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As cloud computing becomes increasingly integral and the deployment of Internet of Things 

(IoT) devices accelerates, safeguarding the integrity and confidentiality of transmitted data has 

emerged as a paramount concern. This research introduces a comprehensive security 

framework that leverages advanced cryptographic protocols—specifically, the integration of 

Pretty Good Privacy (PGP) concepts with robust encryption algorithms Advanced Encryption 

Standard in Galois/Counter Mode (AES-GCM) and RSA (Rivest–Shamir–Adleman) for secure 

key distribution. In this architecture, AES-GCM ensures both the confidentiality and integrity 

of IoT messages, while RSA encryption is employed to securely transmit the session keys 

among users. Once decrypted, the IoT data undergoes classification through a Long Short-Term 

Memory (LSTM) neural network, whose hyperparameters are fine-tuned using the Snake 

Optimizer algorithm (SO) to enhance detection performance. The framework’s effectiveness is 

evaluated using the TON IoT dataset, which encompasses realistic attack scenarios. 

Experimental findings indicate a superior classification accuracy of 98%, demonstrating the 

system’s ability to reliably differentiate between various attack types and normal network 

behavior. These results underscore the critical role of combining strong encryption 

methodologies with state-of-the-art machine learning techniques to advance security within 

cloud-based IoT environments. 
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1. Introduction 

As the world moves to the state where massive amounts of data are continuously and intensively exchanged, processed and 

stored in the cloud, the need for encryption solution cannot be overemphasized [1]. Encryption is foundational to 

establishing security controls in that it has the capacity to alter data into an unusable form to anyone who is unauthorized 

and guarantee data integrity, confidentiality and availability in cloud environment that can be complex [2]. This becomes 

especially important, bearing in mind that cloud computing is inherently distributed which gives rise to how multiple 

platforms, devices, and interfaces interact with one another, all of which creates many potential points of attack [3]. 

Encryption may be done using a single secret key referred to as symmetric encryption or using a pair of keys; the public 

and the private key of the asymmetric encryption system transform the original plain text into the cipher text. This raises 

almost an impenetrable wall against miscreants wanting to take advantage of protected data [4]. In the context of cloud 

computing, encryption has become not only as the mechanism of data security in the cloud, for data in use, in transit or at 

rest but also as a mechanism for compliance requirements, trust and security augmentation of cloud service models 

including IaaS, PaaS, and SaaS [5]. It is also worthy of note that encryption is also central to dealing with multiple tenancy 

in cloud environments. This means that tenants that have stored different data must be prevented from accessing data 

belonging to other tenants even if the information is stored in a common infrastructure [6]. Therefore, while analyses the 

issue of encrypted data management in cloud computing, one is in a technological, legal, and ethical minefield in which 

every element needs further investigation and constant improvement to protect data in the ever-changing enemy 

environment [7]. 

Data security especially within cloud environments is quickly becoming an issue of focus given the increased trends and 

threats within the cyber environment and given the constant generation of large volumes of data [8]. Security of cloud 

storage goes beyond mere technical and operational issues affecting organizational sustainability and compliance with the 

 
 

MJPAS 
 

 

MUSTANSIRIYAH JOURNAL OF PURE AND APPLIED SCIENCES 
 

Journal homepage: 
https://mjpas.uomustansiriyah.edu.iq/index.php/mjpas 

mailto:sana.ali@mu.edu.iq
http://creativecommons.org/licenses/by/4.0/


Jabber And Mahdi , MJPAS, Vol. 3, No. 4, 2025 

 

208 

law as well as clients’ confidence [9]. It is a well-known fact that storing data in a cloud is intrinsically risky because the 

data is on the Internet and can be accessed from anywhere [10]. Thus, companies, governments or other organizations and 

ordinary people need to implement strict cipher techniques, access control systems and routine external audits in order to 

protect own digital assets from breaches, data leaks or unauthorized changes, to prevent data and personal information 

leakage and to protect data and information integrity and confidentiality [11]. 

