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ABSTRACT

Acute respiratory distress syndrome (ARDS) is a life-threatening condition with high mortality,
often triggered by severe lung infections such as those caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). By disrupting immune regulation and inducing excessive cytokine
release, SARS-CoV-2 plays a key role in the onset and progression of ARDS. Approximately 10.4%
of intensive care unit (ICU) admissions are due to ARDS, with mortality rates ranging from
30% to 50% depending on severity. Viral entry occurs when the spike (S) protein binds to the
angiotensin-converting enzyme 2 (ACE2) receptor and is primed by transmembrane protease serine
2 (TMPRSS2), enabling penetration into respiratory epithelial cells. Subsequent viral replication
and immune hyperactivation trigger a “cytokine storm,” leading to alveolar and capillary mem-
brane damage, increased pulmonary permeability, and alveolar edema, hallmark features of ARDS.
This study reviews the SARS-CoV-2 life cycle, structural and functional characteristics, ARDS
pathophysiology, diagnostic approaches including real-time polymerase chain reaction (RT-PCR)
and inflammatory biomarkers, and emerging therapeutic strategies. Understanding the molecular
pathways underlying viral invasion, immune dysregulation, and lung injury may facilitate the
development of targeted therapies for affected patients.
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INTRODUCTION

A
cute respiratory distress syndrome (ARDS), a
non-cardiogenic pulmonary edema, has a high
death rate. The worldwide coronavirus disease
2019 (COVID-19) epidemic and the quick devel-

opment of critical care medical technology in recent years have
given the medical community new knowledge on how to di-
agnose and treat ARDS [1]. In acute cases, SARS-CoV-2
infection triggers a massive release of cytokines, leading to
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the appearance of pro-inflammatory cytokines. This cytokine
storm can result in ARDS and acute cardiac failure, both of
which are highly dangerous and may predispose patients to
secondary bacterial infections [2]. Approximately 10.4% of
all intensive care unit (ICU) admissions worldwide are of pa-
tients with ARDS, and the fatality rates for mild, moderate,
and severe ARDS are 34.9%, 40.3%, and 46.1%, respectively.
Despite the fact that ARDS is a prevalent syndrome in ICUs,
there is still a lack of knowledge among physicians, and around
40% of ARDS patients go undetected, suggesting that the real
frequency of the condition is likely underestimated [3]. The
mortality rate of ARDS ranges between 30% and 50%, de-
pending on multiple factors, including patient risk factors,
ARDS severity, and its etiology [4].

214 http://doi.org/10.33091/amj.2025.160850.2269

https://doi.org/10.33091/amj.2025.160850.2269
mailto:mehrdadpashazadeh85@gmail.com
http://creativecommons.org/licenses/by/4.0/


SARS-CoV-2 in Acute Respiratory Distress Syndrome Anb. Med. J. 21(4), 2025

One of the main causes of high mortality in pneumonia
patients, particularly those linked to SARS-CoV-2, is acute
lung injury (ALI), which quickly develops into ARDS [2].
Within the order Nidovirales, coronaviruses (CoVs) belong to
the subfamily Coronavirinae, which, along with Torovirinae,
form the family Coronaviridae. CoVs are enclosed viruses
that may be spherical or pleomorphic [5]. The viral sur-
face spike protein of SARS-CoV-2 penetrates host cells by its
receptor-binding domain (RBD), attaches itself to the human
angiotensin-converting enzyme 2 (hACE2) receptor, and is ac-
tivated by human proteases through proteolysis [6]. Primarily
affecting the lungs and respiratory system, SARS-CoV-2 dis-
rupts immune system regulation, causing a severe cytokine
imbalance. However, to date, no standardized treatment has
been established for this disease [7].

The goal of this review paper was to thoroughly investi-
gate SARS-CoV-2’s entry tactics and the connections between
them and the pathogenicity, transcription, and replication of
the virus. It delves further into the pathogenic mechanisms of
SARS-CoV-2 in the development and aggravation of ARDS.
This work aims to clarify the molecular connection between
SARS-CoV-2 infection and the pathogenesis of ARDS, given
the high incidence of ARDS in COVID-19 patients and the
substantial mortality linked to it. Furthermore, a thorough
review of the several ways that SARS-CoV-2 spreads, as well
as the most recent focused diagnostic and treatment strate-
gies for SARS-CoV-2-induced ARDS, is given. By identifying
novel therapeutic targets, this review aims to contribute to
reducing complications and improving clinical outcomes.

