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among users. Once decrypted, the 10T data undergoes classification through a Long Short-Term
Memory (LSTM) neural network, whose hyperparameters are fine-tuned using the Snake
Optimizer algorithm (SO) to enhance detection performance. The framework’s effectiveness is
evaluated using the TON IloT dataset, which encompasses realistic attack scenarios.
Experimental findings indicate a superior classification accuracy of 98%, demonstrating the
system’s ability to reliably differentiate between various attack types and normal network
behavior. These results underscore the critical role of combining strong encryption
methodologies with state-of-the-art machine learning techniques to advance security within
cloud-based loT environments.
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1. Introduction

As the world moves to the state where massive amounts of data are continuously and intensively exchanged, processed and
stored in the cloud, the need for encryption solution cannot be overemphasized [1]. Encryption is foundational to
establishing security controls in that it has the capacity to alter data into an unusable form to anyone who is unauthorized
and guarantee data integrity, confidentiality and availability in cloud environment that can be complex [2]. This becomes
especially important, bearing in mind that cloud computing is inherently distributed which gives rise to how multiple
platforms, devices, and interfaces interact with one another, all of which creates many potential points of attack [3].

Encryption may be done using a single secret key referred to as symmetric encryption or using a pair of keys; the public
and the private key of the asymmetric encryption system transform the original plain text into the cipher text. This raises
almost an impenetrable wall against miscreants wanting to take advantage of protected data [4]. In the context of cloud
computing, encryption has become not only as the mechanism of data security in the cloud, for data in use, in transit or at
rest but also as a mechanism for compliance requirements, trust and security augmentation of cloud service models
including laaS, PaaS, and SaaS [5]. It is also worthy of note that encryption is also central to dealing with multiple tenancy
in cloud environments. This means that tenants that have stored different data must be prevented from accessing data
belonging to other tenants even if the information is stored in a common infrastructure [6]. Therefore, while analyses the
issue of encrypted data management in cloud computing, one is in a technological, legal, and ethical minefield in which
every element needs further investigation and constant improvement to protect data in the ever-changing enemy
environment [7].

Data security especially within cloud environments is quickly becoming an issue of focus given the increased trends and
threats within the cyber environment and given the constant generation of large volumes of data [8]. Security of cloud
storage goes beyond mere technical and operational issues affecting organizational sustainability and compliance with the
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law as well as clients’ confidence [9]. It is a well-known fact that storing data in a cloud is intrinsically risky because the
data is on the Internet and can be accessed from anywhere [10]. Thus, companies, governments or other organizations and
ordinary people need to implement strict cipher techniques, access control systems and routine external audits in order to
protect own digital assets from breaches, data leaks or unauthorized changes, to prevent data and personal information
leakage and to protect data and information integrity and confidentiality [11].

In terms of economic and reputations, data security is important to avoiding the disastrous effects that may result from data
loss such as; economical, legal repercussions and reputational [13]. In an age, where data is said to be the ‘new oil,” it is
imperative that this vital resource is safeguarded to underpin enterprise growth, and digital activity [14]. Another
consideration and impact that has legal and ethical ramifications also rely on secure cloud storage because of the growing
legal requirements to safeguard consumers and other stakeholders’ information due to the GDPR and HIPAA among other
standards [14]. This makes it require a set of stringent security measures and deserves a very keen observation or, rather, a
due diligence with respect to security of digital information. Therefore, cloud data security is not just an information
technology need but a matter of depth and breadth that covers aspects of cyber defense, legal requirements, moral
obligation, and corporate existence in a world of advanced computer connectivity [15].

The structure of this paper is as follows: Section 2 offers an in-depth analysis of the existing literature, emphasizing the
principal advantages, limitations, and datasets associated with prior studies. Section 3 describes the proposed framework in
detail, outlining the encryption mechanisms, key exchange protocol, and classification methodology. Section 4 reports the
experimental findings, including efficiency assessments and comparative performance analysis. Finally, Section 5
summarizes the main conclusions and suggests potential avenues for future research

2. Related Work

In recent years, the literature addressing 10T security within cloud infrastructures has increasingly
emphasized the development of lightweight cryptographic solutions [16], innovative authentication
mechanisms, and methods that preserve data privacy [17]. Notably, several researchers have
introduced signature-based key establishment protocols tailored for 10T applications, while others have
designed lightweight cryptographic frameworks capable of withstanding a variety of cyber threats
[18]. In parallel, the adoption of deep learning techniques for anomaly detection in loT networks has
gained significant attention [19]. Although these advancements have contributed to enhancing the
overall security landscape, many of the proposed approaches continue to face notable obstacles, such
as limited scalability, increased computational demands, and challenges in adapting to complex, real-
world attack scenarios [20,21].