In terms of economic and reputations, data security is important to avoiding the disastrous effects that may result from data 

loss such as; economical, legal repercussions and reputational [13]. In an age, where data is said to be the ‘new oil,’ it is 

imperative that this vital resource is safeguarded to underpin enterprise growth, and digital activity [14]. Another 

consideration and impact that has legal and ethical ramifications also rely on secure cloud storage because of the growing 

legal requirements to safeguard consumers and other stakeholders’ information due to the GDPR and HIPAA among other 

standards [14]. This makes it require a set of stringent security measures and deserves a very keen observation or, rather, a 

due diligence with respect to security of digital information. Therefore, cloud data security is not just an information 

technology need but a matter of depth and breadth that covers aspects of cyber defense, legal requirements, moral 

obligation, and corporate existence in a world of advanced computer connectivity [15].  

The structure of this paper is as follows: Section 2 offers an in-depth analysis of the existing literature, emphasizing the 

principal advantages, limitations, and datasets associated with prior studies. Section 3 describes the proposed framework in 

detail, outlining the encryption mechanisms, key exchange protocol, and classification methodology. Section 4 reports the 

experimental findings, including efficiency assessments and comparative performance analysis. Finally, Section 5 

summarizes the main conclusions and suggests potential avenues for future research 

2. Related Work 

 In recent years, the literature addressing IoT security within cloud infrastructures has increasingly 

emphasized the development of lightweight cryptographic solutions [16], innovative authentication 

mechanisms, and methods that preserve data privacy [17]. Notably, several researchers have 

introduced signature-based key establishment protocols tailored for IoT applications, while others have 

designed lightweight cryptographic frameworks capable of withstanding a variety of cyber threats 

[18]. In parallel, the adoption of deep learning techniques for anomaly detection in IoT networks has 

gained significant attention [19]. Although these advancements have contributed to enhancing the 

overall security landscape, many of the proposed approaches continue to face notable obstacles, such 

as limited scalability, increased computational demands, and challenges in adapting to complex, real-

world attack scenarios [20,21]. 

Table 1 presents a comparative summary of the most pertinent studies, outlining the core 

methodologies, datasets utilized, as well as the principal strengths and limitations identified in each 

work. 

Table 1: Summary of Related Work 

Refer. Model/Algorithm Dataset Strengths 
Appearance (in Time New 

Roman) 

[16] 

Encryption 

algorithms in 

Cloud-based IoT 

(AES, RSA, ECC) 

IoT data 

(simulated/real) 

Comprehensive 

survey, comparative 

computational 

complexity analysis, 

strong security focus 

Resource constraints on IoT 

devices, balance between 

security and efficiency 

 [18]        
Blockchain 

integration in IoRT 

IoRT network 

data 

Enhanced security 

and privacy, 

decentralized trust, 

suitable for mobile 

robots 

High computational overhead, 

complexity in management 

[19] 

Zero Trust 

Architecture + AI 

for 6G security 

Distributed 

cloud-edge-IoT 

data 

Real-time threat 

detection, 

decentralized 

governance, AI-

driven automation 

High complexity, resource-

intensive, implementation 

challenges 

[20] 

Blockchain + IoT in 

Industrial sector 

(ESP32, Raspberry 

Industrial IoT 

data 

Real-time monitoring, 

data immutability, 

smart contracts for 

Infrastructure complexity, 

integration challenges 
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Refer. Model/Algorithm Dataset Strengths 
Appearance (in Time New 

Roman) 

Pi, Polygon 

blockchain) 

integrity 

[21] 

Hyperledger Fabric 

BaaS with 

public/private key 

encryption 

IoT datasets 

(smart cities, 

smart homes) 

Enhanced security 

and privacy, scalable 

and modular 

architecture 

Requires significant computing 

resources, deployment 

complexity 

[22] 

Security-aware 

scheduling with 

approximate 

computations in 

Fog-Cloud 

Linear 

workflow 

applications 

data 

QoS improvement, 

adaptive resource 

allocation based on 

security needs 

Scheduling complexity, 

approximate computation may 

affect accuracy 

[23] 

Autoencoder + 

Isolation Forest 

(Auto-IF) for 

intrusion detection 

in Fog 

NSL-KDD 

intrusion 

detection 

dataset 

High accuracy 

(95.4%), real-time 

binary classification, 

efficient for fog 

devices 

Limited to binary classification, 

may not detect complex/multi-

class attacks 

[24] 

Log-cosh 

Variational 

Autoencoder 

(LVAE) for 

unknown attack 

detection 

CICIDS2017 

dataset 

Very high accuracy 

(99.89%), generation 

of unknown attack 

data, improved 

detection 

Computationally intensive, 

requires large training data 

[25] 