ACUTE RESPIRATORY DISTRESS SYNDROME

ARDS is caused by various intrapulmonary factors, such
as pneumonia and aspiration, or extrapulmonary factors, in-
cluding sepsis, acute pancreatitis, and trauma. The primary
pathological feature of this syndrome is increased permeabil-
ity of the pulmonary endothelium, which leads to leakage of
fluids and proteins into the interstitial space [8]. Severe hy-
poxemia, reduced lung compliance, increased venous and ar-
terial shunting, and an increase in physiological dead space
are the outcomes of this disease [1]. The most frequent cause
of ARDS is pneumonia, which is followed by trauma, aspi-
ration, and extrapulmonary infection. Notably, SARS-CoV,
Influenza A virus subtype H1N1, Middle East Respiratory
Syndrome Coronavirus (MERS-CoV), and especially SARS-
CoV-2, which caused the COVID-19 pandemic, are among the
viruses that cause pneumonia that have a higher propensity
to produce ARDS. The risk of ARDS is increased by smok-
ing and long-term excessive alcohol use. Moreover, ARDS
risk factors have been shown to include the usage of elec-
tronic cigarettes or vaping-associated lung injury (EVALI)
and blood product infusions. Another known modifiable en-
vironmental risk factor for ARDS is prolonged exposure to air
pollution, particularly ozone [9].

There are three primary phases that ARDS goes through.
Exudative interstitial edema with a high protein content,
which quickly fills the alveoli and is followed by bleeding and
the production of hyaline membranes, is the hallmark of the
first stage. Moreover, early ARDS cases without diffuse alve-
olar damage (DAD), which is marked by an inflammatory
infiltrate, should not be classified as pneumonia. While, the
development of fibrotic septa defines the third stage. The sec-
ond stage, referred to as the proliferative phase, entails the
organisation of the alveolar fluid (exudative). The prolifera-

tive and fibrotic stages of ARDS might be characterized by
repeated exudative events, which can provide a mixed radio-
logical picture [10].

SARS-COV-2 VIROLOGY

The Coronaviridae family includes coronaviruses that are
common in humans and animals. Four endemic human CoVs
usually cause common cold symptoms: Human CoV Dutch 63
(HCoV-NL63), Human CoV Hong Kong University 1 (HCoV-
HKU1), Human CoV OC43 (HCoV-OC43), and Human CoV
229E (HCoV-229E). On the other hand, within the last 20
years, three zoonotic viruses—SARS-CoV, MERS-CoV, and
SARS-CoV-2, have spread from animals to people [11]. A
single-stranded, positive-sense ribonucleic acid (RNA) virus,
SARS-CoV-2 is a member of the Beta CoV genus. It has a
positive-sense RNA genome and is enclosed [12]. SARS-CoV-
2 was first recognized as a sister virus to SARS-CoV because
of genome sequencing similarities [13]. The linked condition
was dubbed COVID-19 when the first reports of SARS-CoV-2
infections in people were made in late 2019 [14].

CoVs are members of the order Nidovirales, subfamily Or-
thocoronavirinae, and family Coronaviridae. They have a
spherical form, measure around 125 nanometers in diame-
ter, and are covered with projections that resemble spikes,
giving them the appearance of a crown (corona) [15]. Alpha
CoV (α-CoV), Beta CoV (β-CoV), Gamma CoV (γ-CoV),
and Delta CoV (δ-CoV) are the four genera into which CoVs
are divided according to genetic and antigenic criteria [16]
(Table 1). MERS-CoV uses the host receptor dipeptidyl pep-
tidase 4 (DPP4), whereas SARS-CoV-2 and SARS-CoV bind
to the host’s ACE2 receptor via the spike (S) protein [17]. The
single-stranded RNA molecule that makes up the SARS-CoV-
2 genome has a length of 26–32 kilobases. Similar to other
CoVs, it encodes the spike (S), envelope (E), membrane (M),
and nucleocapsid (N) proteins, which are structural proteins
that help the virus enter host cells [13, 18]. The term SARS-
CoV-2 comes from the spike S glycoprotein. This surface gly-
coprotein resembles a crown and is visible under an electron
microscope on the lipid bilayer that envelops the virus parti-
cles. However, the Spike S glycoprotein, sometimes referred
to as the S protein, is a particular antigen for neutralizing
antibodies and providing protection, and it is responsible for
the virus’s attachment to host cells through the fusion of spe-
cific receptors [19]. The spike protein of the mature virion is
made up of two subunits, S1 and S2, that are not covalently
connected. While the S1 subunit attaches to the ACE2 re-
ceptor on the surface of the host cell, the S2 subunit secures
the spike protein to the viral membrane [11] (Figure 1).