Table 1 presents a comparative summary of the most pertinent studies, outlining the core
methodologies, datasets utilized, as well as the principal strengths and limitations identified in each
work.

Table 1: Summary of Related Work

Appearance (in Time New

Refer.  Model/Algorithm Dataset Strengths R
oman)
: Comprehensive
Encryption . .
. . survey, comparative Resource constraints on 1oT
algorithms in loT data ) .
[16] . computational devices, balance between
Cloud-based loT  (simulated/real) complexity analysis security and efficienc
(AES, RSA, ECC) piexity analysts, y y
strong security focus
Enhanced security
Blockchain IoRT network and privacy, High computational overhead,
[18] . S decentralized trust, s
integration in IoORT data . . complexity in management
suitable for mobile
robots
Real-time threat
Zero Trust Distributed detection, High complexity, resource-
[19] Architecture + Al cloud-edge-10T decentralized intensive, implementation
for 6G security data governance, Al- challenges
driven automation
Blockchain + 10T in . Real-time monitoring, .
. Industrial 10T . o Infrastructure complexity,
[20] Industrial sector data data immutability, intearation challendes
(ESP32, Raspberry smart contracts for g g
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Appearance (in Time New

Refer.  Model/Algorithm Dataset Strengths
Roman)
Pi, Polygon integrity
blockchain)
Hyperledger_ Fabric loT datasets Enha_nced security Requires significant computing
BaaS with e and privacy, scalable
[21] PN (smart cities, resources, deployment
public/private key and modular .
. smart homes) . complexity
encryption architecture
Security-aware . .
scheduling with Linear QoS Improvement, Scheduling complexity,
. workflow adaptive resource . ;
[22] approximate - : approximate computation may
L applications allocation based on
computations in q . q affect accuracy
Fog-Cloud ata security needs
Autoencoder + NSL-KDD High accuracy
Isolation Forest intrusion (95.4%), real-time Limited to binary classification,
[23] (Auto-IF) for detection binary classification,  may not detect complex/multi-
intrusion detection efficient for fog class attacks
. dataset X
in Fog devices
Log-cosh .
Var?ational Very high accuracy
0 )
Autoencoder CICIDS2017 (99.89%), generation Computationally intensive,
[24] of unknown attack . -
(LVAE) for dataset data. improved requires large training data
unknown attack d’ P
detection etection
Improved detection
Hybrid Deep CICIBS2017 accuracy for .
g and other Increased model complexity,
[25] Learning Model for unknown attacks, . N
. . benchmark . . higher training time
Intrusion Detection combines multiple
datasets .
DL techniques
. Binary and Provides confidence
[26] Stat}:g:':;? Smcgtrgods multi-class intervals for F1, Not a predictive model, focused
estimation classification supports multi-class on evaluation metrics
data evaluation

3. Proposed Methodology

In the proposed methodology, we begin by utilizing the TON IoT dataset, which undergoes encryption
and decryption processes by two users, User 1 and User 2. The encryption methodology ensures that
data is securely transferred using a combination of AES and RSA encryption techniques. Once
encrypted, the data is securely transmitted between the users. After decryption, the dataset is then
preprocessed to prepare it for further analysis.

Subsequently, classification is done under the work of a deep learning model. To address this, we use a
metaheuristic algorithm known as the Snake Optimizer and apply it to the model to adjust the pertinent
parameters to optimality. Using deep learning model and appropriate optimizer, the dataset is
classified into attack or benign categories with high performance due to repetitive optimization.

This will be explained further in the next sub-section where encryption, decryption, preprocessing and
classification using the proposed deep learning model in conjunction with Snake Optimizer will be
described.