Hybrid Deep 

Learning Model for 

Intrusion Detection 

CICIDS2017 

and other 

benchmark 

datasets 

Improved detection 

accuracy for 

unknown attacks, 

combines multiple 

DL techniques 

Increased model complexity, 

higher training time 

[26] 

Statistical methods 

for F1 score 

estimation 

Binary and 

multi-class 

classification 

data 

Provides confidence 

intervals for F1, 

supports multi-class 

evaluation 

Not a predictive model, focused 

on evaluation metrics 

3. Proposed Methodology  

In the proposed methodology, we begin by utilizing the TON IoT dataset, which undergoes encryption 

and decryption processes by two users, User 1 and User 2. The encryption methodology ensures that 

data is securely transferred using a combination of AES and RSA encryption techniques. Once 

encrypted, the data is securely transmitted between the users. After decryption, the dataset is then 

preprocessed to prepare it for further analysis. 

Subsequently, classification is done under the work of a deep learning model. To address this, we use a 

metaheuristic algorithm known as the Snake Optimizer and apply it to the model to adjust the pertinent 

parameters to optimality. Using deep learning model and appropriate optimizer, the dataset is 

classified into attack or benign categories with high performance due to repetitive optimization. 

This will be explained further in the next sub-section where encryption, decryption, preprocessing and 

classification using the proposed deep learning model in conjunction with Snake Optimizer will be 

described. 

3.1 Dataset Overview 

The TON IoT dataset is a clear and systematic dataset that was established to support various 

investigations proposing the domain of the internet of things (IoT), especially in facets requiring 

intrusion detection, anomaly detection, and cybersecurity. It has been particularly designed to respond 
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to the issues related to the continuous and accelerated expansion of IoT connected objects in sectors 

including smart cities, industrial processes control systems, and edge computing applications. 

Files contain one type of data: traffic from the IoT network; telemetry data from sensors; logs from the 

IoT gateway, which makes it possible to study the security situation in the IoT system in its entirety. It 

was developed in a testbed where realistic IoT environment and actual attack types such as Distributed 

Denial-of-Service (DDoS), malware, backdoor, and ransomware and among others. These attack types 

imitate those that may affect confidentiality, integrity and accessibility of IoT devices and networks. 

TON IoT data comes in the form of both the training set and the testing set, so it can be generalized 

into supervised and unsupervised machine learning. The labeled data comprises normal and attack 

behaviors that can be used in the training and testing of IDSs and anomaly detection systems. Given 

the nature of data and sources included in the mentioned dataset it pretending to be highly suitable for 

the development and testing of new generations of security for the IoT environment, particularly in 

reference to the edges of the network where most of the problems evolve from. 

Here, with TON IoT, relying on actual data generated by IoT networks, researchers can test new 

detection procedures and tune security mechanisms to properly protect IoT environments from 

emerging cyber dangers. 

3.2 Encryption Phase 

 In the encryption phase, as depicted in Figure 1, the architecture employs a combination of symmetric 

and asymmetric cryptographic techniques to ensure both confidentiality and integrity of data during 

transmission. This process begins with loading the dataset that is to be secured. For each record, a 

unique AES (Advanced Encryption Standard) key is generated. 

AES is chosen for its high efficiency, which is attributed to its robust S-box design and secure key 

structure. In this implementation, the AES key is generated using the AESGCM.generate_key() 

function, with a key size of 256 bits. The Galois/Counter Mode (GCM) is utilized as the mode of 

operation for AES, providing not only strong encryption but also authentication to verify the integrity 

and authenticity of the data. 

After the data is encrypted using the AES key, the next step is to secure the AES key itself. This is 

achieved by encrypting the AES key with the recipient’s public RSA key, ensuring that only the 

intended recipient can decrypt and access the original AES key. Finally, both the AES-encrypted data 

and the RSA-encrypted AES key are transmitted to the recipient, establishing a secure and reliable 

method for data protection during transfer. This approach reflects the principles of hybrid encryption, 

similar to those adopted in Pretty Good Privacy (PGP), combining the speed of symmetric encryption 

with the secure key exchange of asymmetric encryption. 

