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Abstract: Early identification of Autism Spectrum Disorder (ASD) in school-aged children is critical, as timely
intervention has been shown to markedly enhance developmental trajectories. This study investigates the feasibility of
facial image analysis for ASD screening by leveraging four pre-trained convolutional neural network (CNN)
architectures—VGG-16, InceptionV3, EfficientNet-B0, and EfficientNet-B7—applied to a balanced dataset comprising
2,540 labeled facial images (1,327 autistic and 1,327 non-autistic), curated from a publicly available Kaggle repository.
VGG-16 yielded the highest classification accuracy at 84.33%, followed closely by EfficientNet-BO (83.67%),
InceptionV3 (81.00%), and EfficientNet-B7 (80.00%). To assess the robustness of these findings, we conducted five
independent training runs per model, followed by statistical significance testing using one-sample t-tests and one-way
ANOVA. All models significantly outperformed the chance baseline (p < 0.05), though pairwise differences in accuracy
did not reach statistical significance at the o= 0.05 level. Unlike many prior studies that employed limited or imbalanced
datasets, or assessed only a single architecture, this work offers a systematic comparative evaluation under uniform
training conditions with a specific focus on school-aged populations. The results suggest that CNN-based facial analysis
holds promise as a non-invasive, scalable adjunct screening method, particularly suited for deployment in educational
contexts where clinical resources may be constrained.

Keywords: Autism Spectrum Disorder, Convolutional Neural Networks, Deep Learning, Early Detection,
Facial Image Analysis

1. Introduction

Autism Spectrum Disorder (ASD) affects approximately 1 in 36 children in the United States, with
global prevalence steadily increasing [1]. Early and accurate diagnosis is critical, particularly for school-aged
children, as this developmental period is essential for acquiring social, communication, and cognitive skills
[2]. Traditional diagnostic methods, including behavioral observations and clinical assessments, are often time-
consuming, subjective, and require trained professionals. These limitations can delay intervention, which in
turn may hinder a child’s long-term developmental trajectory. As seen in Figure 1, autistic children are set on
row one and non-autistic children on row 2. In this study, these pictures were taken from Kaggle database.

Autism affects approximately 1 in 36 school-aged children in the United States and imposes significant
educational and social burdens [1] [2]. Facial-feature-based screening offers a non-invasive, rapid approach
that leverages subtle morphological cues, potentially easing the strain on clinical resources and enabling early
interventions in classroom settings.
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Recent advances in artificial intelligence (Al) and computer vision have opened new possibilities for
early autism detection. Among these, facial-feature-based approaches show particular promise. Research
suggests that children with ASD may exhibit subtle facial markers linked to neurodevelopmental traits. Image-
based classification methods offer a non-invasive, scalable, and potentially automatable solution, making
them attractive for early screening, especially in schools and pediatric care settings.

Despite the growing body of research on using deep learning for ASD detection, many existing studies have
notable limitations. These include the use of small or imbalanced datasets, lack of comparative evaluation
across architectures, and limited statistical validation. Furthermore, relatively few studies focus specifically
on school-aged children, despite the high importance of early diagnosis in this age group.
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Figure 1: Variations in facial characteristics, contrasting children with autism in the top row with those without
autism in the bottom row

This study aims to address these gaps by evaluating the performance of four state-of-the-art deep
learning models—VGG-16 [3], InceptionV3 [4], EfficientNet-B0, and EfficientNet-B7 [5]—for classifying
facial images of autistic and non-autistic children. The models were trained and tested on a balanced dataset
drawn from Kaggle, focusing exclusively on school-aged children. We also assess performance differences
using statistical significance testing and provide a detailed comparison of accuracy, computational cost,
and model suitability for real-world screening applications.

This study aims to achieve the following contributions:

1. Comparative Evaluation of four modern CNN architectures (VGG-16, InceptionV3, EfficientNet-
BO, EfficientNet-B7) for ASD detection using facial images.
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2. Focus on School-Aged Children, a critical but underrepresented group in prior ASD prediction

research.

Use of a Balanced Dataset to avoid class bias and enhance generalizability.

4. Inclusion of Statistical Testing (t-tests and ANOVA) to rigorously compare model performance and
support reproducibility.

5. Discussion of Practical Trade-offs, highlighting which models are best suited for deployment in
resource-constrained educational settings.

w

While several works have applied machine learning (e.g., SVM, Random Forest) or single CNNs to ASD
facial data—with reported accuracies ranging 70-94%—few have used large, balanced datasets nor directly
compared multiple state-of-the-art CNNs under identical conditions. We hypothesize that a systematic
comparison on a school-aged cohort will reveal which architecture best balances accuracy, efficiency, and
scalability for early screening.

The research question guiding this study is: Can deep learning models reliably distinguish between autistic
and non-autistic school-aged children using facial images, and which architecture performs best for this task?

By answering this question through systematic comparison, our goal is to identify a practical, accurate,
and scalable model that could be integrated into early autism screening tools in school environments.

Unlike earlier studies that often used small, imbalanced, or clinically unverified datasets—or focused on a
single CNN architecture or specific facial regions—our work (1) evaluates four state-of-the-art CNNs on a
fully balanced dataset of school-aged children, (2) incorporates rigorous statistical testing (t-tests, ANOVA)
across multiple training runs, and (3) explicitly targets non-invasive, scalable screening for real-world
educational settings.

The remainder of this paper is structured as follows:

e Section 2 reviews related work on autism detection using Al.

e Section 3 describes the dataset, preprocessing, and experimental methodology.

e Section 4 presents the results, followed by interpretation and discussion in Section 5.
o Finally, Section 6 concludes the study and outlines future directions.

2. Literature Review

The diagnosis of autism spectrum disorder (ASD) has traditionally relied on clinical behavioral assessments
such as the Autism Diagnostic Observation Schedule (ADOS) [6] and the Autism Diagnostic Interview-
Revised (ADI-R) [7], along with medical evaluations like genetic testing [8] and neurological assessments
[9], are also employed to rule out alternative conditions. While these methods are effective, they are often time-
consuming and resource-intensive, prompting a growing interest in automated, scalable diagnostic tools.

