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1. Introduction

Today, Proportional Integral Derivative (PID) controllers are widely used in industrial processes They are widely used due to their simple
structure and reliable performance. Researchers have dedicated considerable attention to the creation and tuning of PID controllers since 1942
[1]. A significant body of research has accumulated since then, encompassing the design, stability analysis, performance evaluation, and diverse
applications of PID controllers [2, 3]. The Fractional Order PID (FOPID) controller emerges as a subsequent evolution of the standard PID
controller, distinguished by the inclusion of two supplementary parameters representing fractional order integration and differentiation. The
FOPID controller finds broad applicability in a range of engineering domains, including intelligent reactors [4], electronic power converters
[5], rehabilitation apparatus [6], automatic voltage regulators [7], industrial process simulations [8], robotic mechanisms [9], power grids
utilizing synchronous generators [10], and wind energy turbines [11]. It is critical to understand that the specific numerical values of FOPID
controller parameters will vary, depending on the unique requirements of each application, yielding an individualized optimal operational
profile. There are various methods such as trial-and-error method, curve method, Ziegler-Nichols method, and methods based on meta-heuristic
algorithms to adjust FOPID controller coefficients. Recently, methods based on meta-heuristic algorithms have been widely noticed by
researchers [12-15]. In [16], The genetic algorithm is presented to tune FOPID parameters. Within this approach, the ISE index is utilized for
the goal of the function, and the sequence of bands are in the range of 0 to 100. The outcomes indicate that the proposed FOPID control system
remains controllable even under variations in fractional parameters. even when the fractional factor values go beyond the standard limits. In
[17], A FOPID controller optimized through a multi-objective genetic algorithm A magnetically damp semi-active seat suspension system is
the subject of this proposal. The core focus of this method is the gain crossover frequency and the phase margin. Findings show the continuous
FOPID (cFOPID) provides superior results compared to conventional integer controllers. The evolutionary multi-objecturbines, dominated
sorting genetic algorithm (NSGA-II) is employed in [18] as a tuning strategy for cFOPID within hydraulic turbines; its operation relies on two
objective functions: the Integral Squared Error (ISE) and the Integral of the Time-weighted Squared Error (ITSE). The findings confirm that
the NSGA-II effectively optimizes cFOPID. In [19], a cloud model-based quantum genetic algorithm (CQGA) is proposed to fine-tune cFOPID
parameters for controlling the motion of an autonomous underwater vehicle (AUV). This method combines cloud model theory with quantum
genetic algorithms, leveraging principles of quantum computing, with the integral weighted absolute error as the objective function. Results
show that cFOPID enhances control over both heading and diving. In [20], The genetic algorithm designed for tuning the cFOPID controller is
implemented in a conical tank system, with the Integral of Time Absolute Error (ITAE) serving as the objective function. Reference [21]
proposes a genetic algorithm specifically designed for tuning the cFOPID parameters within a boiler turbine system. Utilizing floating-point
coding, a selection process predicated on ranking, and a strategy to retain elite solutions, alongside a grouping mechanism, this algorithm is
built to boost search effectiveness and prevent early convergence to suboptimal results. Research found in reference [22] investigates a frenzy-
based particle swarm optimization algorithm.
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Nomenclature & Symbols

FOPID Fractional Order Proportional Integral Derivative PSO Particle Swarm Optimization

QTP Quadruple Tank Process ISE Integral Squared Error

PID Proportional Integral Derivative ITSE Integral of the Time-weighted Squared Error
ITAE Integral of Time Absolute Error GA Genetic Algorithms

ASO Atom Search Optimization ICA Imperialist Competitive Algorithm
HPS Hybrid Power System RMSE Root Mean Square Error

WOA Whale Optimization Algorithm DA Differential Algebra

NSGA-1I Non-Dominated Sorting Genetic Algorithm COA Cuckoo Optimization Algorithm
CQGA Cloud Model-Based Quantum Genetic Algorithm IAE Integral Absolute Error

cFOPID Continuous Fractional Order Proportional Integral Derivative DA Dragonfly Algorithm