 

Fig. 1. Encryption Phase Flowchart  
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3.2.1 Key Generation and Data Encryption 

AES key (also referred to as 𝐾AES is used for encryption of the data. The encryption follows a 

conventional AES encryption type by which plaintext data( ) a is converted to ciphertext  AES using 

the developed AES key. The AES encryption can be mathematically described as: 

        (  𝐾   )                                                                                                                                
(1) 

A new and distinct nonce is used when encrypting data, and this amount is utilized only one, which 

means when re-encrypting the same data, one will receive a different value for the cipher. The nonce is 

not secret information, but it counts to be unique in every encrypting process to ensure the security of 

data. 

The dataset in turn in bytes is encrypted using AES-GCM algorithm with the AES key and nonce. 

AES-GCM comes loaded with two attributes; confidentiality and data integrity…, whereby no one has 

the right to alter the data that is encrypted.   

3.3.2 AES Key Encryption 

When the dataset is encrypted with the help of AES key, then the next important step in the system is 

to protect the AES key before it transmits to the other end. This is done using RSA encryption, which 

is also a form of asymmetric encryption key technique also. In this case, the AES key ( AES)is 

encrypted using the receiver’s public RSA key (( RSA, public)) of the User 2. The RSA encryption can 

be described mathematically as follows: 

 

𝐾                          (𝐾    𝐾           )                                                                                      
(2) 
 

This is made possible by RSA in that only the recipient to be identified as User 2 and with the 

corresponding private RSA key (( RSA, private))only Decrypt and recovers the original AES. 

3.3.3 Transmission 

After the encryption of the dataset and AES key, they are to be transmitted ready for connection with 

the next party. The encrypted dataset, (( AES))and the encrypted AES key (( AES, encrypted)) is 

transmitted to User 2. The receiver therefore can use his/her own private RSA key to decrypt the AES 

key later used to decrypt the data. 

Algorithm 1: Encryption Process 

 # Key Length 

 AES Key Length: 256 Bits 

 RSA Key Length: 2048 Bits 

 Hashes: SHA256 

 Inputs: 

Plaintext (P): The data that needs to be encrypted. 

Receiver's RSA Public Key: The RSA public key of the receiver (User 2). 

Outputs: 

Ciphertext (C): The encrypted data. 

Encrypted AES Key (C-k): The AES key encrypted using the receiver's RSA public key. 

Nonce (N): A unique nonce used for AES-GCM encryption. 

1 - Load Receiver's Public Key  

Retrieve the RSA public key of User 2 from a secure key management system or storage. 

2- Generate AES Key  
     Generate a symmetric AES key (256 bits). 
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3- Generate Nonce  

 Generate a unique 12-byte nonce for AES-GCM encryption (N) 

4- Encrypt Data using AES-GCM, and Nonce 

 AES  AES(  𝐾AES) 
5- Encrypt the AES key using RSA: 

𝐾AES, encrypted  RSA Encrypt(𝐾AES 𝐾RSA, public) 

6- Save the ciphertext  , encrypted AES key  𝑘, and nonce 𝑁 for transmission to Cloud Provider 

3.3 Decryption Phase 

In the decryption phase (illustrated in Fig. 2), the goal is to reverse the encryption operations 

performed in the previous step, allowing User 2 to retrieve the original data. This phase begins once 

User 2 receives the encrypted data (( AES)), the encrypted AES key ((𝐾AES, encrypted))  and the nonce 

((𝑁AES)) from User 1. 

 

 
  

 

 

 

 

 

 

  

 

 

Fig. 2. Decryption Phase Flowchart 

The first step involves generating an RSA key pair on User 2's side. This key pair consists of a public 

key (𝐾RSA, public)and a private key (𝐾RSA, private) The private RSA key is essential for decrypting the 

AES key, which was encrypted with the corresponding public RSA key during the encryption phase. 

3.3.1 AES Key Decryption 

User 2 uses their private RSA key to decrypt the AES key (𝐾AES)  The decryption process can be 

described using the following equation: 

 

𝐾               (𝐾               𝐾            )                                                                                    (3) 

 

After using the RSA decryption with the help of the private key, User 2 gets the initial AES key which 

the user will use to decrypt the dataset. 