The spike (S) glycoprotein of MERS-CoV, like that of other
coronaviruses, enables membrane fusion and receptor recog-
nition and serves as the primary focus of the humoral immune
response during infection [20]. The interaction between the
viral spike protein (S) and ACE2 and TMPRSS2 is what de-
fines SARS-CoV-2 entrance into host cells [21]. SARS-CoV-
2’s spike protein can interact with various host receptors to
bind endothelial cells, resulting in multiple cases of endothe-
lial damage [22].

SARS-COV-2 TRANSCRIPTION AND
REPLICATION

CoVs express and replicate their genomic RNA to create
new copies during their intracellular life cycle. CoVs have long
RNA genomes with endogenous RNA secondary structures
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Table 1. Coronavirus species, genera, and host receptors∗.

Genus Species Receptor Reference

Alpha CoV

Human CoV 229E APN [23]
Human CoV NL63 ACE2 [24]
PERV APN [25]
FCoV serotype 2 APN [5]
CCoV serotype 2 APN [26]
TGEV APN [27]

Rhinolophus bat CoV
HKU2

[5]
Scotophilus bat CoV
512/05
Miniopterus bat CoV1
Miniopterus bat CoV
HKU8

Beta CoV

MHV CEACAM [28, 29]

Rat CoV
[5]

Puffinosis virus

BCoV neu 5,9 Ac2 [30]

HCoV-OC43 neu 5,9 Ac2

[5]

ECoV
HECoV
PHEV
CrCoV
Human CoV HKU9
Rousettus bat CoV
HKU4
Tylonycteris bat CoV
HKU5

SARS-CoV ACE2 [31]
MERS-CoV DPP-4 [32]

Gamma CoV
Avian CoV comprising

[5]

Beluga Whale CoV
SW1

Delta CoV
Bulbul CoV HKU11
Thrush CoV HKU12
Munia CoV HKU13

∗ CoV: Coronavirus, APN: Aminopeptidase N, ACE2: angiotensin-
converting enzyme 2, PEDV: Porcine Epidemic Diarrhea CoV,
FCoV: Feline CoV, CCoV: Canine CoV, TGEV: Transmissible
gastroenteritis virus, MHV: Existing species of mouse hepati-
tis virus, CEACAM: Carcinoembryonic antigen-related cell adhe-
sion molecule, BCoV: Bovine CoV, neu 5,9 Ac2: 5-N-acetyl-9-
O-acetylated neuraminic acid, HCoVOC43: Human CoV OC43,
ECoV: Equine CoV, HECoV: Human enteric CoV, PHEV: Porcine
haemagglutinating encephalomyelitis virus, CrCoV: Canine respi-
ratory CoV, DPP-4: Dipeptidyl peptidase 4.

necessary for RNA synthesis bordered by 5’ and 3’ untrans-
lated sequences. Two sizable open reading frames (ORFs),
ORF1a and ORF1b, are located at the 5’ end of the ge-
nomic RNA [33]. The positive-sense SARS-CoV-2 genome,
the biggest RNA genome of any RNA virus, instantly trans-
lates two polyproteins from ORF1a and ORF1b in the cy-
toplasm when it enters a vulnerable cell. Since ORF1a and
ORF1b significantly overlap, with ORF1b positioned in the
–1 reading frame relative to ORF1a, the mechanism behind
the need for a planned –1 ribosomal frameshift (–1 PRF) for

Figure 1. The severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) virus’s ribonucleic acid (RNA) genome and
four main structural proteins, the spike (S), envelope (E),
membrane (M), and nucleocapsid (N), are shown graphically.
S: spike, E: envelope, M: membrane, N: nucleocapsid, ssRNA:
single-stranded ribonucleic acid.

