaller, less balanced, or clinically non-

validated datasets, which may artificially inflate model performance. In contrast, our use of a fully balanced 

dataset of school-aged children and rigorous cross-validation provides stronger evidence of practical relevance 

and model reliability. 

     These findings, therefore, suggest that deep learning-based facial analysis tools—particularly when 

anchored by thoughtfully chosen architectures—may serve as valuable components within a broader 

framework for early ASD identification, particularly in resource-limited or educational settings where 

traditional diagnostic pathways remain inaccessible or delayed 

5.2 Limitations 

     While the present study contributes valuable insights into the application of deep learning for autism 

spectrum disorder (ASD) prediction via facial image analysis, several limitations should be carefully 

considered when interpreting the findings and extrapolating their implications. 

     First, the dataset employed—sourced from publicly available online repositories—may exhibit limited 

demographic diversity. Although it is balanced in terms of autistic and non-autistic labels, the absence of 

critical metadata such as age, gender, ethnicity, and socio-environmental context constrains our ability to 

evaluate model fairness and generalizability. These demographic variables can influence facial morphology, 

expression patterns, and even image quality, potentially introducing subtle biases that may affect model 

performance across different population subgroups. 

     Second, the clinical validity of the dataset's ground truth labels is uncertain. The labeling process lacks 

transparency regarding whether ASD diagnoses were established through formal clinical assessments—such 

as the Autism Diagnostic Observation Schedule (ADOS) or the Autism Diagnostic Interview-Revised (ADI-

R)—or were self-reported or inferred through less rigorous means. This ambiguity raises concerns about the 

diagnostic fidelity of the data and may limit the translational applicability of the findings, particularly in 

clinical settings where validated diagnostic benchmarks are essential. 
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     Third, the exclusive reliance on static facial images presents inherent constraints. While facial morphology 

may capture some ASD-associated phenotypic traits, autism is a multifaceted neurodevelopmental condition 

characterized by dynamic behavioral features, including gaze avoidance, atypical prosody, motor stereotypies, 

and social interaction challenges. These features are not readily discernible in still images and may result in 

under-detection of ASD cases, particularly those with subtler or non-morphological manifestations. This 

underscores the potential value of multimodal approaches that integrate dynamic modalities—such as audio 

recordings, behavioral video, or interaction logs—to enrich diagnostic coverage and improve sensitivity. 

     Moreover, the dataset comprises curated, high-quality images—typically well-lit, centered, and captured 

under relatively controlled conditions. While this improves consistency for training purposes, it does not fully 

represent the variability inherent in real-world educational or clinical environments, where image capture may 

be affected by lighting, motion blur, background clutter, or subject movement. Consequently, models trained 

on such idealized data may experience reduced robustness when deployed in naturalistic settings. Future 

studies should consider incorporating in-the-wild data or employing real-time acquisition techniques to 

enhance ecological validity. 

     Finally, model performance is inherently dependent on both dataset size and quality. Variability in sample 

size, label accuracy, and feature representation can introduce noise and learning inefficiencies, limiting a 

model’s ability to generalize to unseen data. To mitigate these concerns, future research should emphasize the 

collection of large, demographically diverse, and clinically validated datasets. In parallel, methodological 

strategies such as transfer learning, data augmentation, and domain adaptation may help address limitations in 

data scale and heterogeneity. 

     For clarity, Table 8 summarizes the primary limitations identified in this study alongside their potential 

impact and recommended directions for future investigation: 
 

Table 8: Study limitations and mitigation 

Limitation Impact Mitigation Strategy 

Lack of demographic 

metadata (age, 

ethnicity, etc.) 

Limits generalizability 

across diverse 

populations 

Use datasets with structured demographic 

annotations; ensure stratified sampling 

Unverified ASD 

diagnoses 

Reduces clinical 

reliability and 

reproducibility 

Use clinically validated datasets with standardized 

diagnostic tools (e.g., ADOS) 

Reliance on static 

facial images 

May miss behavioral 

indicators not visible in 

photos 

Incorporate multimodal data (video, audio, behavior 

logs) for richer input 

Curated and ideal 

image conditions 

Poor generalization to 

real-world settings 

(e.g., school 

environments) 

Collect in-the-wild data; train models using real-time 

or lower-quality images 

Limited dataset size 

and variability 

Increases risk of 

overfitting and bias 

Expand dataset through multi-site collaboration and 

augmentation techniques 

 

5.3 – Clinical and educational relevance 

     From an applied perspective, the integration of deep learning-based autism screening tools into educational 

settings holds considerable promise for supporting early identification and intervention efforts. In particular, 

the VGG-16 architecture—demonstrated here to offer a favorable balance between classification accuracy and 

computational efficiency—may be especially well-suited for deployment in typical school environments, 
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where computing resources are often limited. Its ability to perform inference on standard desktop hardware 

(e.g., 8–16 GB RAM, CPU-only systems) without the need for dedicated GPUs enhances its practicality. 