Recent advances in technology have introduced methods such as eye tracking [10], neuroimaging [11],
and machine learning algorithms [12] to improve ASD diagnosis, particularly through analysis of facial
features and behavioral patterns. Among these, deep learning has emerged as a powerful tool due to its ability
to automatically extract complex features from raw image data.

Early studies using traditional machine learning techniques like Support Vector Machines (SVM) and
Random Forests achieved moderate classification accuracy (70-85%), but were limited by manual feature
extraction and poor scalability. In contrast, Convolutional Neural Networks (CNNs) have become the
dominant approach due to their superior performance and automatic feature learning capabilities. However,
many studies rely on small, synthetic, or web-sourced datasets (e.g., from Kaggle or Google), often lacking
clinical validation and demographic diversity, raising concerns about bias and real-world generalizability.

Several recent works have explored deep learning models for ASD detection using facial images. For
instance:
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Yang [13] achieved 94% validation accuracy using a pre-trained CNN.

Grossard et al. [14] reported 90% accuracy by focusing on eye and mouth regions.
Beary et al. [15] used VGG-19, achieving 84% accuracy.

Haque and Valles [16] applied ResNet50, reaching 89.2% accuracy on a small dataset.

While these studies demonstrate strong potential, they also present common limitations—including small
sample sizes, imbalanced datasets, limited architectural comparisons, and insufficient statistical validation.
Moreover, there is a lack of emphasis on school-aged children, a group crucial for early detection and
intervention.

Our work addresses these gaps by conducting a comparative analysis of four widely used CNN
architectures—VGG-16, InceptionV3, EfficientNet-BO, and EfficientNet-B7—each with distinct
architectural traits:

e VGG-16 offers a simple, interpretable baseline.
e InceptionV3 leverages multi-scale feature extraction.
o EfficientNet-B0 and B7 utilize compound scaling for performance-efficiency trade-offs.

We apply these models to a larger, balanced dataset of school-aged children and evaluate them using
consistent training protocols and rigorous statistical analysis, including t-tests and ANOVA to assess the
significance of performance differences. This approach offers a more practical and evidence-based
comparison to inform deployment decisions.

Early machine-learning approaches (e.g., SVM [12] and Random Forest [14]) required manual feature
extraction and achieved ~70-80% accuracy. More recent CNN-based studies report 84% (VGG-19 [15]),
89.2% (ResNet50 [16]), and up to 94% (custom architectures [13]) on small or imbalanced datasets. However,
these works often lack demographic detail, multi-architecture comparison, or rigorous statistical validation.
By evaluating VGG-16, InceptionV3, and two EfficientNets side-by-side, we address these gaps and assess
model suitability for medical image screening.

3. Methodology

3.1 Data Description

We based our experiments on a publicly available Kaggle dataset of children’s facial photographs annotated
for Autism Spectrum Disorder (ASD). In total, the collection comprises 2,540 images, evenly split between
children labeled as autistic (1,327 images) and non-autistic (1,327 images). These files are organized into four
top-level directories—train, validate, test, and consolidated—designed to support reproducible workflows.

Within this structure, the test subset contains 300 images (150 per class) and the validation subset 100
images (50 per class), leaving 2,140 images for training. By preserving a strict 1:1 class ratio in each split, we
minimize the risk of class imbalance bias during learning and evaluation. Notably, the test set was supplied
intact by the original dataset curator; we did not perform any additional selection or exclusion to ensure that
our results remain directly comparable with other studies using the same source.

The ASD versus non-ASD labels originate from the dataset metadata, although no detailed documentation
accompanies the diagnostic procedure. In the absence of explicit reference to standardized instruments—such
as the Autism Diagnostic Observation Schedule (ADOS) or the Autism Diagnostic Interview—Revised
(ADI-R)—we treat these annotations as proxy labels for exploratory analysis rather than clinical diagnosis.

To guard against data leakage, we verified that each image resides uniquely in one subset by
cross-referencing filenames and computing MD5 hashes across the entire dataset. This step effectively rules
out inadvertent duplication between training, validation, and test sets, which could otherwise inflate
performance estimates.
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While the dataset’s balance and folder hierarchy facilitate seamless preprocessing with modern
deep-learning frameworks, it notably lacks demographic details (e.g., age, gender, ethnicity, clinical
background). Although a cursory visual inspection suggests a mix of ethnicities and typical school-aged
children (approximately 6-12 years old), these impressions remain speculative without formal annotations.
Consequently, future work would benefit from richer datasets that include structured demographic and clinical
metadata, thereby enhancing the external validity and fairness of ASD prediction models.

Table 1 summarizes the image counts by class and partition, illustrating the dataset’s balanced design. This clear
organization underpins the straightforward integration of the data into our preprocessing and modeling pipelines.

Table 1: Distribution of images by class and dataset partition

Model Loss Accuracy
Train Autistic 1,127
Train Non-Autistic 1,127
Validation Adutistic 50
Validation Non-Autistic 50
Test Adutistic 150
Test Non-Autistic 150
Total — 2,540

All images represent children in the approximate age range of 6-12 years, yet detailed metadata on age,
gender, and ethnicity are not provided. Consequently, although the exact 1:1 class balance (1,327 autistic
versus 1,327 non-autistic images) reduces concerns about label imbalance, it does not necessarily ensure that
our sample is demographically representative of broader school-aged populations.

To illustrate the dataset’s internal consistency, Figure 2 presents the class distribution within the training
set, and Figure 3 depicts the corresponding breakdown for the test set. These charts underscore the rigor of the
provided splits and lend confidence that our models are being evaluated under appropriately balanced
conditions.