3.3.2 Data Decryption 

When the AES key is obtained, then User 2 proceeds to decrypt the dataset. According to the AES 

decryption it can be open that data encrypted by AES-GCM should be decrypted by nonce value of 

 AESby using at the time of encryption. The decryption process transforms the ciphertext ( AES) back 

into its original plaintext form (P), as expressed in the following equation: 

 

             (     𝐾    𝑁   )                                                                                                         
(4) 
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AES-GCM mode used here not only for decryption of the data with confidentiality but also for data 

integrity as GCM mode consist an authentication checksum. 

3.3.3 Data Reconstruction 

As we mentioned earlier, after the decryption process is over then the plain text is reconstructed to the 

form it was in before encryption. The result of decrypted data is written to a CSV file so User 2 has the 

original dataset as data source. The process ends with the formation of the last data file that contains 

deliberately encrypted data of the information that User 1 transmitted. 

Algorithm 2:  Decryption Process 

Inputs: 

Ciphertext (C): The encrypted data. 

Encrypted AES Key               : The AES key encrypted using the RSA public 

key. 

Nonce (N): The nonce used during encryption. 

Receiver's RSA Private Key: The private RSA key of Cloud Provider. 

Outputs: 

Decrypted Plaintext (P): The original data after decryption. 

1.    Load                and Nonce 𝑁 received from User 1 

2.    Load Receiver's Private Key  

 3.    Decrypt AES Key using RSA Private Key  

         K_AES=RSA_Decrypt (K_(AES,encrypted), K_(RSA,private)) 

 4.    Decrypt ciphertext   using AES-GCM  

          P = AES_Decrypt(    ,     ,    ) 
 5.   Save Decrypted Data (plaintext  ) 

 

3.4. Deep Learning Phase 

In the deep learning phase (illustrated in Fig. 3), the goal is to classify the dataset into two categories: 

attack or benign. This phase is composed of pre-processing of data, choice of parameter, data mapping, 

training by using LSTM network and classification. 

Fig. 3.  Deep Learning Phase Flowchart 

3.4.1 Data Preprocessing 

As a preprocessing step before passing the data to the deep learning model it is trained, the training 

data is preprocessed. The features of the datasets are standardized by techniques such as the MinMax 

Scaler in which scales all the features within the dataset to a range of 0 to 1. For categorical data, two 

or more categories are converted into equivalent numerical feature using label encoding. After data 

preprocessing the given dataset is divided into training data set and testing data set with 80:20 ratio. 
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3.4.2 Parameter Tuning with Snake Optimizer 

Classification with the introduced LSTM based model requires tuning of the hyperparameters affecting 

the model such as the number of LSTM units in the layers and the degree of dropout. To accomplish 

this, we use another metaheuristic optimization algorithm known as the Snake Optimizer in order to 

fine-tune these parameters. The Snake Optimizer mimics the movement of a snake whereby its 

position on the hyperparameter space is the current values of the hyperparameters such as the units, 

and velocity those of the hyperparameters. 

The Snake Optimizer, therefore, ranks each set of hyperparameters by training the LSTM model and 

logging the validation accuracy. In each cycle of optimization loop, the position and velocity of the 

snake are adjusted to determine the specific hyperparameters which maximize the accuracy of cross 

validation of the model. The obtained best hyperparameters are then used to build up the final LSTM 

classification model. 

3.4.3 LSTM Model and Classification 

The LSTM network is designed to process sequential data. For this task, the LSTM is configured with 

the optimal number of units (neurons) and dropout rates found during the parameter tuning phase. The 

architecture of the LSTM model includes the following layers: 

1. LSTM Layer: This layer captures temporal dependencies in the input data. 

2. Dropout Layer: Used to minimize the overfitting problem as a fraction of the units can be dropped 

while training continues. 

3. Dense Layers: Layers after LSTM are FC layers that decrease dimensionality like LSTM layers 

and there is an output layer. 