ORF1b expression is yet unknown [34]. CoVs use an RNA-
dependent RNA polymerase (RdRp) complex to transcribe
their genes and duplicate their genomes [35].

All viruses in the Nidovirales order employ the same cod-
ing strategy as SARS-CoV viruses: two-thirds of the viral
RNA is translated into two giant polyproteins, while the bal-
ance of the viral genome is transformed into a nested series
of subgenomic mRNAs [36]. The two polyproteins, pp1a and
pp1ab, encode the 16 non-structural proteins (nsp1–nsp16)
that make up the viral replicase-transcriptase complex. Two
viral proteases cleave these polyproteins. To facilitate viral
transcription and replication, nsps transform the rough endo-
plasmic reticulum (RER) membrane into double-membrane
vesicles [37, 38].

The SARS-CoV-2 genome encodes four structural proteins,
six accessory proteins, and sixteen non-structural proteins.
Non-structural proteins involved in transcription, RNA repli-
cation, and immune evasion are encoded by around 70% of the
5’ end of the genome. The ORF1a and ORF1b polyproteins
are cleaved to yield these proteins. The structural proteins
spike (S), envelope (E), membrane (M), and nucleocapsid (N),
as well as auxiliary proteins 3a, 6, 7a, 7b, 8, and 9b, are en-
coded by the remaining 30% of the genome, which is found at
the 3’ end [39]. ORF3a, ORF3b, ORF6, ORF7a, ORF7b,
ORF8b, ORF9b, and ORF14 are a collection of auxiliary
genes that encode accessory proteins and are found among
the structural genes. Except for the structural proteins, ac-
cessory proteins such as ORF3a and ORF7a may not be incor-
porated into the virion but play essential roles in regulating
viral infection [40].

LIFE CYCLE AND MECHANISM OF ARDS IN
CONNECTION WITH SARS-COV-2

The N (nucleocapsid) protein, which binds to the viral ge-
nomic RNA, is compacted within the virion of SARS-CoV-2,
whilst the structural proteins S (spike), E (envelope), and M
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(membrane) are incorporated into the virion membrane [41].
When the S protein attaches to its particular receptor, ACE2,
the life cycle of SARS-CoV-2 starts [42]. Through fusion and
adhesion to the cell membrane, the homotrimerized S pro-
tein facilitates viral entrance into the host cell. Enzymes like
furin break down the S protein in some CoVs into two sub-
units, S1 and S2, within infected cells. While the S2 subunit
includes the fusion peptide required for entrance into the new
cell and adheres the viral membrane to the host cell mem-
brane, the S1 subunit attaches itself to ACE2 [6, 43]. More-
over, the SARS-CoV spike protein has to be proteolytically
activated at the S1/S2 border for membrane fusion to take
place, causing S1 to separate and S2 to undergo substantial
conformational changes. Proteases that trigger SARS-CoV
entry include lysosomal proteases such as cathepsins and the
cell surface protease TMPRSS2 [5, 44]. TMPRSS2 on the cell
surface and cathepsins within endosomes must cleave the S2’
site, which is situated just downstream of the S1–S2 barrier,
to correctly start the fusion process. Although its primary
physiological function and substrate specificity are yet un-
clear, TMPRSS2 is a type II transmembrane protein with
serine protease activity [45, 46].

To promote virus assembly and budding, the E and M
proteins interact with other viral proteins. When virus-
containing vesicles fuse with the plasma membrane, viral par-
ticles are discharged into the extracellular space. The secre-
tory route carries viruses to the plasma membrane when they
first sprout into the lumen of the endoplasmic reticulum-Golgi
intermediate compartment (ERGIC) [41] (Figure 2). Infected
cells generate a lot of specific inflammatory mediators once
SARS-CoV-2 enters the body, which triggers macrophages to
release cytokines such as tumor necrosis factor-α (TNF-α)
and interleukins interleukin-1 (IL-1) and interleukin-6 (IL-6).
These cytokines cause endothelial contraction brought on by
TNF-α, IL-1, and IL-6, which compromises the integrity of
the alveolar-capillary membrane, causes vasodilation, and in-
creases vascular permeability [13]. CoVs may harm the pul-
monary endothelium directly or indirectly, which raises vas-
cular permeability and causes alveolar edema, both of which
contribute to hypoxia [47].