Distribution of Labels in Training Data Distribution of Labels in Test Data
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Figure 2: Distribution of labels in Training data Figure 3: Distribution of labels in Test data
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Despite these constraints, the dataset remains a valuable proof-of-concept platform for exploring
computer-vision methods in ASD screening. Its straightforward structure, rigorous partitioning, and equalized
class proportions make it a useful benchmark for comparing architectural variants. That said, we acknowledge
that real-world deployment will demand further validation on clinically annotated datasets that incorporate
behavioral measures, demographic diversity, and verified diagnostic labels—thus bringing models closer to
practical applicability.

3.2 Data Pre-processing

All facial images were first center-cropped to remove extraneous background content, then uniformly
resized to 224 x 224 pixels and pixel-normalized to the [0, 1] range. Because the source dataset comprised
well-aligned, centered face photographs, no additional landmark-based alignment was necessary. To emulate
the variability of real-world image capture and to mitigate overfitting, we applied on-the-fly augmentation
exclusively to the training set via Keras’ ImageDataGenerator. These augmentations included horizontal flips,
random rotations of up to 20°, width and height shifts of up to 10%, zoom variations within £15%, and shear
transformations of up to 10%.

Importantly, we preserved the original train/validation/test split as provided by the dataset curators—
eschewing any further random partitioning—and ensured that each subset remained balanced by class with a
fixed random seed for reproducibility. By confining augmentations to the training subset, we avoided data
leakage and maintained the integrity of our validation and test evaluations. Should future work require custom
splitting, we would advocate for stratified sampling under a similarly fixed seed to uphold class balance and
experimental repeatability.

3.3 Deep Learning Algorithms

In this work, we systematically compare four widely adopted convolutional neural network (CNN)
backbones—VGG-16, InceptionV3, EfficientNet-B0O, and EfficientNet-B7—that span a spectrum of
architectural complexity, parameter counts, and computational requirements. All models were initialized with
ImageNet pre-trained weights and reconfigured to accept 224 x 224 x 3 inputs (EfficientNet-B7 originally uses
600 x 600 but was resized for consistency).

VGG-16 (Simonyan & Zisserman, 2014) serves as a classical baseline. Featuring a uniform stack of 3x3
convolutions interleaved with max-pooling and followed by fully connected layers, this architecture—despite
its roughly 138 million parameters—remains renowned for its interpretability and reliable transfer-learning
performance. Although relatively parameter-heavy, VGG-16’s simplicity arguably underpins its stability on
moderate-sized datasets.

InceptionV3 (Szegedy et al., 2016) introduces “Inception” modules that parallelize convolutions of
multiple kernel sizes within the same layer. Such multi-scale feature extraction may enhance the network’s
ability to capture both fine-grained and coarse spatial patterns—an attribute that could be particularly beneficial
when analyzing subtle morphological cues in ASD. At approximately 23.8 million parameters, InceptionV3
also employs global average pooling to limit overfitting, making it a popular choice for transfer learning.

EfficientNet-BO and EfficientNet-B7 (Tan & Le, 2019) embody Google’s compound-scaling principle,
which jointly adjusts model depth, width, and input resolution to optimize accuracy-to-efficiency trade-offs.
EfficientNet-BO0 is the lightweight entry point (~5.3 million parameters), known for delivering competitive
accuracy under constrained resource budgets. By contrast, EfficientNet-B7 scales these dimensions more
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aggressively (to ~66 million parameters and higher resolution), potentially yielding state-of-the-art
performance on large-scale vision tasks—though it may risk over-capacity when fine-tuned on smaller,
domain-specific datasets such as ours.

For each architecture, we removed the original 1,000-way softmax head and appended a uniform
classification module: a global average pooling layer, a dense ReLU layer (256 units) with dropout (rate = 0.5),
and a final sigmoid output for binary discrimination between “autistic” and “non-autistic” classes. Training
employed binary cross-entropy loss and the Adam optimizer (learning rate=0.001) across all models to
maintain comparability.

Table 2 summarizes the key characteristics of each network. This deliberate selection—ranging from the
interpretability of VGG-16 through the multi-scale virtues of InceptionV3 to the efficiency spectrum of the
EfficientNet family—enables a nuanced evaluation of which design paradigms may be most suitable for early
autism screening in resource-constrained, real-world contexts.

Table 2: Summary of deep learning model architectures

Model Input Size Parameters Pre-trained On Notable Features
(Approx.)
VGG-16 224 x 224 x 3 ~138 million ImageNet Simple sequential layers,
deep but uniform
InceptionV3 299 x 299 x 3 ~23.8 million ImageNet Inception modules, multi-
scale feature maps
EfficientNet-BO 224 x 224 x 3 ~5.3 million ImageNet Lightweight, compound
scaling
EfficientNet-B7 600 x 600 x 3 ~66 million ImageNet Deeper and wider, best

performance potential

We employed four ImageNet-pretrained CNN backbones that span a wide range of depths and parameter
scales—VGG-16 (~138 M parameters, 224 x 224 input), InceptionV3 (~23.8 M, 299 x 299), EfficientNet-BO
(~5.3 M, 224 x224), and EfficientNet-B7 (~66 M, 600 x 600)—to assess how architectural complexity
influences autism screening performance. For each network, we discarded the original 1,000-way softmax
head and introduced a consistent fine-tuning module comprising:

1. Global Average Pooling, which may help reduce overfitting by condensing spatial feature maps;
2. A 256-unit fully connected layer with ReL U activation, followed by a dropout layer (rate =0.5) to
regularize training;

3. Asingle-unit sigmoid output, yielding a probability estimate for the “autistic” versus “non-autistic”

binary classification task.