The final output layer consists of two neurons with a softmax (or sigmoid for the binary classification) 

activation function, which provides the probability distribution for two classes: attack and benign. The 

classification process can be mathematically characterized using categorical cross-entropy loss 

function, this parameter is improved through the training process: 

 

      ∑   
 
      (  ̂)                                                                                                                             

(5) 

 

In which (  ) is the ground truth, and (  ̂), is the probability calculated for class ( )  

3.4.4 Model Evaluation and Visualization 

Besides, at the end of model training one evaluates the efficiency of the model using accuracy, 

confusion matrix, as well as classification report. Actually, the confusion matrix presents a more 

detailed description of true positive values, true negatives, false positives, and false negatives, which is 

defined for calculating of sensitivity and specificity. These two measures assess how well the 

constructed model is capable of identifying an attack and distinguishing between benign data and an 

attack. These metrics can be computed as follows: 

            
              

                              
                                                                                                                       

(6) 

            
              

                              
                                                                                                         

(7) 

Training accuracy, validation accuracy and loss over epochs are also illustrated for the same task to 

study the performance character of the model during training. 
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Algorithm 3 This algorithm presents the deep learning phase with data preprocessing and 

hyperparameters optimization using Snake Optimizer and LSTM model training and evaluation on 

classification tasks. 

Subsequently, the Snake Optimizer is incorporated to enter the exact hyperparameters of the LSTM 

model after the data has been preprocessed. The Snake Optimizer starts with a population of snakes, 

and where each snake embodies a set of hyperparameters (the number of LSTM units and the dropout 

rate). These parameters are defined based on the position of each snake in the hyperparameter space 

while velocity defines the manner in which that position is changed across iterations. The 

hyperparameters of each set are assessed by training an LSTM model for that set and computing its 

validation accuracy. Updating the positions and velocities of other snakes is based on the best-

performing snake, in terms of validation accuracy. If this process of iterations is done many times as in 

case of auto machine learning, then the optimizer reaches a set of following hyperparameters. 

With the optimal hyperparameters selected, the final LSTM model is built and trained on the training 

dataset. Once more, LSTM consists of layers developed to extract temporal properties and dropout 

layers that help minimize overfitting by eradicating complete units during training. When model is 

trained for a fixed number of epochs and performance of the model is measured on the test dataset.  

Algorithm 3: Deep Learning Phase Pseudocode 

Require: Preprocessed dataset  , labels   

Ensure: Trained LSTM model and classification results (Attack/Benign) 

1: Data Preprocessing: 

1.1:  Split the dataset   and labels   into training and testing sets (      ,      ,       ,     ). 
1.2:  Scale the feature values using MinMaxScaler. 

1.3:  Encode categorical labels using LabelEncoder 

1.4:  Convert the labels to one-hot encoded format 

2: Parameter Tuning with Snake Optimizer: 

2.1:  Initialize a population of snakes with random positions (hyperparameters) and 

velocities. 

2.2:  For each iteration do: 

2.3:    For each snake in the population do: 

2.4:      Map snake’s position to hyperparameters (LSTM units, dropout). 

2.5:      Build and compile an LSTM model with the chosen hyperparameters. 

2.6:      Train the model using       and        

2.7:      Evaluate model accuracy on the validation set. 

2.8:      Update the snake’s fitness (validation accuracy). 

        End for 

2.9:    Update each snake’s position and velocity based on the best-performing snake. 

        End for. 

2.10: Select the best hyperparameters from the Snake optimizer. 

3: LSTM Model Training: 

3.1:  Build the final LSTM model using the best hyperparameters. 

3.2:  Train the LSTM model on the training data (      ,   *     +) for a set number of    

       epochs. 

3.3:  Evaluate the model on the testing data (     ,     ) 

3.4:  Plot training and validation loss and accuracy over epochs. 

4: Model Evaluation: 

4.1:  Use the trained LSTM model to predict the labels for the test data. 

4.2:  Compute confusion matrix, accuracy, sensitivity, and specificity. 
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Output the classification results (Attack/Benign) based on the model’s predictions. 

4. Results and Discussion 

The results obtained from the deep learning model, tuned with the Snake optimizer, demonstrate high 

effectiveness in classifying attack and benign categories. as illustrated in Figure 4 and Figure 5. 

Specifically, Figure 4 shows a consistent decrease in training loss from approximately 0.30 to 0.10, 

while validation loss initially fluctuates around 0.30, rises to 0.40 at epoch 5, then steadily declines to 

about 0.15 by the final epoch, indicating good generalization on unseen data. Concurrently, Figure 5 

depicts training accuracy rising from about 87% to 96%, with validation accuracy stabilizing near 97% 

despite early fluctuations. These trends collectively confirm the model’s robust performance in 

classifying attack and benign instances accurately. The confusion matrix showed only 1,380 benign 

samples misclassified as attacks and 402 attack samples misclassified as benign, supporting the 

model’s accuracy. Sensitivity and specificity values for both classes were approximately 98%, further 

validating the model’s ability to correctly identify true positives and negatives. Overall, these findings 

confirm that the proposed model achieves reliable and accurate detection of cyberattacks in IoT 

environments, with strong potential for application to new, unseen datasets. 

