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Abstract: This study shows the possibility of predicting specific characteristicsof kerosene and gas oil
using experimental measurements as inputs. Variables for programming (ANN) of artificial neuron
networks. This study examines fuels from Dora refinery and investigates the relationship between fuel
density and various properties such as volume, viscosity, and temperature. The correlation equation was
determined by several linear regression analyses, and the coefficient (R2) showed some measurements in a
strong achieved:R = 0.99986 for keosene, R=0.99886 for gas oil.
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1- Introduction

Evaluating fuel functions is an expensive and long process primarily based on specific operating
conditions. High quality testing has a major impact on the price of oil quality. The experimental method
predicts the physical properties of kerosene and gas oil, but is time-consuming and expensive. However,
without reprocessing, the kerosene and gas oil industry will need a more efficient way to complete it at a
cheaper price in a practical and shorter period. Xiao-Yu Wang & et al. [1], their study summarized the
effects of fuel composition and hydrocarbon molecular structure on the physicochemical properties of fuels,
including fluidity, flash point, and thermal oxidation stability at low temperatures ( NHOC), low
temperatures (viscosity and freezing). Several correlations and predictions of fuel properties from chemical
composition were checked. Furthermore, fuel properties were correlated with hydrogen/carbon moles (N
H/C) and molecular weight (M).The results of the minimal square method suggest that the H/C-MOL ratio
and M bonding are suitable for estimating the density, NHOC, viscosity, and evaluation of hydrocarbon
fuels
David J. Cookson & et al. [2], investigated the correlation between the fuel composition of kerose
ne and diesel fuels and several fuel properties. Equestrian values and compositional data were e
valuated with a simple linear relationship. Multiple linear regression analyses
were used to derive correlation equations and coefficients of multiple measurements R2 were

used to display the quality of adaptation between observed and computational properties
(Rusinoff, 2000).
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Narges Zohari & et al. [3], presented two new reliable simple correlations for predicting the flash
point of kerosene hydrocarbons using multiple linear regression methods, and they found that th
e flash point of kerosene fuels can be expressed as a function of elemental composition and sev
eral structural parameters.

Attempts to predict the CFPP in fuels has been done by Al-Shanableh et al.who developed
models for predicting CFPP in bio-diesel from its fatty acid composition using both artificial neural
network (ANN) and Fuzzy logic. Both methods showed promising results with R2 values of 0.96
and 0.98 [4, 5].

Chuanjie Wu et al. (2006), ANN was applied using factors such as viscosity, density, refractive sect
ion, CFPP of current components, and proportion of individual components. They also modeled ca
ses with a certain amount of additives, but did not use additives as parameters.The model was test
ed at a refinery and the results were accepted [6].

Li Weimin & et al., explore the use of artificial neural networks (ANNSs), specifically for predicting
properties such as pour point (PP) and cold filter plugging point (CFPP) of diesel oil, as well as the
octane number of gasoline. They suggest an application of ANNs in the petroleum industry for
predicting fuel characteristics [7]. Semwal and et al. were worked to develop new correlations.
Three low-temperature properties correlations, the Pour point, Cloud point, and Cold filter plugging
point were established to predict accurately of up to 30% with the new point equatio .[8],

While other researchers report models for prediction of CFPP based on spectroscopy [9,10]. This m
ethod is slow and makes it difficult to improve the process. Additionally, in addition to high

capital investment costs and high operating costs, it may need to purchase individual machines for
the property you want to test.

We use a variety of tests to assess the quality of oils for different uses. Prediction of the physical
properties of kerosene and gas oil using experimental methods has a high level of accuracy. Howe
ver, it takes time and cost. The kerosene and gas oil industry requires more efficient and functional
methods, which can be performed in less costly and in less time than experimental methods.
Therefore, artificial neural networks (ANNSs) are considered the best alternative to predict the phy-
sical properties of kerosene and gas oil.

2. Experimental work

Two samples studied. One was kerosene and another gas oil. Several physical properties were
measured such as viscosity (ASTM D-445), volume and density (ASTM D1480-21). At different
temperatures, 19 measurements were obtained for each property (Tables 1 and 2).

2.1 Kerosene

Kerosene, also known as paraffin or paraffin oil, is a flammable, pale yellow or colorless
peetroleum product with a distinctive odor associated with the volatility between gasoline and diesel
oil. This is produced by atmospheric distillation of crude oils in the 150°C and 280°C range and is
further processed in downstream units to improve product quality. There are many kerosene classes.
Therefore, the property is specified as a range value. Standard quality parameters and experimental
methods used for measuring properties..