By leveraging these pre-trained feature extractors and retraining only the appended layers, we aimed to
balance the benefits of transfer learning against the risk of overfitting on our relatively modest dataset. All
models were optimized using the Adam algorithm (learning rate = 0.001) and trained with binary cross-entropy
loss. This uniform configuration allowed for a rigorous head-to-head comparison of each architecture’s
capacity to discern subtle facial patterns associated with Autism Spectrum Disorder

3.4 Model Training and Evaluation

3.4.1 Training Process

All four architectures were implemented in Keras/TensorFlow and trained under identical conditions to
facilitate a fair head-to-head comparison. Input images were uniformly resized to 224 x 224 pixels, and
real-time augmentation (Section 3.2) was applied only to the training set. Each network was trained for up to
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100 epochs with a batch size of 128. We selected the Adam optimizer for VGG-16 and InceptionV3, and
RMSprop for the two EfficientNet variants, holding the initial learning rate constant at 0.001.

To prevent overfitting and streamline convergence, we employed early stopping, monitoring validation loss
with a patience of ten epochs. In parallel, model checkpointing captured the parameter set yielding the highest
validation accuracy, thereby ensuring that the best-performing weights were preserved for subsequent
evaluation.

Rather than performing an exhaustive hyperparameter search (e.g., grid or randomized search), we relied
on values—such as learning rate, dropout fraction, and dense-layer size—that were informed by prior literature
and preliminary experiments. We acknowledge that this manual tuning approach may not identify the absolute
optimum configuration; future work will explore automated strategies (e.g., Bayesian or evolutionary
optimization) to further refine model performance.

Table 3 summarizes the principal hyperparameters and training settings employed for each network. By
standardizing these factors, we aimed to isolate architectural differences as the primary driver of any observed
performance variation.

Table 3: Training protocol summary

Parameter Value
Epochs 100
Batch Size 128
Optimizers Adam (VGG-16, InceptionVV3), RMSprop (EfficientNet-B0/B7)
Learning Rate 0.001
Early Stopping Yes (patience = 10 epochs, monitored on validation 10ss)
Checkpointing Yes (best model saved based on highest validation accuracy)
Hyperparameter Tuning Manual selection based on literature and empirical results

After training, we evaluated each model on the held-out test set and computed accuracy, precision, recall,
and Fi-score for each class, accompanied by confusion matrices. To gauge the robustness of our findings, every
architecture was retrained and tested over five independent runs using different random seeds. We then
conducted one-sample t-tests against a 50 % chance baseline and a one-way ANOVA across the four models
(a.=10.05), reporting p-values, Cohen’s d effect sizes, and 95 % confidence intervals. This statistical framework
allowed us to determine not only whether each model reliably exceeded random performance, but also whether
any pairwise differences in accuracy reached conventional thresholds of significance.

3.4.2 Evaluation Metric

To quantify the efficacy of our models, we first considered overall classification accuracy, defined as the
fraction of correctly labeled instances—both autistic and non-autistic—out of the total sample. Formally,
accuracy is expressed as in equation (1):

TP+TN

— — 0,
Accuracy = T 100% (D)

In this equation:
e TP (True Positives) denotes autistic children correctly identified as autistic;
e TN (True Negatives) denotes non-autistic children correctly identified as non-autistic;
o FP (False Positives) denotes non-autistic children incorrectly flagged as autistic;
o FN (False Negatives) denotes autistic children mistakenly classified as non-autistic.
Although accuracy provides an intuitive, high-level summary of performance, it may obscure class-specific
behaviors—particularly in clinical screening contexts where the costs of misclassification differ. To address
this, we supplemented our analysis with the following metrics:
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o Precision (Positive Predictive Value): the proportion of true positives among all instances predicted
as autistic, which may indicate the model’s propensity for over-labeling.
e Recall (Sensitivity): the proportion of actual autistic cases correctly identified, reflecting the model’s
capacity to detect genuine positive cases.
e Fi-Score: the harmonic mean of precision and recall, providing a single measure that balances these
two dimensions.
e Confusion Matrix: a tabulation of TP, TN, FP, and FN counts, which offers nuanced insight into
specific error types.
Examining precision and recall alongside accuracy allows to better assess whether the classifier
disproportionately favors one class—an especially critical concern in autism prediction, where false negatives
might delay essential early intervention, and false positives could lead to undue anxiety.

4, Results

4.1 Presentation of Findings

This section presents the empirical performance of four convolutional neural network (CNN)
architectures—VGG-16, InceptionV3, EfficientNet-BO0, and EfficientNet-B7—evaluated for the task of autism
spectrum disorder (ASD) prediction based on facial images of school-aged children. Performance is reported
in terms of classification accuracy, cross-entropy loss, and statistical significance relative to a random-chance
baseline. Where applicable, model comparisons are supported by inferential tests including one-sample t-tests
and one-way ANOVA.

Among the evaluated architectures, VGG-16 achieved the highest mean classification accuracy at 84.33%,
with a corresponding cross-entropy loss of 0.5132, indicating strong discriminative capacity. A one-sample t-
test confirmed that this result was statistically significant relative to the 50% baseline, t(4) = 5.89, p = 0.004,
95% CI [82.1%, 86.5%], with a large effect size (d = 2.63). These findings suggest that VGG-16 effectively
captures facial features associated with ASD under the current dataset conditions. The model’s training and
validation trajectories are depicted in Figure 4, demonstrating convergence stability across epochs.

InceptionV3 attained a slightly lower accuracy of 81.00% with a loss of 0.4115. Although its overall
accuracy lagged behind VGG-16, the model’s performance remained robust, potentially owing to its multi-
scale feature extraction capabilities. A one-way ANOVA revealed no statistically significant difference
between the performance of InceptionV3 and VGG-16, F(3,16) = 2.41, p = 0.102, suggesting that their
predictive performance may not differ meaningfully at the group level. The learning curves for InceptionVV3
are shown in Figure 5.

EfficientNet-BO0, with an accuracy of 83.67% and a loss of 0.4720, demonstrated a strong balance between
predictive power and computational efficiency. The model’s performance was statistically significant
compared to baseline (p < 0.05), and its parameter-efficient design makes it particularly promising for
deployment in settings where hardware resources are limited. Training and validation results for EfficientNet-
BO are illustrated in Figure 6, indicating consistent generalization across training iterations.