3.1 Dataset Overview

The TON IloT dataset is a clear and systematic dataset that was established to support various
investigations proposing the domain of the internet of things (loT), especially in facets requiring
intrusion detection, anomaly detection, and cybersecurity. It has been particularly designed to respond
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to the issues related to the continuous and accelerated expansion of 10T connected objects in sectors
including smart cities, industrial processes control systems, and edge computing applications.

Files contain one type of data: traffic from the 10T network; telemetry data from sensors; logs from the
loT gateway, which makes it possible to study the security situation in the 10T system in its entirety. It
was developed in a testbed where realistic 10T environment and actual attack types such as Distributed
Denial-of-Service (DDoS), malware, backdoor, and ransomware and among others. These attack types
imitate those that may affect confidentiality, integrity and accessibility of 10T devices and networks.

TON IoT data comes in the form of both the training set and the testing set, so it can be generalized
into supervised and unsupervised machine learning. The labeled data comprises normal and attack
behaviors that can be used in the training and testing of IDSs and anomaly detection systems. Given
the nature of data and sources included in the mentioned dataset it pretending to be highly suitable for
the development and testing of new generations of security for the 10T environment, particularly in
reference to the edges of the network where most of the problems evolve from.

Here, with TON 10T, relying on actual data generated by loT networks, researchers can test new
detection procedures and tune security mechanisms to properly protect I0T environments from
emerging cyber dangers.

3.2 Encryption Phase

In the encryption phase, as depicted in Figure 1, the architecture employs a combination of symmetric

and asymmetric cryptographic techniques to ensure both confidentiality and integrity of data during
transmission. This process begins with loading the dataset that is to be secured. For each record, a
unique AES (Advanced Encryption Standard) key is generated.

AES is chosen for its high efficiency, which is attributed to its robust S-box design and secure key
structure. In this implementation, the AES key is generated using the AESGCM.generate_key()
function, with a key size of 256 bits. The Galois/Counter Mode (GCM) is utilized as the mode of
operation for AES, providing not only strong encryption but also authentication to verify the integrity
and authenticity of the data.

After the data is encrypted using the AES key, the next step is to secure the AES key itself. This is
achieved by encrypting the AES key with the recipient’s public RSA key, ensuring that only the
intended recipient can decrypt and access the original AES key. Finally, both the AES-encrypted data
and the RSA-encrypted AES key are transmitted to the recipient, establishing a secure and reliable
method for data protection during transfer. This approach reflects the principles of hybrid encryption,
similar to those adopted in Pretty Good Privacy (PGP), combining the speed of symmetric encryption
with the secure key exchange of asymmetric encryption.

User 1

Encryption
Load Data ] \

1

Generate AES Key ]

Data_Encrypted by Send to
AES User 2

Encrypt data by AES Key
———

AES Key

AES key._ Encrypted byJ< Encrypt AES key By Public RSA Key —/ |

RSA
/RSA Key from
User 2

Fig. 1. Encryption Phase Flowchart
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3.2.1 Key Generation and Data Encryption

AES key (also referred to as KAES is used for encryption of the data. The encryption follows a
conventional AES encryption type by which plaintext data(P) a is converted to ciphertext Cagg USing
the developed AES key. The AES encryption can be mathematically described as:

Cags = AES(P, K y5)
(1)

A new and distinct nonce is used when encrypting data, and this amount is utilized only one, which
means when re-encrypting the same data, one will receive a different value for the cipher. The nonce is
not secret information, but it counts to be unique in every encrypting process to ensure the security of
data.

The dataset in turn in bytes is encrypted using AES-GCM algorithm with the AES key and nonce.
AES-GCM comes loaded with two attributes; confidentiality and data integrity..., whereby no one has
the right to alter the data that is encrypted.

3.3.2 AES Key Encryption

When the dataset is encrypted with the help of AES key, then the next important step in the system is
to protect the AES key before it transmits to the other end. This is done using RSA encryption, which
is also a form of asymmetric encryption key technique also. In this case, the AES key (Kgs)is

encrypted using the receiver’s public RSA key ((KRS A pubhc)) of the User 2. The RSA encryption can
be described mathematically as follows:

é(z/;ES, encrypted = RSA_Encryp I(KAESI Kgrsa, public)

This is made possible by RSA in that only the recipient to be identified as User 2 and with the
corresponding private RSA key ((KRSA, lm,ivate))only Decrypt and recovers the original AES.