An essential component of coronavirus replication is the
multimeric protein complex known as the RNA-dependent
RNA polymerase (RdRp) complex [48]. RNA processing and
genome replication depend on some other viral nsps. Copy-
ing the viral RNA is how the replication–transcription com-
plex (RTC) works [48]. Some co-factors involved in RNA
proofreading and 5’ capping of viral RNAs, as well as non-
structural protein 12 (nsp12), which is directly responsi-
ble for RNA synthesis, make up the RNA production ma-
chinery of SARS-CoV-2, which makes it a prime target for
drugs [49]. In addition to being an exoribonuclease with
its essential cofactor nsp10, SARS-CoV-2 nsp14 is also an
S-adenosyl methionine-dependent (guanine-N7) methyltrans-
ferase (MTase) [50]. SARS-CoV-2 in viral replication, nsp13
is crucial for helicase (nucleoside triphosphate enzymes, or
NTPs). Nsp13 is an RNA 5’-triphosphatase, and its 5’-3’ di-
rectionality RNA or DNA duplex unwinding activity is pow-
ered by the hydrolysis of NTPs [50].

TRANSMISSION OF SARS-COV-2

Although aerosols, direct contact with infected surfaces,
and fecal-oral transmission were all reported during the SARS
pandemic, respiratory droplets are the main way that human

CoVs are spread [51, 52]. Based on initial reports from pa-
tients with coughing, lung ground glass opacities, and symp-
toms of severe progressive pneumonia, SARS-CoV-2 may be
transmissible through the respiratory tract [53, 54]. The hu-
man respiratory epithelium, which includes the throat and
upper airways, is the primary site for host target receptors.
Additionally, the gastrointestinal tract and conjunctiva sug-
gests, which are susceptible to infection, may serve as entry
points for disease spread [55].

The risk of infection increases significantly in enclosed
spaces compared to open areas. Prolonged exposure to
crowded, poorly ventilated indoor environments can still con-
tribute to aerosol transmission (transmission can occur at dis-
tances greater than 2 meters) [56]. Aerosols that asymp-
tomatic people emit into the air when they breathe and
talk are responsible for a significant amount of the spread
of COVID-19 illness. Universal mask use and extensive, reg-
ular testing to identify and isolate asymptomatic carriers are
two essential steps that should be taken to minimize aerosol
transmission [57].

IMMUNE RESPONSE AND CYTOKINE STORM
IN SARS-COV-2 INFECTION

During the COVID-19 pandemic, some recovered patients
showed elevated antibody levels, although neutralizing anti-
bodies and memory T cells against MERS-CoV decreased in
previous years. This most likely happened as a result of cross-
reactive immunity brought on by SARS-CoV-2 infections or
vaccinations. Antibody responses to different CoVs show a
strong association, suggesting that they share immunogenic
epitopes [58]. So far, the majority of the global popula-
tion has either been infected with SARS-CoV-2 or vaccinated
against it. Since SARS-CoV-2 and other human coronaviruses
(HCoVs) share common epitopes, exposure to SARS-CoV-2 is
expected to enhance cross-reactive antibody responses against
other HCoVs [59].

Macrophages in the alveolus and epithelial cells in the lungs
are two examples of SARS-CoV-2-infected cells that produce
cytokines and chemokines in the plasma. Cytokines, including
ILs, IFNs, and chemokines, are the leading cause of cytokine
storm (CS) and cytokine release syndrome (CRS). The high
inflammatory response and the production of many proin-
flammatory cytokines that set off the CS are the results of
these cytokines’ subsequent activation of macrophages, den-
dritic cells (DCs), and other immune cells [60]. Large vol-
umes of inflammatory cytokines and chemokines are secreted
when infected with the SARS-CoV-2 virus. Serum samples
from patients with severe COVID-19 showed elevated levels
of IL-2, IL-7, IL-10, granulocyte colony-stimulating factor (G-
CSF), TNF, CXC-chemokine ligand 10 (CXCL10), monocyte
chemoattractant protein-1 (MCP1), and macrophage inflam-
matory protein 1 alpha (MIP1α) [61].

