AL-ANBAR MEDICAL JOURNAL Anb. Med. J. 21(4): 212–213, 2025



# The Recent Monoclonal Antibodies Treatment for Alzheimer's Disease: A New Era of Hope and Caution

Salih A Salih\*

Centre for Health Service Research, The University of Queensland, Woolloongabba, Brisbane, QLD 4102, Australia. (Received: 1 August 2025; Accepted: 15 September 2025; First published online: 1 October 2025)

**DOI:** 10.33091/amj.2025.163954.2383



© 2025, Al-Anbar Medical Journal

ccording to world health organization (WHO) classifications, dementia represents a progressive syndrome impacting neurological function. The Diagnostic and Statistical Manual of Mental Disorders-5 (DSM-5) categorizes it as a significant neurocognitive condition affecting various cognitive spheres, eventually leading to functional deterioration [1]. This condition predominantly correlates with advanced age. WHO data indicates approximately 55 million individuals worldwide were affected by dementia in 2021. As populations aged 65 and above continue expanding, projections suggest dementia cases will reach 152.8 million by 2050 [2]. Alzheimer's disease (AD) represents a dementia variant named for German psychiatrist Alois Alzheimer, who initially characterized this clinical condition featuring distinctive histopathological markers including abnormal amyloid protein accumulations forming plaques. Additional fundamental histopathological characteristics of AD include neurofibrillary tangles predominantly comprising paired helical filaments with hyperphosphorylated tau proteins [3]. This dementia subtype predominates among cases, representing 75% of diagnoses, with age-standardized prevalence reaching 4.4% among Europeans over 65 years in population studies. Within Arab regions, dementia prevalence among those over 60 peaked in Lebanon (4.88%) and Iraq (3.93%), with regional care expenses projected at \$12.7 billion [4].

Alzheimer's disease has historically resisted effective disease-altering interventions. Contemporary developments in monoclonal antibody (mAb) treatments targeting amyloid-beta (A $\beta$ ) have initiated a transformative period, presenting opportunities for modifying disease progression. Nevertheless, these innovations introduce complexities regarding effec-

tiveness, safety profiles, availability, and healthcare system capacity [5].

The authorization of mAbs including aducanumab, lecanemab, and donanemab represents a crucial advancement in AD therapeutics. These interventions target cerebral  $A\beta$ plaque reduction, representing a primary AD pathological feature. Lecanemab obtained complete FDA authorization in 2023 following demonstration of 27% cognitive decline reduction across 18 months in early-stage AD participants [6]. Donanemab, receiving FDA approval in 2024 and Australia's Therapeutic Goods Administration (TGA) approval in May 2025, demonstrated 35% cognitive decline reduction in similar patient populations [7]. Although these mAbs have demonstrated potential in decelerating cognitive deterioration rates, benefit magnitudes differ. Recent meta-analytical findings indicated that lecanemab and donanemab substantially enhanced cognitive and functional parameters, though clinical significance of these enhancements continues generating debate [8]. Within the TRAILBLAZER-ALZ 2 study, donanemab reduced clinical deterioration by up to 40% among participants exhibiting low-to-moderate tau pathology [9].

Safety considerations persist, especially regarding amyloid-related imaging abnormalities (ARIA) risks, encompassing cerebral edema (ARIA-E) and microhemorrhages (ARIA-H) [10]. Donanemab studies reported ARIA-E occurrence rates reaching 24% of participants, emphasizing requirements for consistent magnetic resonance imaging monitoring. Although numerous ARIA instances remain asymptomatic, serious complications including fatalities have emerged, requiring careful patient screening and surveillance protocols [11].

Monoclonal antibodies present logistical and financial obstacles. Donanemab's annual expense, estimated at USD 26,500, creates substantial affordability concerns [12]. These interventions demand sophisticated infrastructure including positron emission tomography (PET) imaging capabilities and infusion facilities, which remain inconsistently accessible. Australian memory clinic surveys revealed only 38% possessed

<sup>\*</sup> Corresponding author: E-mail: s.salih@uq.edu.au

This is an open-access article under the CC BY 4.0 license

PET scan access, with fewer than half maintaining infusion capabilities. This resource availability variation may worsen healthcare disparities, particularly affecting rural or underresourced areas [13].