3.3.3 Transmission
After the encryption of the dataset and AES key, they are to be transmitted ready for connection with
the next party. The encrypted dataset, ((CAES))and the encrypted AES key ((KAES, encrypted)) is

transmitted to User 2. The receiver therefore can use his/her own private RSA key to decrypt the AES
key later used to decrypt the data.

Algorithm 1: Encryption Process

# Key Length
AES Key Length: 256 Bits
RSA Key Length: 2048 Bits
Hashes: SHA256
Inputs:
Plaintext (P): The data that needs to be encrypted.
Receiver's RSA Public Key: The RSA public key of the receiver (User 2).
Outputs:
Ciphertext (C): The encrypted data.
Encrypted AES Key (C-k): The AES key encrypted using the receiver's RSA public key.
Nonce (N): A unigue nonce used for AES-GCM encryption.
1 - Load Receiver's Public Key
Retrieve the RSA public key of User 2 from a secure key management system or storage.
2- Generate AES Key
Generate a symmetric AES key (256 bits).
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3- Generate Nonce
Generate a unique 12-byte nonce for AES-GCM encryption (N)
4- Encrypt Data using AES-GCM, and Nonce
Cags = AES(P, Kags)
5- Encrypt the AES key using RSA:
Kags, encrypted = RSA_Encrypt(Kags, Krsa. public)
6- Save the ciphertext C, encrypted AES key Ck, and nonce N for transmission to Cloud Provider

3.3 Decryption Phase

In the decryption phase (illustrated in Fig. 2), the goal is to reverse the encryption operations
performed in the previous step, allowing User 2 to retrieve the original data. This phase begins once
User 2 receives the encrypted data ((Cagps)), the encrypted AES key ((KAES, encrypwd)), and the nonce
((Nags)) from User 1.

User 2

Decryption

[ Genera te RSA Key ]
A
~ ~
Public RSA key Private RSA key
use RSA key to decrypt —J

[ Decryption ]‘ 3

[AES key Encrypted
by RSA

use the decrypted key
to decrypt Data

[Data_Encrypted by
AES

[ Data ]

Fig. 2. Decryption Phase Flowchart

The first step involves generating an RSA key pair on User 2's side. This key pair consists of a public
key (Krsa, public)and a private key (Krsa, private)- 1 N€ private RSA key is essential for decrypting the
AES key, which was encrypted with the corresponding public RSA key during the encryption phase.

3.3.1 AES Key Decryption

User 2 uses their private RSA key to decrypt the AES key (Kags). The decryption process can be
described using the following equation:

KAES = RSA_D ecrypt (KAES, encrypted» KRSA, private) (3)

After using the RSA decryption with the help of the private key, User 2 gets the initial AES key which
the user will use to decrypt the dataset.

3.3.2 Data Decryption

When the AES key is obtained, then User 2 proceeds to decrypt the dataset. According to the AES
decryption it can be open that data encrypted by AES-GCM should be decrypted by nonce value of
Ngsby using at the time of encryption. The decryption process transforms the ciphertext (C,pg) back
into its original plaintext form (P), as expressed in the following equation:

P = AES Decrypt(C g5, K4gs, Nags)
(4)
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AES-GCM mode used here not only for decryption of the data with confidentiality but also for data
integrity as GCM mode consist an authentication checksum.

3.3.3 Data Reconstruction

As we mentioned earlier, after the decryption process is over then the plain text is reconstructed to the
form it was in before encryption. The result of decrypted data is written to a CSV file so User 2 has the
original dataset as data source. The process ends with the formation of the last data file that contains
deliberately encrypted data of the information that User 1 transmitted.

Algorithm 2: Decryption Process

Inputs:
Ciphertext (C): The encrypted data.
Encrypted AES Key Kags encrypted: The AES key encrypted using the RSA public
key.
Nonce (N): The nonce used during encryption.
Receiver's RSA Private Key: The private RSA key of Cloud Provider.