SARS-COV-2 DIAGNOSIS LINKED TO ARDS

The incubation period for CoV -induced ARDS averages
approximately five days, with 95% of patients developing
symptoms within 13 days post-exposure [36]. While gastroin-
testinal symptoms, including diarrhea, vomiting, and nausea,
are less common, the first clinical signs usually include fever,
chills, cough, lethargy, headache, and myalgia. Early and ac-
curate diagnosis of ARDS is critical for the timely initiation
of both pharmacological and non-pharmacological interven-
tions, with precise etiological determination being essential
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Figure 2. When the spike (S) protein binds to the angiotensin converting enzyme 2 (ACE2) receptor, the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) life cycle begins. Viral entry into host cells occurs through two distinct
pathways: (1) Cleavage at the S1/S2 site by the TMPRSS2 (transmembrane protease serine 2), facilitating direct membrane
fusion, or (2) Endocytosis followed by cathepsin L-mediated cleavage in endosomes. After the virus successfully enters the
body, its genomic ribonucleic acid (RNA) is translated into the polyproteins pp1a and pp1ab, which are then broken down into
smaller functional components by proteolysis. Negative-sense RNA templates are subsequently synthesized to enable genomic
replication and subgenomic mRNA transcription. Within the cytoplasm, newly synthesized genomic RNA associates with
nucleocapsid (N) proteins to form complete nucleocapsids. These viral components are then packaged into vesicles derived from
the endoplasmic-reticulum–Golgi intermediate compartment (ERGIC) and ultimately released from the infected cell through
the secretory pathway, completing the infectious cycle. E: envelope, M: membrane.

for appropriate therapeutic management [62].

Optimal diagnostic sampling for SARS-CoV-2 detection in
outpatient settings is achieved through combined nasopha-
ryngeal and oropharyngeal swabs, which demonstrate supe-
rior diagnostic performance compared to single-site sampling
techniques [63]. Real-time PCR (RT-PCR) is still the gold
standard for SARS-CoV-2 identification in suspected COVID-
19 patients with ARDS [64]. Current RT-PCR assays exhibit
diagnostic sensitivity ranging from 45–60%, often necessitat-
ing repeat testing during early infection stages to confirm di-
agnosis [65]. Serological testing serves as a complementary
diagnostic approach, primarily identifying previous infection
through the detection of viral-specific antibodies. Enzyme-
linked immunosorbent assay (ELISA) provides qualitative
measurement of immunoglobulin G (IgG) and immunoglob-
ulin M (IgM) antibodies directed against the viral spike (S)
protein, with applications in contact tracing, assessment of
immune protection, and epidemiological investigations [66].

In SARS-CoV-2-associated ARDS patients, systemic cy-
tokine levels have emerged as potential biomarkers of disease
severity [67]. The degree of hypoxemia, which is an essential

predictor of decreased survival, is used to measure the sever-
ity of ARDS. This is calculated as the ratio of partial pressure
of oxygen (PaO2) to the fraction of inspired oxygen (FiO2)
[68]. Molecular-based and antibody-detection assays collec-
tively constitute the reference standard diagnostic modalities
for SARS-CoV-2 confirmation, providing comprehensive di-
agnostic information when used in combination [69]. Several
sampling tools and techniques for SARS-CoV-2 detection em-
ploy various strategies for distance, floor height, flow rates,
and sampled air volumes. Solid impactors outperform liquid
impactors or filters in terms of each mechanism’s effective-
ness, and a mix of several approaches may be suggested. Liq-
uid impactors were the second most used mechanism, followed
by other/different ways, while solid impactors were the least
utilized mechanism. The majority of the research included in
this evaluation used various filtration systems to gather air
samples for SARS-CoV-2 detection [70].

PREVENTION AND TREATMENT STRATEGIES

The rapid global dissemination of SARS-CoV-2 and the
substantial proportion of asymptomatic carriers necessitate
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Table 2. Therapeutic strategies and their estimated efficacy in SARS-CoV-2 infection and ARDS∗.