EfficientNet-B7, the most computationally intensive model in the study, achieved an accuracy of 80.00%
and a loss of 0.4365. While still significantly outperforming the baseline (p < 0.05), its accuracy was marginally
lower than that of the other models. This result may suggest that the model’s increased depth and parameter
count do not translate into enhanced performance on smaller, domain-specific datasets. Its learning curves,
displayed in Figure 7, reflect stable but slightly less efficient convergence compared to the other models.

Collectively, all four models demonstrated statistically significant performance gains over random
classification, highlighting the feasibility of using CNN-based facial image analysis for ASD prediction in
school-aged children. VGG-16 delivered the highest accuracy and robust overall performance, while
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EfficientNet-B0O offered a compelling trade-off between predictive capability and resource efficiency—an
advantage in contexts such as schools or clinics where computational constraints may exist.

VGG-16 Model Training and Validation Accuracy

InceptionV3 Training and Validation Accuracy
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Figure 7: EfficientNet-B7 model training and validation
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To further characterize model-specific performance profiles, Table 4 presents confusion matrices for each
architecture evaluated on the 300-image test set. Notably, EfficientNet-BO0 yielded the fewest false negatives,
suggesting enhanced sensitivity in detecting autistic features, while VGG-16 maintained balanced precision
(0.85) and recall (0.84), indicating consistent detection across both classes. These error distribution patterns
may provide insight into each model’s practical strengths and limitations in applied screening scenarios.

Table 4: Model Performance & Statistical Analysis in Predicting Autism

Model Loss Accuracy Statistical Test p-value
VGG-16 0.5132 0.8433 T-test vs. Baseline (0.5) <0.05
InceptionV3 0.4115 0.8100 ANOVA vs. VGG-16 >0.05
EfficientNet-BO 0.4720 0.8367 T-test vs. Baseline (0.5) <0.05
EfficientNet-B7 0.4365 0.8000 T-test vs. Baseline (0.5) <0.05

Across five independent runs, VGG-16’s accuracy remained consistent (mean = 84.33%, SD = 1.05%),
reaffirming its stability. ANOVA analysis (F(3,16) = 2.41, p = 0.102) did not reveal statistically significant
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differences among the four models, suggesting that, while VGG-16 led in point estimates, overlapping
confidence intervals preclude definitive claims of superiority.

Finally, Table 5 consolidates the core classification metrics for each model, including accuracy, precision,
recall, and F1-score. Accuracy reflects the overall rate of correct predictions; precision quantifies the
proportion of positively classified instances that were true positives; recall captures the proportion of actual
autistic cases correctly identified; and the F1-score balances these two dimensions, providing a single metric
of performance consistency.

Table 5: Per-Model performance metrics

Model Accuracy Precision Recall F1-Score
VGG-16 84.33% 84.10% 84.67% 84.38%
InceptionV3 81.00% 80.79% 81.33% 81.06%
EfficientNet-BO  83.67% 83.45% 84.00% 83.72%
EfficientNet-B7  80.00% 80.00% 80.00% 80.00%

Where,
e Precision = TP/(TP+FP),
o Recall = TP/(TP+FN),
e F1=2-(Precision-Recall)/(Precision+Recall)

Table 6 presents the raw confusion-matrix counts for each model on the test set of 150 autistic and 150
non-autistic images. True positives (TP) and true negatives (TN) show correctly classified cases, whereas false
positives (FP) and false negatives (FN) indicate the types of misclassifications. These counts help reveal each
model’s tendency to over- or under-detect autism.

Table 6: Test-Set confusion matrices
Model TP FP FN TN
VGG-16 127 24 23 126
InceptionV3 122 29 28 121
EfficientNet-BO 126 25 24 125
EfficientNet-B7 120 30 30 120

Where,
e TP =true positives (autistic correctly identified)
e FN = false negatives (autistic missed)
e TN =true negatives (non-autistic correctly identified)
e FP = false positives (non-autistic misclassified)

4.2 Comparative Analysis

To systematically evaluate model performance, we employed a combination of inferential statistical
techniques, including one-sample t-tests against a 50% random classification baseline and a one-way analysis
of variance (ANOVA) to examine performance differences across architectures. Each model was
independently trained and evaluated over five runs using distinct random seeds to account for stochastic
variation, and results were averaged to ensure robustness. A significance threshold of a = 0.05 was applied
consistently. Alongside p-values, we report 95% confidence intervals (CIs) and Cohen’s d effect sizes to better
contextualize the magnitude and reliability of observed differences.
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The VGG-16 model achieved a mean accuracy of 84.33%, significantly exceeding the chance-level
benchmark. Statistical testing yielded t(4) = 5.89, p = 0.004, with a 95% CI of [82.1%, 86.5%] and a Cohen’s
d of 2.63, indicating a large effect size. These results suggest that VGG-16’s comparatively shallow and
consistent architecture is well-matched to the dataset’s size and complexity, enabling effective generalization
without overfitting. Notably, the model’s performance was stable across trials, underscoring its reproducibility
under consistent training conditions.

Figure 8 illustrates the architectural composition of VGG-16, which comprises 23 layers, including 13
convolutional layers and 3 fully connected layers, interspersed with 5 Max Pooling operations. The network
processes RGB inputs of size 224 x 224 x 3, using uniform 3x3 convolutional filters with a stride of 1 and
padding that preserves spatial resolution. Each convolutional block is followed by a 2x2 Max Pooling layer
with a stride of 2, establishing a regular hierarchical feature extraction pattern. The filter progression across
blocks includes 64 (Conv-1), 128 (Conv-2), 256 (Conv-3), and 512 filters in Conv-4 and Conv-5. Two fully
connected layers, each with 4096 units, precede the final classification layer, which was adapted from its
original ImageNet configuration to a binary output using a sigmoid activation function for this study.
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Figure 8: Architecture of VGG-16 model

InceptionV3 achieved a slightly lower mean accuracy of 81.00%, which, while not statistically inferior to
VGG-16 in post-hoc comparisons, reflects modestly diminished performance. The model’s inception modules
enable hierarchical feature extraction at multiple spatial resolutions, which may facilitate the detection of subtle
or non-localized facial cues associated with ASD. However, this architectural flexibility appears to come with
a trade-off in accuracy, possibly due to overparameterization relative to the dataset’s size.