Outputs:
Decrypted Plaintext (P): The original data after decryption.
1. Load Kagsencryptea @Nd Nonce N received from User 1

2. Load Receiver's Private Key
3. Decrypt AES Key using RSA Private Key
K_AES=RSA _ Decrypt (K_(AES,encrypted), K_(RSA,private))
4. Decrypt ciphertext C using AES-GCM
P = AES_Decrypt(C4gs.Kags \Naes)
5. Save Decrypted Data (plaintext P)

3.4. Deep Learning Phase

In the deep learning phase (illustrated in Fig. 3), the goal is to classify the dataset into two categories:
attack or benign. This phase is composed of pre-processing of data, choice of parameter, data mapping,
training by using LSTM network and classification.

Deep Learning

|’ . 3 Parameter Tuning
| Preprocessing \using Snake optimizer

Data £ |
@ (_J/— Classification 1 °

Attack Benign

LSTM

Fig. 3. Deep Learning Phase Flowchart

3.4.1 Data Preprocessing

As a preprocessing step before passing the data to the deep learning model it is trained, the training
data is preprocessed. The features of the datasets are standardized by techniques such as the MinMax
Scaler in which scales all the features within the dataset to a range of 0 to 1. For categorical data, two
or more categories are converted into equivalent numerical feature using label encoding. After data
preprocessing the given dataset is divided into training data set and testing data set with 80:20 ratio.
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3.4.2 Parameter Tuning with Snake Optimizer

Classification with the introduced LSTM based model requires tuning of the hyperparameters affecting
the model such as the number of LSTM units in the layers and the degree of dropout. To accomplish
this, we use another metaheuristic optimization algorithm known as the Snake Optimizer in order to
fine-tune these parameters. The Snake Optimizer mimics the movement of a snake whereby its
position on the hyperparameter space is the current values of the hyperparameters such as the units,
and velocity those of the hyperparameters.

The Snake Optimizer, therefore, ranks each set of hyperparameters by training the LSTM model and
logging the validation accuracy. In each cycle of optimization loop, the position and velocity of the
snake are adjusted to determine the specific hyperparameters which maximize the accuracy of cross
validation of the model. The obtained best hyperparameters are then used to build up the final LSTM
classification model.

3.4.3 LSTM Model and Classification

The LSTM network is designed to process sequential data. For this task, the LSTM is configured with
the optimal number of units (neurons) and dropout rates found during the parameter tuning phase. The
architecture of the LSTM model includes the following layers:

1. LSTM Layer: This layer captures temporal dependencies in the input data.

2. Dropout Layer: Used to minimize the overfitting problem as a fraction of the units can be dropped
while training continues.

3. Dense Layers: Layers after LSTM are FC layers that decrease dimensionality like LSTM layers
and there is an output layer.

The final output layer consists of two neurons with a softmax (or sigmoid for the binary classification)

activation function, which provides the probability distribution for two classes: attack and benign. The

classification process can be mathematically characterized using categorical cross-entropy loss

function, this parameter is improved through the training process:

Loss = =N vilog ()
)

In which (y;),is the ground truth, and (¥,), is the probability calculated for class (i).

3.4.4 Model Evaluation and Visualization

Besides, at the end of model training one evaluates the efficiency of the model using accuracy,
confusion matrix, as well as classification report. Actually, the confusion matrix presents a more
detailed description of true positive values, true negatives, false positives, and false negatives, which is
defined for calculating of sensitivity and specificity. These two measures assess how well the
constructed model is capable of identifying an attack and distinguishing between benign data and an
attack. These metrics can be computed as follows:

True Positives

Sensitivity = — ;
True Positives+ False Negatives
(6)
o True Negatives
Specificity = e —
True Negatives+ False Positives
(7)

Training accuracy, validation accuracy and loss over epochs are also illustrated for the same task to
study the performance character of the model during training.
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Algorithm 3 This algorithm presents the deep learning phase with data preprocessing and
hyperparameters optimization using Snake Optimizer and LSTM model training and evaluation on
classification tasks.