This study's goal is to identify ideal PID controller parameters suitable for the task of frequency regulation within a multi-source microgrid,
featuring the integration of renewable energy. Reference [23] details the implementation of the Atom Search Optimization (ASO) algorithm.
The ASO is applied to fine-tune the FOPID controller parameters for managing frequency and load within a linked Hybrid Power System
(HPS). The HPS incorporates renewable sources, including wind and solar, alongside plug-in electric vehicles. The presented results clearly
illustrate that the FOPID controller, when optimized through the ASO approach, performs favorably when compared to standard controllers
such as I, PL, PID, FOI, and FOPI. Finally, reference [24]. The utilization of the Whale Optimization Algorithm (WOA) is explored concerning
the ideal configuration of a FOPID controller within a multi-area power grid featuring multiple energy sources. This WOA-integrated FOPID
controller shows a desirable dynamic response. Specifically, it excels in aspects of settling time and peak overshoot, while also demonstrating
stability amidst fluctuations in system characteristics.

Given the importance of automatic liquid level control in industrial applications, an effective and efficient control method is crucial. The
dynamics of a four-tank system closely mirror those of real-world processes, such as boiler operations, distillation columns, and oil refineries
in the petrochemical industry. These processes involve intricate interactions within the four-tank system, making control a complex challenge.
This complexity drives the need for a robust control method to adjust the parameters of the FOPID controller in the four-tank system.

This study introduces the dragonfly optimization method for fine-tuning the parameters of the FOPID controller in a four-tank system.
Dragonfly's performance in reaching optimal solutions swiftly makes it a strong contender, outshining methods like Particle Swarm
Optimization (PSO), Genetic Algorithms (GA), and the Imperialist Competitive Algorithm (ICA). Furthermore, the adoption of Root Mean
Square Error (RMSE) in the cost assessment introduces an innovative approach.

Here's how the subsequent sections are organized in this investigation: Section II serves as an introduction to the four-tank system. Following
that, Section III delves into the FOPID controller, along with an explanation of the introduced approach. We then move onto Section IV, which
shows the outcomes of the simulation runs. Section V analyzes these simulation results thoroughly, and finally, Section VI brings the study to
a close.

2. Four-Tank System

The four-tank system is a nonlinear parameter-varying process utilized in chemical and oil-and-gas processes. The system contains two water
tanks and two pumps that are connected; the tanks are filled by two pumps (see Fig. 1) [25]. The power supplied to the pumps serves as the
input signal, whereas the water level present in the lower tanks constitutes the output of the system. Each tank's mathematical representation is
formulated utilizing Bernoulli's principle and the principle of mass conservation. The goal is to manage the water levels in the two lower tanks,
utilizing the control action afforded by the two pumps. Each pump's output is divided into two streams through three-way valves. In this setup,
into each tank water is pumped in the top of this tank and out through the bottom of the tank.
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Fig. 1. Four tank system[25]
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The mathematical equation of the four-tank system according to Bernoulli's law and conservation of mass is as follows:

dhy(t) _

Ar = = Qin, t Qout; — Gout,=Y1k1V1 + azy2gh3(t) — ai/2gh, () (D

The non-linear relations of each tank, similar to Eq. (1) are obtained below.
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The above relations are non-linear due to the existence of the root term, which makes the design of the controller challenging. Therefore, the
operating region of the system is determined through a first-order Taylor series expansion of the nonlinear dynamics around the equilibrium
point after the computation of Jacobian matrix using the Taylor series expansion after transformation of Jacobian matrix.

dxy _

- - h (hq, By, oo, By, Uq, Uy, e, Uy) 6)

dxn
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General vector form
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Linear approximation with Taylor series
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The form of the system space is as follows
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Time constants:
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The transformation function after linearization is according to Eq. (17).

Y161 (1-y2)cq
_ 14T, (1+T3s)(1+sTy)
G(S) - (1-y)ea Y2C2 an
(14STy)(1+5T,) 1+sT,
In Eq. (17), the values of c¢; and c,are equal:
¢ = (18)
¢, = e (19)

3. Principles of Operation of the FOPID Controller

In 1999 Podlubny proposed the FOPID controller [26]. An FOPID controller has five parameters. These are proportional gain, integral gain and
derivative gain, as well as order of integration and differentiation [27]. The law describing the control is presented in (20).

u(t) = kpe(t) + k;D*e(t) + kpD? (20)
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The FOPID transfer function is obtained by Laplace transform according to Eq. (21).
Go(s) = kp + k;s™* + kps® 21)

The design of FOPID includes the determination of three parameters kp, k;, kp and two orders 4, 6. Different design methods have been
presented for this type of controller. In this article, it employs the Dragonfly meta-heuristic to obtain the optimal FOPID settings for a Fractional
Order PID (FOPID) controller.