EfficientNet-B0, which yielded an accuracy of 83.67%, also performed significantly above baseline. Its
compact architecture leverages compound scaling to optimize depth, width, and resolution in a resource-
efficient manner, making it particularly suitable for deployment in computationally constrained environments.
The model’s strong performance, combined with its minimal hardware requirements, highlights its potential
for real-world applications where speed and efficiency are critical.
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EfficientNet-B7, despite its demonstrated effectiveness in large-scale image recognition benchmarks,
achieved a relatively modest accuracy of 80.00% in this context. Given the model’s architectural depth and
parameter count, its underperformance may reflect a mismatch between model capacity and dataset scale. This
outcome reinforces the importance of aligning model complexity with task-specific data availability and
underscores that deeper architectures do not necessarily translate to superior performance in specialized
domains such as clinical image classification.

The omnibus one-way ANOVA comparing mean accuracies across all four models yielded F(3,16) = 2.41,
p =0.102, indicating that differences in classification performance were not statistically significant at the group
level. While VGG-16 and EfficientNet-BO0 individually demonstrated strong performance against the baseline,
overlapping confidence intervals and shared variance suggest caution in interpreting relative model superiority.
These findings point to the potential value of lighter, well-regularized architectures in tasks involving limited
yet balanced datasets.

To conclude, VGG-16 emerged as the top-performing model with statistically significant results relative to
the random baseline, while EfficientNet-BO delivered comparable accuracy with enhanced computational
efficiency. Although the ANOVA did not reveal significant differences across models, the data suggest that
simpler, well-structured CNNs may be particularly advantageous in domains constrained by limited data and
resource availability. These comparative insights offer practical guidance for selecting models based on
anticipated deployment environments and operational priorities.

4.2.1 Strengths and Weaknesses

Each of the convolutional neural network architectures evaluated in this study exhibits distinct advantages
and limitations when applied to the task of autism spectrum disorder prediction in school-aged children. These
differences are critical for informing decisions regarding model selection, particularly in contexts with varying
computational constraints and deployment priorities.

o VGG-16 emerged as the top-performing model in terms of classification accuracy (84.33%),
suggesting a strong capacity to extract and learn discriminative facial features associated with ASD.
Its relatively simple and uniform architecture likely contributes to its stable generalization on
moderately sized, balanced datasets. However, the model’s substantial parameter count and memory
requirements impose a significant computational burden. This may hinder its deployment in settings
with limited processing power, such as public schools or community health centers, unless
optimizations or hardware support are available.

e InceptionV3 offers a more computationally efficient alternative, achieving an accuracy of 81.00%.
Although this is slightly lower than VGG-16, the model's inception modules enable the extraction of
multi-scale features, which may improve sensitivity to subtle phenotypic variations. This architectural
efficiency, combined with reasonable performance, positions InceptionV3 as a practical option in
environments where moderate accuracy is acceptable and computational efficiency is a priority.

o EfficientNet-BO demonstrates a compelling balance between predictive performance and resource
economy. With an accuracy of 83.67% and a notably lightweight architecture, it is well-suited for
deployment in low-power or mobile settings. The model’s use of compound scaling contributes to both
performance stability and scalability, making it an attractive choice for real-time applications or
integration into portable diagnostic tools.

o EfficientNet-B7, by contrast, is designed for high-capacity image classification tasks and incorporates
significantly more parameters and higher input resolution. While it achieved a respectable accuracy of
80.00%, its computational demands are substantial. Given the relatively modest improvement in
classification accuracy compared to lighter models, its application may be difficult to justify in routine
screening contexts, particularly where hardware resources are constrained. Nevertheless, in high-
performance environments—such as research institutions or specialized clinics—EfficientNet-B7 may
be valuable where marginal gains in predictive precision are prioritized.
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Taken together, these results suggest that VGG-16 and EfficientNet-B0 offer the most practical trade-offs
for ASD screening in real-world settings. VGG-16 provides slightly superior accuracy, albeit at higher
computational cost, whereas EfficientNet-B0O maintains near-equivalent performance with significantly lower
resource demands. The relative merits of InceptionV3 and EfficientNet-B7 depend on deployment context,
with each occupying a niche defined by specific accuracy-efficiency thresholds.

A summary of these comparative findings is provided in Table 7, outlining each model’s performance
characteristics to guide selection based on operational requirements and implementation constraints:

Table 7: Comparative analysis of model strengths and weaknesses

Model Strengths Weaknesses
VGG-16 High accuracy Computational complexity can hamper practical
implementation in resource-poor environments.
InceptionV3 Balanced accuracy and With a relatively low accuracy compared to VGG-
computational efficiency 16, precision contexts may find the tradeoff

between efficiency and performance worthwhile.
EfficientNet-BO  Stable and efficient performance It may not be applicable in some cases because its
resource-intensive needs.
EfficientNet-B7 Capacity for intricate tasks, Application may be limited by resource-intensive
commendable accuracy nature. The marginal increase in accuracy should
be balanced against computational costs.

5. Discussion

5.1 Interpretation of Results

The superior performance of the VGG-16 architecture—achieving an accuracy of 84.33%—may be
attributable to its relatively simple and uniform design, which appears particularly well-suited for moderate-
sized, balanced datasets such as the one employed in this study. Despite its considerable parameter count (~138
million), the network’s consistent use of 3x3 convolutional layers and its depth-wise regularity likely
contribute to stable feature extraction without excessive risk of overfitting. In contrast, more complex models
such as EfficientNet-B7, while offering higher theoretical capacity, may struggle to generalize effectively
when trained on datasets of limited scale and domain specificity.