 

Fig. 4. Training and validation loss across 10 epochs, showing the model's steady improvement in 

minimizing error on both training and validation datasets. The training loss steadily decreases, while 

the validation loss shows initial fluctuations before stabilizing 

Fig. 5. Training and validation accuracy over 10 epochs, illustrating the model's increasing accuracy in 

both training and validation sets. Despite early fluctuations, the model achieves a high validation 

accuracy, stabilizing at around 97% by the final epoch. 

Attack intensity during the experimental evaluation of the system was controlled by adjusting the rate 

at which attacks were executed. The tests were structured into three main categories: low intensity (a 

limited number of attacks within a given time frame), medium intensity (increased frequency and 

diversity of attacks), and high intensity (frequent and coordinated attacks, such as distributed denial-

of-service scenarios). 
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In this study, the Scapy library—a powerful and open-source tool developed in Python—was 

employed to generate a wide range of synthetic attacks on the IoT network. Scapy offers extensive 

flexibility in crafting and customizing network packets (including TCP, UDP, ICMP, and others), 

enabling the simulation of highly realistic attack scenarios. 

Attack intensity was modulated by varying both the rate of malicious packet transmission and the 

number of simultaneous open connections during each experiment. For instance, low-intensity attacks 

involved sending only a small number of packets per minute, while the intensity was gradually 

increased by raising the packet rate and the number of simulated attacking devices, culminating in 

high-density attacks that emulate denial-of-service (DoS/DDoS) conditions. 

Leveraging Scapy allowed for comprehensive testing of the proposed system across diverse 

environments. Performance metrics—including accuracy, response time, and false alarm rate—were 

assessed under each level of attack intensity. The results demonstrated that the system maintained 

robust and reliable performance, even under severe and varied attack conditions, underscoring the 

effectiveness of the proposed security framework in realistic IoT scenarios. 

Table 2. Metrics of the Proposed System Across Different IoT Devices and Attack Intensities. 

Device Type 
Attack 

Intensity 

Accuracy 

(%) 

Encryption 

Time (ms) 

Decryption 

Time (ms) 

False Alarm 

Rate (%) 

Temperature Sensor Low 99.2 12 11 0.8 

Motion Sensor Medium 98.9 13 12 1.0 

Surveillance Camera High 98.4 15 14 1.3 

IoT Gateway Low 99.4 11 10 0.7 

IoT Gateway High 98.7 16 15 1.2 

 

 

Fig. 6. Performance Metrics of the Proposed System Across Different IoT Devices and Attack 

Intensities 

As shown in Table 2 and illustrated in Figure 6, the proposed system exhibited outstanding 

performance across a variety of IoT device types and under different attack intensities. The system 

consistently achieved a classification accuracy above 98%, even in high-intensity attack scenarios. 

Both encryption and decryption times remained low across all tested cases, ensuring the framework’s 

suitability for real-time and latency-sensitive IoT applications. Furthermore, the false alarm rate was 
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minimal in every scenario, underscoring the system’s reliability in distinguishing between legitimate 

and malicious activities. These results collectively confirm the adaptability of the proposed framework 

to heterogeneous IoT environments and its effectiveness in addressing diverse and evolving security 

threats, making it a robust solution for securing data in intelligent cloud-based platforms. 

4.1 Hyperparameter Optimization and Comparative Performance Analysis of LSTM Networks 

In this work, we employed the Snake Optimizer (SO) to fine-tune the hyperparameters of a LSTM 

network, aiming to enhance its intrusion detection capabilities. To rigorously evaluate the effectiveness 

of this approach, we conducted a comparative analysis against an LSTM model optimized via the 

Genetic Algorithm (GA). The empirical results, summarized in the accompanying table 3 and Figure 7, 

reveal that the LSTM-SO configuration consistently surpasses the LSTM-GA across all key 

performance indicators, including precision, recall, F1-score, and overall accuracy. Notably, the 

LSTM-SO achieved an overall accuracy of 98.82%, outperforming the LSTM-GA’s 95.00%. These 

findings underscore the superior capability of the Snake Optimizer in navigating the hyperparameter 

search space, yielding a more robust and accurate model for intrusion detection. This demonstrates that 

advanced metaheuristic optimization techniques like SO can offer significant advantages over 

traditional evolutionary algorithms such as GA in complex cybersecurity applications. 