Subsequently, the Snake Optimizer is incorporated to enter the exact hyperparameters of the LSTM
model after the data has been preprocessed. The Snake Optimizer starts with a population of snakes,
and where each snake embodies a set of hyperparameters (the number of LSTM units and the dropout
rate). These parameters are defined based on the position of each snake in the hyperparameter space
while velocity defines the manner in which that position is changed across iterations. The
hyperparameters of each set are assessed by training an LSTM model for that set and computing its
validation accuracy. Updating the positions and velocities of other snakes is based on the best-
performing snake, in terms of validation accuracy. If this process of iterations is done many times as in
case of auto machine learning, then the optimizer reaches a set of following hyperparameters.

With the optimal hyperparameters selected, the final LSTM model is built and trained on the training
dataset. Once more, LSTM consists of layers developed to extract temporal properties and dropout
layers that help minimize overfitting by eradicating complete units during training. When model is
trained for a fixed number of epochs and performance of the model is measured on the test dataset.

Algorithm 3: Deep Learning Phase Pseudocode

Require: Preprocessed dataset X, labels y

Ensure: Trained LSTM model and classification results (Attack/Benign)

1: Data Preprocessing:

1.1: Split the dataset X and labels y into training and testing sets (Xirain: Xtest» Ytrain:Ytest)-
1.2: Scale the feature values using MinMaxScaler.

1.3: Encode categorical labels using LabelEncoder

1.4: Convert the labels to one-hot encoded format

2: Parameter Tuning with Snake Optimizer:

2.1: Initialize a population of snakes with random positions (hyperparameters) and
velocities.
2.2: For each iteration do:

2.3: For each snake in the population do:

2.4:  Map snake’s position to hyperparameters (LSTM units, dropout).

2.5:  Build and compile an LSTM model with the chosen hyperparameters.

2.6:  Train the model using X;-qinand Yirain

2.7:  Evaluate model accuracy on the validation set.

2.8:  Update the snake’s fitness (validation accuracy).
End for

2.9: Update each snake’s position and velocity based on the best-performing snake.
End for.

2.10: Select the best hyperparameters from the Snake optimizer.

3: LSTM Model Training:

3.1: Build the final LSTM model using the best hyperparameters.

3.2: Train the LSTM model on the training data (X¢yqin, y_{train}) for a set number of
epochs.

3.3: Evaluate the model on the testing data (X;es¢,Veest)

3.4: Plot training and validation loss and accuracy over epochs.

4: Model Evaluation:

4.1: Use the trained LSTM model to predict the labels for the test data.

4.2: Compute confusion matrix, accuracy, sensitivity, and specificity.

215



Jabber And Mahdi , mspas, Vol. 3, No. 4, 2025
Output the classification results (Attack/Benign) based on the model’s predictions.

4. Results and Discussion

The results obtained from the deep learning model, tuned with the Snake optimizer, demonstrate high
effectiveness in classifying attack and benign categories. as illustrated in Figure 4 and Figure 5.
Specifically, Figure 4 shows a consistent decrease in training loss from approximately 0.30 to 0.10,
while validation loss initially fluctuates around 0.30, rises to 0.40 at epoch 5, then steadily declines to
about 0.15 by the final epoch, indicating good generalization on unseen data. Concurrently, Figure 5
depicts training accuracy rising from about 87% to 96%, with validation accuracy stabilizing near 97%
despite early fluctuations. These trends collectively confirm the model’s robust performance in
classifying attack and benign instances accurately. The confusion matrix showed only 1,380 benign
samples misclassified as attacks and 402 attack samples misclassified as benign, supporting the
model’s accuracy. Sensitivity and specificity values for both classes were approximately 98%, further
validating the model’s ability to correctly identify true positives and negatives. Overall, these findings
confirm that the proposed model achieves reliable and accurate detection of cyberattacks in loT
environments, with strong potential for application to new, unseen datasets.