Furthermore, workforce requirements for treatment delivery, encompassing neurologists, nursing staff, and radiologists, necessitate considerable investment in educational and retention initiatives [14]. Resolving these operational constraints remains essential for ensuring equitable therapy distribution. Anti-A $\beta$  therapy advancement may involve subcutaneous formulations, such as lecanemab preparations, potentially reducing logistical challenges and enhancing patient compliance [15]. Growing interest exists in combinatorial strategies targeting tau pathology and neuroinflammation, possibly yielding more comprehensive disease modification [16].

Extended follow-up data remains necessary for evaluating persistent benefits and cumulative adverse effects. Regulatory agencies and healthcare networks must collaborate ensuring access remains evidence-driven and fair. Pharmacoeconomic evaluations will critically influence reimbursement and funding determinations.

In conclusion, mAbs constitute an encouraging advancement in early-stage AD management. While clinical studies demonstrate positive trends in disease progression deceleration, these advantages require careful consideration against safety concerns, elevated costs, and system preparedness. Future achievements will depend not solely on scientific breakthroughs but also on strategic health policy development and equitable implementation approaches. A careful and comprehensive strategy remains vital for genuinely transforming the AD therapeutic environment.

#### ETHICAL DECLARATIONS

## Acknowledgment

None.

Ethics Approval and Consent to Participate Not applicable.

## Consent for Publication

Not applicable.

# Availability of data and material

None.

## Competing interests

The author declares that there is no conflict of interest.

## **Funding**

No funding.

# Use of Artificial Intelligence

The author used artificial intelligence for minor language editing; all scientific content and interpretation were done by the author.

#### Authors' Contributions

Salih SA was responsible for conceptualization, design, and writing the manuscript. Salih SA read and approved the final version of the manuscript.

# REFERENCES

- K. Jacob. Diagnostic and statistical manual-5 and dementia: Fine print, finer points. *Indian Journal of Psychiatry*, 56(2):117–120, 2014.
- [2] S. Zhong et al. The global, regional, and national burdens of dementia in 204 countries and territories from 1990 to 2021: A trend analysis based on the global burden of disease study 2021. Medicine, 104(11):e41836, 2025.
- [3] C. A. Lane, J. Hardy, and J. M. Schott. Alzheimer's disease. *European Journal of Neurology*, 25(1):59–70, 2018.
- [4] A. Lobo *et al.* Prevalence of dementia and major subtypes in europe: a collaborative study of population-based cohorts. *Neurology*, 54(5):S4, 2000.
- [5] R. Tonegawa-Kuji et al. Efficacy and safety of passive immunotherapies targeting amyloid beta in alzheimer's disease: A systematic review and meta-analysis. PLoS Medicine, 22(3):e1004568, 2025.
- [6] C. H. Van Dyck et al. Lecanemab in early alzheimer's disease. New England Journal of Medicine, 388(1):9–21, 2023.
- [7] M. A. Mintun et al. Donanemab in early alzheimer's disease. New England Journal of Medicine, 384(18):1691– 1704, 2021.
- [8] Y. Huang and L. Mucke. Alzheimer mechanisms and therapeutic strategies. Cell, 148(6):1204–1222, 2012.
- [9] J. R. Sims *et al.* Donanemab in early symptomatic alzheimer disease: the trailblazer-alz 2 randomized clini-

- cal trial. JAMA, 330(6):512–527, 2023.
- [10] R. Sperling et al. Amyloid-related imaging abnormalities in patients with alzheimer's disease treated with bapineuzumab: a retrospective analysis. The Lancet Neurology, 11(3):241–249, 2012.
- [11] G. Rabinovici *et al.* Donanemab: appropriate use recommendations. *The Journal of Prevention of Alzheimer's Disease*, 12(5):100150, 2025.
- [12] M. Boustani et al. Estimating the economically justifiable price of limited-duration treatment with donanemab for early symptomatic alzheimer's disease in the united states. Neurology and Therapy, 13(6):1641–1659, 2024.
- [13] A. Rashad *et al.* Donanemab for alzheimer's disease: a systematic review of clinical trials. *Healthcare*, 11(1):32, 2022.
- [14] J. Weller and A. Budson. Current understanding of alzheimer's disease diagnosis and treatment. F1000Research, 7:F1000 Faculty Rev-1161, 2018.
- [15] M. Paczynski et al. Lecanemab treatment in a specialty memory clinic. JAMA Neurology, 82(7):655–665, 2025.
- [16] J. Cummings et al. Drug development in alzheimer's disease: the path to 2025. Alzheimer's Research & Therapy, 8(1):39, 2016.