Table 1: Some physical properties for kerosene
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Item No. Temperature, 0C Viscosity, Density, Volume

cst g/m3 mL
il 25 5.12 0.7612 15.0
2 27.5 4.98 0.7598 15.05
3 30 4.84 0.7584 15.1
4 325 4.68 0.7567 15.13
5 35 4.52 0.755 15.15
6 375 4.39 0.7533 15.18
il 40 4.25 0.7516 15.2
8 425 4.08 0.7499 115822
9 45 3.92 0.7499 15.25
10 475 3.81 0.7463 15.27
11 50 3.71 0.744 15.3
12 52.5 3.51 0.7426 15.35
13 55 3.33 0.7406 15.4
14 57.5 3.31 0.7386 15.42
15 60 3.3 0.7366 15.45
16 62.5 3.22 0.735 15.47
17 65 3.14 0.7334 15.5
18 67.5 3.04 0.7318 15.52
19 70 2.94 0.7301 15.55

2.2 Gas oil

Gas oil is a crude oil fraction distilled in the 300-550°C range and produced by a traditional
(atmospheric or vacuum) distillation process. It is dark and viscous, and remains as a result of the
refined distillation of crude oil or as a mixture with light components, and is used in steamers and
various industrial processes, and steam generation,

Table 2: Some physical properties for gas oil

Iltem Temperature °C Viscosity, cst Density, g/m?® Volume,
No. mL
1 25 11.64 0.7864 15.0
2 275 10.92 0.784 15.05
3 30 10.2 0.7795 15.1
4 32.5 9.78 0.7965 15.13
5 35 9.37 0.7746 15.15
6 375 8.96 0.7728 15.18
I 40 8.49 0.7709 15.2
8 42.5 8.02 0.7685 15.22
9 45 7.55 0.7662 15.25
10 47.5 7.08 0.7638 15.27
11 50 7.01 0.7614 15.3
12 52.5 6.73 0.7602 15.35
13 55 6.45 0.7589 154
14 57.5 6.2 0.7571 15.42
15 60 5.95 0.7552 15.45
16 62.5 5.74 0.7528 15.47
17 65 5.53 0.7503 155
18 67.5 5.35 0.7475 15.52
19 70 5.17 0.7447 15.55

252



Misan Journal of Engineering Sciences ISSN: 2957-4242
Vol. 4, No. 1, June 2025 ISSN-E: 2957-4250

3- Model evaluation - Neural Net Fitting

During the project, modeling was performed in a neuron network tuning app to create,
visualize and train a two-tier feedforward network to solve the MATLAB data tuning problem. |
used this app, which imported data by Excel files into the MATLAB R2022B work area and split
into training, validation, testing, and updating selected weight and preload values according
to Levenberg Marquardt optimization. The fastest training algorithm is Levenberg-

Marquardt training, but it requires more memory than other techniques. Results were analyzed
using visualization diagrams such as regression adjustments and error histograms.

4- Results

Kerosene or gas oil, predictors and reactions are given, and observations are in the row.
Information about the imported data records contains 19 observations each with four
characteristics:Temperature, viscosity, and volume are displayed in the model overview. The
data is divided into 70% of the training to verify that the network is generalized and to verify that
the pre-adjusted training is tested by 15% for generalization of the network [11]. For network
creation, the created network was a two-layer forward network with sigmoid transmission
functions in the hidden layer and linear transmission functions in the output layer. The shift size
value defined the number of hidden neurons and was retained as standard layer size 10. The
network plot was updated to reflect the input data. The data had 4 inputs (features) and one
output as shown in Figs. 1a, 1b.