Training and Validation Loss

o0.40 - Training Loss
walidation Loss

0.35

0.30 - \

0.25 - \
0.20 7 \/

0.15

Loss

0.10

0.05

o] 2 4 6 8
Epochs

Fig. 4. Training and validation loss across 10 epochs, showing the model's steady improvement in
minimizing error on both training and validation datasets. The training loss steadily decreases, while
the validation loss shows initial fluctuations before stabilizing

Training and Validation Accuracy

Training Accuracy

0.975 1 . -
Validation Accuracy

0.950 1

o0.925 4 /

0.900 - /
0.875 /

0.850 4

Accuracy

0.825 4

0.800 +

Epochs ° é
Fig. 5. Training and validation accuracy over 10 epochs, illustrating the model's increasing accuracy in
both training and validation sets. Despite early fluctuations, the model achieves a high validation
accuracy, stabilizing at around 97% by the final epoch.

Attack intensity during the experimental evaluation of the system was controlled by adjusting the rate
at which attacks were executed. The tests were structured into three main categories: low intensity (a
limited number of attacks within a given time frame), medium intensity (increased frequency and
diversity of attacks), and high intensity (frequent and coordinated attacks, such as distributed denial-
of-service scenarios).
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In this study, the Scapy library—a powerful and open-source tool developed in Python—was
employed to generate a wide range of synthetic attacks on the 10T network. Scapy offers extensive
flexibility in crafting and customizing network packets (including TCP, UDP, ICMP, and others),
enabling the simulation of highly realistic attack scenarios.

Attack intensity was modulated by varying both the rate of malicious packet transmission and the
number of simultaneous open connections during each experiment. For instance, low-intensity attacks
involved sending only a small number of packets per minute, while the intensity was gradually
increased by raising the packet rate and the number of simulated attacking devices, culminating in
high-density attacks that emulate denial-of-service (DoS/DDoS) conditions.

Leveraging Scapy allowed for comprehensive testing of the proposed system across diverse
environments. Performance metrics—including accuracy, response time, and false alarm rate—were
assessed under each level of attack intensity. The results demonstrated that the system maintained
robust and reliable performance, even under severe and varied attack conditions, underscoring the
effectiveness of the proposed security framework in realistic 10T scenarios.

Table 2. Metrics of the Proposed System Across Different 10T Devices and Attack Intensities.

Attack  Accuracy Encryption Decryption  False Alarm

DEEE 13fEs Intensity (%) Time (ms) Time (ms) Rate (%)

Temperature Sensor Low 99.2 12 11 0.8

Motion Sensor Medium 98.9 13 12 1.0

Surveillance Camera  High 98.4 15 14 1.3

loT Gateway Low 99.4 11 10 0.7

loT Gateway High 98.7 16 15 1.2
100
90
80
70
60
50
40
30
20
10
0

Low Medium High Low High
Temperature Motion Sensor Surveillance loT Gateway loT Gateway
Sensor Camera
W Accuracy (%) B Encryption Time (ms) Decryption Time (ms) False Alarm Rate (%)

Fig. 6. Performance Metrics of the Proposed System Across Different 10T Devices and Attack
Intensities

As shown in Table 2 and illustrated in Figure 6, the proposed system exhibited outstanding
performance across a variety of 10T device types and under different attack intensities. The system
consistently achieved a classification accuracy above 98%, even in high-intensity attack scenarios.
Both encryption and decryption times remained low across all tested cases, ensuring the framework’s
suitability for real-time and latency-sensitive 10T applications. Furthermore, the false alarm rate was
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minimal in every scenario, underscoring the system’s reliability in distinguishing between legitimate
and malicious activities. These results collectively confirm the adaptability of the proposed framework
to heterogeneous 10T environments and its effectiveness in addressing diverse and evolving security
threats, making it a robust solution for securing data in intelligent cloud-based platforms.

4.1 Hyperparameter Optimization and Comparative Performance Analysis of LSTM Networks

In this work, we employed the Snake Optimizer (SO) to fine-tune the hyperparameters of a LSTM
network, aiming to enhance its intrusion detection capabilities. To rigorously evaluate the effectiveness
of this approach, we conducted a comparative analysis against an LSTM model optimized via the
Genetic Algorithm (GA). The empirical results, summarized in the accompanying table 3 and Figure 7,
reveal that the LSTM-SO configuration consistently surpasses the LSTM-GA across all key
performance indicators, including precision, recall, F1-score, and overall accuracy. Notably, the
LSTM-SO achieved an overall accuracy of 98.82%, outperforming the LSTM-GA’s 95.00%. These
findings underscore the superior capability of the Snake Optimizer in navigating the hyperparameter
search space, yielding a more robust and accurate model for intrusion detection. This demonstrates that
advanced metaheuristic optimization techniques like SO can offer significant advantages over
traditional evolutionary algorithms such as GA in complex cybersecurity applications.