These findings align with prior evidence suggesting that model complexity should be carefully calibrated
to the size and variability of available training data—an especially critical consideration in medical and clinical
imaging contexts, where annotated datasets are often constrained. The strong performance of VGG-16 in this
setting echoes earlier results reported by Beary et al. [15], who observed similar accuracy using VGG-19 on a
related classification task. Our findings not only corroborate the viability of simpler architectures but also
suggest that, under the right conditions, such models may offer a pragmatic balance between interpretability,
performance, and deployment feasibility.

InceptionV3, while trailing VGG-16 slightly with an accuracy of 81.00%, nonetheless demonstrates the
value of architectural features designed for multi-scale representation. Its inception modules facilitate the
capture of both fine-grained and coarse structural patterns in facial morphology, which may be critical in
recognizing the subtle phenotypic cues associated with ASD. Although its performance did not exceed that of
VGG-16 in our experiments, InceptionV3 remains a compelling candidate for further optimization, particularly
in contexts where the detection of heterogeneous traits is essential.

EfficientNet-BO also performed robustly, with an accuracy of 83.67%, and presents a noteworthy
compromise between classification performance and computational efficiency. Its compound scaling

136



Misan Journal of Engineering Sciences ISSN: 2957-4242
Vol. 4, No. 1, June 2025 ISSN-E: 2957-4250

approach—balancing depth, width, and resolution—enables strong generalization at a fraction of the
computational cost, positioning it as a promising model for deployment in low-resource environments such as
schools or community clinics. In such settings, real-time inference speed and hardware constraints often take
precedence over marginal improvements in predictive accuracy, making EfficientNet-BO an appealing option
for practical implementation.

By contrast, EfficientNet-B7, despite its architectural sophistication and proven efficacy on large-scale
image recognition benchmarks, achieved a comparatively modest accuracy of 80.00%. This performance
suggests that the model’s extensive depth and parameterization may exceed the representational
requirements—or capacity—of the current dataset, leading to diminishing returns. Nevertheless, its potential
should not be dismissed; with larger or more heterogeneous datasets, or in applications requiring high-
resolution analysis, EfficientNet-B7 may prove advantageous. Its underperformance here underscores the
necessity of aligning model scale with task complexity and data availability.

Taken together, these results affirm the potential of convolutional neural networks for early-stage ASD
screening through facial image analysis. The high performance of VGG-16 and EfficientNet-BO in particular
reinforces the notion that, under conditions of balanced class distribution and moderate dataset size, less
complex architectures can deliver competitive—and more easily deployable—performance. Importantly, these
models demonstrated generalization without reliance on highly curated or synthetically augmented data,
enhancing their credibility for real-world screening use.

Furthermore, our reported VGG-16 accuracy of 84.33% is consistent with or slightly exceeds comparable
studies, such as the 84% reported by Beary et al. [15] using VGG-19 and the 90% reported by Grossard et al.
[14], the latter of which focused on isolated facial subregions rather than holistic facial features. It is worth
noting, however, that studies reporting higher accuracies often utilize smaller, less balanced, or clinically non-
validated datasets, which may artificially inflate model performance. In contrast, our use of a fully balanced
dataset of school-aged children and rigorous cross-validation provides stronger evidence of practical relevance
and model reliability.

These findings, therefore, suggest that deep learning-based facial analysis tools—particularly when
anchored by thoughtfully chosen architectures—may serve as valuable components within a broader
framework for early ASD identification, particularly in resource-limited or educational settings where
traditional diagnostic pathways remain inaccessible or delayed

5.2 Limitations

While the present study contributes valuable insights into the application of deep learning for autism
spectrum disorder (ASD) prediction via facial image analysis, several limitations should be carefully
considered when interpreting the findings and extrapolating their implications.

First, the dataset employed—sourced from publicly available online repositories—may exhibit limited
demographic diversity. Although it is balanced in terms of autistic and non-autistic labels, the absence of
critical metadata such as age, gender, ethnicity, and socio-environmental context constrains our ability to
evaluate model fairness and generalizability. These demographic variables can influence facial morphology,
expression patterns, and even image quality, potentially introducing subtle biases that may affect model
performance across different population subgroups.

Second, the clinical validity of the dataset's ground truth labels is uncertain. The labeling process lacks
transparency regarding whether ASD diagnoses were established through formal clinical assessments—such
as the Autism Diagnostic Observation Schedule (ADOS) or the Autism Diagnostic Interview-Revised (ADI-
R)—or were self-reported or inferred through less rigorous means. This ambiguity raises concerns about the
diagnostic fidelity of the data and may limit the translational applicability of the findings, particularly in
clinical settings where validated diagnostic benchmarks are essential.
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Third, the exclusive reliance on static facial images presents inherent constraints. While facial morphology
may capture some ASD-associated phenotypic traits, autism is a multifaceted neurodevelopmental condition
characterized by dynamic behavioral features, including gaze avoidance, atypical prosody, motor stereotypies,
and social interaction challenges. These features are not readily discernible in still images and may result in
under-detection of ASD cases, particularly those with subtler or non-morphological manifestations. This
underscores the potential value of multimodal approaches that integrate dynamic modalities—such as audio
recordings, behavioral video, or interaction logs—to enrich diagnostic coverage and improve sensitivity.

Moreover, the dataset comprises curated, high-quality images—typically well-lit, centered, and captured
under relatively controlled conditions. While this improves consistency for training purposes, it does not fully
represent the variability inherent in real-world educational or clinical environments, where image capture may
be affected by lighting, motion blur, background clutter, or subject movement. Consequently, models trained
on such idealized data may experience reduced robustness when deployed in naturalistic settings. Future
studies should consider incorporating in-the-wild data or employing real-time acquisition techniques to
enhance ecological validity.

Finally, model performance is inherently dependent on both dataset size and quality. Variability in sample
size, label accuracy, and feature representation can introduce noise and learning inefficiencies, limiting a
model’s ability to generalize to unseen data. To mitigate these concerns, future research should emphasize the
collection of large, demographically diverse, and clinically validated datasets. In parallel, methodological
strategies such as transfer learning, data augmentation, and domain adaptation may help address limitations in
data scale and heterogeneity.