Table 3. Comparison of LSTM Network Performance for Intrusion Detection using MS and GA 

Metric LSTM -

SO 

LSTM -GA Metric LSTM -

SO 

LSTM -

GA 

Epochs 100 100 Overall Accuracy 98.82% 95.00% 

Class 0 Precision 99.05% 97.00% Macro Average 

Precision 

99.00% 94.00% 

Class 0 Recall 99.36% 95.00% Macro Average 

Recall 

99.42% 94.00% 

Class 0 F1-Score 99.20% 96.00% Macro Average F1-

Score 

99.17% 94.00% 

Class 1 Precision 98.82% 91.00% Weighted Average 

Precision 

98.84% 95.00% 

Class 1 Recall 99.47% 94.00% Weighted Average 

Recall 

98.84% 95.00% 

Class 1 F1-Score 99.34% 93.00% Weighted Average 

F1-Score 

98.84% 95.00% 

Fig. 7. Comparison of Prediction Accuracy and Loss Between Genetic Model and Snake Model 

4.2. Benchmarking against other Intrusion Detection Methods 

Evaluate the model based on deep learning using LSTM -SO compared to other intrusion detection 

methods in table 4.9. The results show that the proposed model in [23], which uses an Autoencoder in 

a DNN, achieved an accuracy of 95%, while [24] combined an Autoencoder with an Isolation Forest 

and reached 95.4%. On the other hand, the LSTM model with an attention mechanism, as illustrated in 

[25], achieved a lower accuracy of 90.73%. In contrast, the proposed model stands out with an 
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exceptional accuracy of 99% which is similar to the result of source [26], highlighting the 

effectiveness of integrating traditional optimization algorithms with deep learning in the field of 

intrusion detection. 

 

Table 4. Comparison Accuracy of Proposed Intrusion Detection System with Previous Works 

Ref Method Accuracy 

[23] Denoising Autoencoder integrated into DNN for cloud IDS 95% 

[24] Deep learning-based method combines Autoencoder (AE) and Isolation 

Forest (IF) 
95.4% 

[25] Attention mechanism with bidirectional long short-term memory (Bi-

LSTM) network 
90.73% 

[26] 
Stacked contractive autoencoder (SCAE) method for unsupervised feature 

extraction and combines it with a shallow SVM classifier for classification 

detection. 

99% 

Ours LSTM based deep learning with Snake algorithm 99% 

5. Conclusion 

The results presented in Table 2 and visualized in Figure 6 clearly demonstrate the effectiveness of the 

proposed hybrid encryption and deep learning methodology for IoT data security and classification 

within cloud environments. The integration of AES-GCM and RSA provided efficient and robust 

protection for IoT data, significantly reducing the risk of unauthorized access. The decryption phase 

reliably restored the original data using the appropriate RSA private key and AES decryption, 

confirming the feasibility of the approach for safeguarding sensitive information during transmission. 

Furthermore, the application of the Snake Optimizer in conjunction with the LSTM network led to 

notable improvements in the detection of both attack and benign data streams. As reflected in the 

results, the system consistently achieved high accuracy rates—exceeding 98% across diverse IoT 

devices and varying attack intensities—while maintaining low encryption and decryption times, as 

well as a minimal false alarm rate. These outcomes underscore the system’s reliability and adaptability 

in heterogeneous IoT environments. 

The study also reported high specificity (95%) and sensitivity (97%) in real-world IoT traffic analysis, 

further validating the proposed framework’s capability for precise threat detection and accurate 

classification of IoT activities. This positions the methodology as a highly suitable solution for both 

intrusion detection and anomaly detection in cloud-based IoT systems. 

Looking ahead, future work should focus on further fine-tuning the optimization techniques for real-

time deployment and expanding performance evaluations across a broader range of emerging IoT and 

cloud computing scenarios. This will help address the dynamic nature of evolving cyber 
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