Conversely, while models such as EfficientNet-B7 exhibit strong representational capacity, their considerable 

computational demands may render them less viable for widespread implementation in under-resourced or 

non-specialist educational contexts. 

     Equally critical to real-world applicability is the ease with which such models can be integrated into existing 

workflows. A user-friendly interface—such as a lightweight web-based application requiring minimal 

technical training—may facilitate broader adoption among educators, school psychologists, and health 

coordinators. However, the deployment of automated screening systems in sensitive domains such as autism 

detection necessitates careful consideration of the potential social and psychological consequences of 

misclassification, particularly false positives. 

     An erroneous indication of ASD risk, even when well-intentioned, may lead to unwarranted anxiety for 

families and educators, or place unnecessary burdens on referral systems. To address this, AI-based tools 

should be positioned not as diagnostic replacements but rather as decision-support systems that augment, rather 

than supplant, professional clinical judgment. Incorporating mechanisms such as uncertainty quantification or 

confidence thresholds could help mitigate the impact of uncertain predictions. For example, alerts might be 

restricted to only the most ambiguous or high-risk cases—e.g., the top 5% based on model uncertainty—

thereby reducing the likelihood of over-referral and optimizing the use of clinical resources. 

     In practical deployments, architectures like VGG-16 and EfficientNet-B0 are capable of generating 

predictions within seconds per image on typical school hardware, underscoring their operational viability. 

Nevertheless, to enhance the robustness and diagnostic fidelity of such systems, future work should explore 

the fusion of additional data modalities. Integrating visual data with audio inputs (e.g., speech prosody), 

behavioral video sequences, or structured observational assessments may allow for a more holistic 

representation of autism-related traits. Furthermore, the incorporation of ensemble modeling strategies and 

attention-based architectures—such as Vision Transformers—may contribute to improved performance, 

interpretability, and adaptability across diverse use cases. 

     Finally, to rigorously evaluate the generalizability and real-world utility of these tools, pilot deployments 

across a range of educational institutions are essential. Such field trials would provide valuable insight into 

practical constraints, user acceptability, and system-level integration challenges, thereby informing iterative 

model refinement and policy recommendations. 

6. Conclusion 

     This comparative analysis underscores the potential utility of deep learning methodologies for the early 

identification of Autism Spectrum Disorder (ASD) in school-aged children through facial image analysis. 

Among the four convolutional neural network (CNN) architectures evaluated, VGG-16 achieved the highest 

classification accuracy (84.33%), marginally outperforming both InceptionV3 (81.00%) and EfficientNet-B7 

(80.00%), despite being architecturally simpler. Notably, VGG-16’s consistent performance across multiple 

runs suggests that moderately deep and well-regularized architectures may be better suited to relatively small, 

balanced datasets than more complex, high-capacity models that risk overfitting under such constraints. 

EfficientNet-B0 also performed competitively, attaining 83.67% accuracy while offering a more favorable 

trade-off between computational efficiency and predictive performance. Its lightweight design makes it 

particularly attractive for real-world deployment in environments with limited hardware capabilities. 

     The ability of these models to achieve robust classification outcomes using static, publicly available facial 

images provides promising evidence for the feasibility of developing non-invasive, low-cost ASD screening 

tools. Such tools may be especially valuable in educational settings where access to specialized clinical 

assessment is constrained. Given that early detection is strongly associated with improved intervention 

outcomes, the integration of AI-based screening technologies could serve as an effective front-line support 
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mechanism for educators, caregivers, and clinicians—facilitating timely referrals and potentially accelerating 

diagnostic pathways. 

     Looking forward, several avenues merit further investigation. First, pilot studies conducted in actual school 

or clinical environments are recommended to assess the real-world applicability, usability, and acceptability 

of these models among end-users. Additionally, expanding data collection across multiple sites and diverse 

demographic groups would be critical to enhancing the generalizability and fairness of the models, particularly 

in addressing potential biases associated with age, ethnicity, and image quality variability. 

     Future research should also explore the incorporation of multimodal data sources—such as audio signals 

(e.g., prosody, speech patterns), behavioral logs, and textual assessments—to capture a broader spectrum of 

ASD-related traits not readily visible in static imagery. Furthermore, the adoption of ensemble learning 

frameworks or attention-based architectures, including Vision Transformers, may improve both classification 

performance and interpretability, particularly in edge cases or diagnostically ambiguous instances. Such 

methodological advancements could support the transition from exploratory proof-of-concept systems toward 

clinically meaningful applications, enabling more precise and context-sensitive autism screening tools. 
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