Treatment Strategy Estimated Efficacy Reference

Corticosteroids (e.g., Dexamethasone) ∼ 30–34% reduction in mortality in patients requiring oxygen or me-
chanical ventilation

[71]

Tocilizumab (IL-6 receptor blocker) ∼4% reduction in 28-day mortality in hospitalized patients [72]
Baricitinib + Remdesivir ∼31% lower progression to death or ventilation by day 29 [73]
Convalescent Plasma ∼14% mortality reduction in early treatment in ventilated patients [74]
Prone Positioning Improved oxygenation; mortality reduction in moderate–severe ARDS [75]
Mesenchymal stem cell therapy Early-phase trials show reduced inflammation; promising but limited

data
[71]

∗ Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), ARDS: Acute respiratory distress syndrome, IL-6: Interleukin-6.

the urgent development of effective therapeutic interventions
[76]. Despite extensive therapeutic efforts and the clinical
application of remdesivir (RDV), the current lack of po-
tent antiviral agents continues to hinder treatment optimiza-
tion. Notably, nitric oxide (NO) has emerged as a promising
therapeutic candidate due to its broad-spectrum antimicro-
bial properties [77]. Among antiviral pharmacotherapies, nu-
cleotide/nucleoside analogs represent a critical class of agents
that function through polymerase inhibition. RdRp inhibitors
such as favipiravir and RDV have demonstrated clinical util-
ity in SARS-CoV-2 management [78] (Table 2).

According to centers for disease control and prevention
(CDC) guidelines, high-risk populations requiring particular
vigilance include individuals with chronic pulmonary con-
ditions, severe cardiovascular disease, chronic kidney im-
pairment, type 2 diabetes mellitus, obesity, and pregnant
women [79]. Systemic cytokine profiling serves as a valu-
able biomarker for disease severity assessment and may guide
glucocorticoid (GC) therapy administration [67]. Emerging
evidence suggests that circulating ACE2 expression patterns
may confer protective effects against SARS-CoV-2 infection
by competitively binding viral particles and preventing cel-
lular entry [80]. Therapeutic administration of channel in-
hibitors has shown efficacy in reducing viral load and attenu-
ating inflammatory cytokine secretion in the lungs of hACE2-
expressing individuals infected with SARS-CoV-2 [81]. Mes-
enchymal stem cells (MSCs) exhibit significant therapeutic
potential through juxtacrine and paracrine mechanisms that
modulate immune cell activity and mitigate pulmonary in-
flammation in ARDS [82]. The pathophysiological cascade
initiated by SARS-CoV-2 involves damage-associated molec-
ular patterns (DAMPs) release and neutrophil recruitment,
with neutrophil extracellular traps (NETs) exacerbating alve-
olar inflammation and lung injury [83].

Vaccination remains a cornerstone of prevention, effectively
reducing transmission rates and preventing severe disease pro-
gression [84]. One of the most essential methods for avoiding
SARS-CoV-2 infection or lessening the severity of the dis-
ease is vaccination. Inducing antibodies that stop the SARS-
CoV-2 receptor binding domain (RBD) from interacting with
ACE2 was a key vaccine strategy [85]. Patients with COVID-
19 who received the vaccine had a lower relative risk (RR)
of ARDS. Thus, hospitalized individuals who were not immu-
nized had a 2.5-fold increased risk of ARDS. In multivariate
analysis, this risk reduction remained after controlling for sev-
eral confounding variables [86].

This review has several limitations, including the reliance
on rapidly evolving and sometimes conflicting evidence on

SARS-CoV-2 pathogenesis, potential selection bias due to the
inclusion of predominantly observational and preclinical stud-
ies, and the heterogeneity of clinical definitions and molecular
methodologies across studies, which may impact the consis-
tency and generalizability of our conclusions. Additionally,
the dynamic nature of the pandemic means that newer vari-
ants and emerging therapeutic approaches may not be fully
captured in this synthesis.

CONCLUSION

ARDS is a severe complication of SARS-CoV-2 infection
with high mortality and significant challenges in intensive
care. It is characterized by endothelial barrier disruption, im-
paired gas exchange, and excessive immune activation, caus-
ing pulmonary dysfunction. SARS-CoV-2 enters cells via
spike protein binding to ACE2 receptors, triggering inflam-
matory cascades and alveolar edema. Early diagnosis using
RT-PCR and cytokine profiling, as well as vaccination, is es-
sential, while preventive measures like mask-wearing, ventila-
tion, and carrier detection help limit transmission. Current
treatments include antivirals, glucocorticoids, NO, and mes-
enchymal stem cell therapy, with vaccination playing a key
role in reducing disease severity. The complex interaction be-
tween virus and host immune response necessitates further
research to develop targeted therapies addressing both viral
replication and immune dysregulation to reduce ARDS mor-
tality.
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