Table 3. Comparison of LSTM Network Performance for Intrusion Detection using MS and GA

Metric LSTM - LSTM -GA Metric LSTM - LSTM -
SO SO GA
Epochs 100 100 Overall Accuracy 98.82%  95.00%
Class 0 Precision 99.05% 97.00% Macro Average 99.00%  94.00%
Precision
Class 0 Recall 99.36% 95.00% Macro Average 99.42%  94.00%
Recall
Class 0 F1-Score 99.20% 96.00% Macro Average F1-  99.17%  94.00%
Score
Class 1 Precision  98.82% 91.00% Weighted Average  98.84%  95.00%
Precision
Class 1 Recall 99.47% 94.00% Weighted Average  98.84%  95.00%
Recall
Class 1 FI-Score  99.34% 93.00% Weighted Average  98.84%  95.00%
F1-Score
GA vs SNAKE Training Losses GA vs SNAKE Training Accuracy
- $AK[ 0.90
08 0.8 me/\’\w
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Fig. 7. Comparison of Prediction Accuracy and Loss Between Genetic Model and Snake Model
4.2. Benchmarking against other Intrusion Detection Methods

Evaluate the model based on deep learning using LSTM -SO compared to other intrusion detection
methods in table 4.9. The results show that the proposed model in [23], which uses an Autoencoder in
a DNN, achieved an accuracy of 95%, while [24] combined an Autoencoder with an Isolation Forest
and reached 95.4%. On the other hand, the LSTM model with an attention mechanism, as illustrated in
[25], achieved a lower accuracy of 90.73%. In contrast, the proposed model stands out with an
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exceptional accuracy of 99% which is similar to the result of source [26], highlighting the
effectiveness of integrating traditional optimization algorithms with deep learning in the field of
intrusion detection.

Table 4. Comparison Accuracy of Proposed Intrusion Detection System with Previous Works

Ref Method Accuracy
[23] Denoising Autoencoder integrated into DNN for cloud IDS 95%
[24] Deep learning-based method combines Autoencoder (AE) and Isolation 95.4%
Forest (IF)
[25] Attention mechanism with bidirectional long short-term memory (Bi- 90.73%
LSTM) network

Stacked contractive autoencoder (SCAE) method for unsupervised feature .
[26]  extraction and combines it with a shallow SVM classifier for classification 99%
detection.

Ours LSTM based deep learning with Snake algorithm 99%

5. Conclusion

The results presented in Table 2 and visualized in Figure 6 clearly demonstrate the effectiveness of the
proposed hybrid encryption and deep learning methodology for loT data security and classification
within cloud environments. The integration of AES-GCM and RSA provided efficient and robust
protection for 10T data, significantly reducing the risk of unauthorized access. The decryption phase
reliably restored the original data using the appropriate RSA private key and AES decryption,
confirming the feasibility of the approach for safeguarding sensitive information during transmission.

Furthermore, the application of the Snake Optimizer in conjunction with the LSTM network led to
notable improvements in the detection of both attack and benign data streams. As reflected in the
results, the system consistently achieved high accuracy rates—exceeding 98% across diverse 10T
devices and varying attack intensities—while maintaining low encryption and decryption times, as
well as a minimal false alarm rate. These outcomes underscore the system’s reliability and adaptability
in heterogeneous 10T environments.

The study also reported high specificity (95%) and sensitivity (97%) in real-world 10T traffic analysis,
further validating the proposed framework’s capability for precise threat detection and accurate
classification of 10T activities. This positions the methodology as a highly suitable solution for both
intrusion detection and anomaly detection in cloud-based loT systems.

Looking ahead, future work should focus on further fine-tuning the optimization techniques for real-
time deployment and expanding performance evaluations across a broader range of emerging loT and
cloud computing scenarios. This will help address the dynamic nature of evolving cyber
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