- Neural Network Fitting — — ><
meorA e e I
E ! Training data: TO o
Tamer: || VRlEEEEDn CleEE = | Lenrer s==e ~ 1| Trean | PLOTS | TEST | EXPORT
- Test data: 15—
/ ~ ~ ~ ~
AT A SPLIT BUILD
Network T Model Summanry
Two-layer feedfornward netw Train a neural network to map predictors to continuous responses.
Data
Input Predictors: KeroseneandGasoilforANNS3 - [19x4 double]
4 Responses: data - [19x1 double]
KeroseneandGasoilforAMNMNS3: double array of 19 observations with -«
1 features.
- Hidden data: double array of 19 observations with 1 features.
I AN | I b I Adgorithm
Data division: Random
Training algorithm: Levenberg-Marquardt
@ Performance: Mean squared error
Training Results
| —— I Training start time: 10-May-2024 10:26:10
Layver size: 10
10
- = Opbservations MSE R
1 Training 13 5. 487 2e-10 1.000
a8 CutputTy wvalidation 3 1.0298e-09 1.000
I W | I b I Test 3 2.5041e-06 1.000
Additional Test Results
@ Predictors: KeroseneandGasoilfTorAMNMNSS3S - [4x12 double]
Responses: data - [1x19 double]
Keroseneand GasoilforAMNMNS3: double array of 18 observations wwith -«
| / I features.
\_ 1) data: double array of 19 observations with 1 features.
Observations | MSE | R
Output s
E Additional test 19 | 3.9600e-07 | o.oes
1
Fig.1a: Kerosene feed forward network with sigmoid hidden neurons and linear output neurons suitable for regression
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KeroseneandGasoilforANMNSZ2: double array of 19 observations
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Output N
E Observations | MSE R
1
Additional test 19 | 3.6078e-04 0.9912

-

Fig.1la: Gas oil feed forward network with sigmoid hidden neurons and linear output neurons suitable for regression

4.1 Network Training

Training progress continues until three iterations of kerosene and two iterations of gas oil
(" etverification criteria") increase one after another. See, :Tables 3, 4 , and traioning
plot,”:. 2a, 2b”, and performance plots” Figs. 3a, 3b”.

Table 3: Kerosene training results

Training Results

Training finished: Reached minimum gradient &

Training Progress

Unit Initial Value Stopped Value Target Value
Epoch 0 22 1000
Elapsed Time - 00:00:01 -
Performance 0.00102 8.93e-17 0
Gradient 0.00281 7.53e-10 1e-07

Mu 0.001 1e-11 1e+10
Validation Checks 0 3 6 -~
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Table 4: Gas oil training results

Training Results

Training finished: Reached minimum gradient &

Training Progress

Unit Initial Value Stopped Value Target Value
Epoch 0 18 1000
Elapsed Time - 00:00:01 -
Performance 0.000579 3.9e-10 0
Gradient 0.00242 9.23e-08 1e-07
Mu 0.001 1e-08 1e+10

Network Training

In the Training pane, the training progress, training continues until the validation error increases
consecutively for three iterations for kerosene and two iterations for gasoil ("Met validation criterion") as in
Tables 3,4 , kerosene and gasoil training state plots Figs. 2a, 2b ,and performance plots Figs.3a,3b.

Gradient = 7.5322e-10, at epoch 22

10-% _\

10-10 i L . &

Mu = 1e-11, at epoch 22

gradient

=
=
1010 .
3 Validation Checks = 3, at epoch 22 Py
E2f ¢
2 ¢
(4] 20
22 Epochs

Fig. .2a: Kerosene training state plots
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Fig. 3a : Kerosene performance plot
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3 Best Validation Performance is 1.0298-09 at epoch 16

Mean Squared Error (mse)

18 Epochs

Fig.3b : Gas oil performance plot

4.2 Result analysis

The model summary contains information about the training algorithms and the training results for all
data records for kerosene and gas oil are shown in Tables 3 and 4. The regression graphs and diagrams in
Figs. 4a, 4b show network predictions (editions) for training, validation, and test set responses (goals). . For
kerosene and gas oil, the adjustment R= 0.99986 for all data records, 0.99986 for kerosene, and R = 0.9886
for gas oil is pretty good and doesn't require more accurate results. However, if the network is more accurate,
all new training is up to different initials and network.

In the error histogram, for additional checks to add network performance, the blue bar represents training
data, the green bar represents validation data, and the red beam represents test data. The The histogram Figs.
5a, 5b provide an indication of outliers, which are data points where the fit is significantly worse than most
of the data. The results are very good. The error-free points are 0.00000866 for kerosene and 0.000019 for
gas oil.

Future work
More detail results can be using experimental physical properties of kerosene as well as experimental
physical properties such as flash point, auto-ignition temperature, melting/freezing point, color, pH, initial

boiling point and boiling area, vapor pressure, auto-ignition, specific gravity. Comparisons can then be
estimated to determine which of the admission predictors dominate.
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Abbreviation

ANN Artificial Neural Network

CFPP Cold Filter Plugging Point

ASTM -455 Standard Test Method for Kinematic Viscosity of Transparent and
Opaque Liquid (and Calculation of Dynamic Viscosity).

ASTM D1480-21 Standard Test Method for Density and Relative Density (Specific

Gravity) of Viscous Materials by Bingham Pycnometer

Cst Centistock ( Knematic viscosity unit)
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