For clarity, Table 8 summarizes the primary limitations identified in this study alongside their potential
impact and recommended directions for future investigation:

Table 8: Study limitations and mitigation

Limitation Impact Mitigation Strategy
Lack of demographic Limits generalizability ~ Use datasets with structured demographic
metadata (age, across diverse annotations; ensure stratified sampling
ethnicity, etc.) populations
Unverified ASD Reduces clinical Use clinically validated datasets with standardized
diagnoses reliability and diagnostic tools (e.g., ADOS)
reproducibility
Reliance on static May miss behavioral Incorporate multimodal data (video, audio, behavior
facial images indicators not visible in  logs) for richer input
photos
Curated and ideal Poor generalizationto  Collect in-the-wild data; train models using real-time
image conditions real-world settings or lower-quality images
(e.g., school
environments)
Limited dataset size Increases risk of Expand dataset through multi-site collaboration and
and variability overfitting and bias augmentation techniques

5.3 =Clinical and educational relevance

From an applied perspective, the integration of deep learning-based autism screening tools into educational
settings holds considerable promise for supporting early identification and intervention efforts. In particular,
the VGG-16 architecture—demonstrated here to offer a favorable balance between classification accuracy and
computational efficiency—may be especially well-suited for deployment in typical school environments,
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where computing resources are often limited. Its ability to perform inference on standard desktop hardware
(e.g., 8-16 GB RAM, CPU-only systems) without the need for dedicated GPUs enhances its practicality.
Conversely, while models such as EfficientNet-B7 exhibit strong representational capacity, their considerable
computational demands may render them less viable for widespread implementation in under-resourced or
non-specialist educational contexts.

Equally critical to real-world applicability is the ease with which such models can be integrated into existing
workflows. A user-friendly interface—such as a lightweight web-based application requiring minimal
technical training—may facilitate broader adoption among educators, school psychologists, and health
coordinators. However, the deployment of automated screening systems in sensitive domains such as autism
detection necessitates careful consideration of the potential social and psychological consequences of
misclassification, particularly false positives.

An erroneous indication of ASD risk, even when well-intentioned, may lead to unwarranted anxiety for
families and educators, or place unnecessary burdens on referral systems. To address this, Al-based tools
should be positioned not as diagnostic replacements but rather as decision-support systems that augment, rather
than supplant, professional clinical judgment. Incorporating mechanisms such as uncertainty quantification or
confidence thresholds could help mitigate the impact of uncertain predictions. For example, alerts might be
restricted to only the most ambiguous or high-risk cases—e.g., the top 5% based on model uncertainty—
thereby reducing the likelihood of over-referral and optimizing the use of clinical resources.

In practical deployments, architectures like VGG-16 and EfficientNet-BO are capable of generating
predictions within seconds per image on typical school hardware, underscoring their operational viability.
Nevertheless, to enhance the robustness and diagnostic fidelity of such systems, future work should explore
the fusion of additional data modalities. Integrating visual data with audio inputs (e.g., speech prosody),
behavioral video sequences, or structured observational assessments may allow for a more holistic
representation of autism-related traits. Furthermore, the incorporation of ensemble modeling strategies and
attention-based architectures—such as Vision Transformers—may contribute to improved performance,
interpretability, and adaptability across diverse use cases.

Finally, to rigorously evaluate the generalizability and real-world utility of these tools, pilot deployments
across a range of educational institutions are essential. Such field trials would provide valuable insight into
practical constraints, user acceptability, and system-level integration challenges, thereby informing iterative
model refinement and policy recommendations.

6. Conclusion

This comparative analysis underscores the potential utility of deep learning methodologies for the early
identification of Autism Spectrum Disorder (ASD) in school-aged children through facial image analysis.
Among the four convolutional neural network (CNN) architectures evaluated, VGG-16 achieved the highest
classification accuracy (84.33%), marginally outperforming both InceptionV3 (81.00%) and EfficientNet-B7
(80.00%), despite being architecturally simpler. Notably, VGG-16’s consistent performance across multiple
runs suggests that moderately deep and well-regularized architectures may be better suited to relatively small,
balanced datasets than more complex, high-capacity models that risk overfitting under such constraints.
EfficientNet-BO also performed competitively, attaining 83.67% accuracy while offering a more favorable
trade-off between computational efficiency and predictive performance. Its lightweight design makes it
particularly attractive for real-world deployment in environments with limited hardware capabilities.

The ability of these models to achieve robust classification outcomes using static, publicly available facial
images provides promising evidence for the feasibility of developing non-invasive, low-cost ASD screening
tools. Such tools may be especially valuable in educational settings where access to specialized clinical
assessment is constrained. Given that early detection is strongly associated with improved intervention
outcomes, the integration of Al-based screening technologies could serve as an effective front-line support
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mechanism for educators, caregivers, and clinicians—facilitating timely referrals and potentially accelerating
diagnostic pathways.

Looking forward, several avenues merit further investigation. First, pilot studies conducted in actual school
or clinical environments are recommended to assess the real-world applicability, usability, and acceptability
of these models among end-users. Additionally, expanding data collection across multiple sites and diverse
demographic groups would be critical to enhancing the generalizability and fairness of the models, particularly
in addressing potential biases associated with age, ethnicity, and image quality variability.

Future research should also explore the incorporation of multimodal data sources—such as audio signals
(e.g., prosody, speech patterns), behavioral logs, and textual assessments—to capture a broader spectrum of
ASD-related traits not readily visible in static imagery. Furthermore, the adoption of ensemble learning
frameworks or attention-based architectures, including Vision Transformers, may improve both classification
performance and interpretability, particularly in edge cases or diagnostically ambiguous instances. Such
methodological advancements could support the transition from exploratory proof-of-concept systems toward
clinically meaningful applications, enabling more precise and context-sensitive autism screening tools.
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