4. Proposed Method

This section introduces a proposed method that employs Differential Algebra (DA) to fine-tune the parameters of the FOPID controller, as
shown in Fig. 2. The following discussion will elaborate on this approach.

C(8)
FOPID Controller J R ‘

R(S)

Four-Tank System {‘

Fig. 2. Flowchart of FOPID controllers design for four-tank system
4.1. Decoupling

In this case, the two-input-two-output system will turn into two single-input-single-output systems, or in other words, the system will be
decoupled. In fact, the fluid level within the initial tank is solely dictated by the output rate of the secondary pump, while the second tank's level
is determined only by the first pump's output. This characteristic allows for straightforward, separate design of two controllers. Thus, the overall
multivariable control strategy simplifies into a collection of isolated control loops. However, a key consideration is that this decoupling
approach remains valid only if any direct flow of water into the lower tanks is minimal, effectively rendering it negligible as an external
disturbance.

Assumptions and Robustness of the Decoupling Strategy: Let the linearized two-input two-output model around the operating point be written
in the standard partitioned form

B:[O By A_An Aq

JA= , X =Ax+Bu,y = cx 22
B, 0 Ay Azz] y @2)

Where yT = [hy, h;] are the lower-tank levels and uT = [V; V,] are the pump voltages. The physical cross-coupling arises from (i) the three-
way valve splitting ratios (¥4, y,) that route fractions of the pump flows to the "opposite" branch, and (ii) hydraulic interactions that appear as
off-diagonal blocks A;, A,; in the Jacobian.

It quantifies the "minimal direct-flow" condition by requiring that the off-diagonal influence is small relative to self-dynamics, namely.

A
S sl

> max (y;,7,) > Lzl (23)
A4l

14zl

With design guidelines € > 0.10 and max(yy,y) = 0.10. Under these bounds the closed-loop matrix with two independent SISO controllers
is strictly diagonally dominant, which ensures decentralized stability by Gershgorin's theorem; practically, the residual coupling acts as a
bounded disturbance that the. FOPID loops can reject.

Robustness check under finite coupling. To assess how sensitive the loops are to cross-terms, the above bounds can be relaxed in analysis to
£[0.20,0.05] and (y4,¥2)[0.20,0]. The decentralized design remains valid provided the closed-loop matrix A satisfies |( A¢;) ;| > |(Ac)ijl
for = i 1,2. This condition can be verified from the linearized model without time-domain simulations and gives a clear, quantitative envelope
for which decoupling is justified.

Practical guideline for experiments. If a laboratory setup is available, (y4,y,) can be estimated by simple flow tests (fixed voltage, measure
split), and the Jacobian blocks A;, A, can be obtained from small perturbations around the operating point. Reporting the measured (y;,7>)
and the ratios ||Aq|l/||A11ll, 1421 11/]|A22]] assumes explicit and reproducible. If (y4,y,) are larger than the stated bounds, a static pre-
compensator N = (K;,k,1)" can be introduced to partially. cancel the steady-state coupling prior to FOPID loops.

4.2. Dragonfly algorithm

The dragonfly algorithm, A meta-heuristic technique was put forth by Mirjalili and collaborators during the year 2015. as documented in
reference [28]. The core concept of this algorithm draws inspiration from the way dragonflies behave in the real world. The dragonflies'
intelligent conduct is guided by these five key rules: dodging other nearby dragonflies to avoid clashes, modulating their flight velocity in
reaction to where their neighbors are, seeking the center of gravity of their surrounding companions, heading toward potential food sources,
and, finally, avoiding any detected threats. To simulate these behaviors, the dragonfly algorithm employs five distinct mathematical functions.
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Separation function: It happens when dragonflies follow it to avoid collision with their neighbors. The mathematical relationship of this function
is according to Eq. (24).

Si==X\,X-X (24)
Speed function: This function calculates the speed of dragonflies according to the neighboring dragonfly as Eq. (25).

ZI.V= Vv
4, =E0Y (25)
Cohesion function: This function calculates the cohesion of neighbors according to Eq. (26).

X
Ci = ]T -X (26)
Attraction function: It shows the tendency of dragonflies towards the food source, which is calculated according to Eq. (27).
F,=X"-X 27

Distraction function: the natural behavior that every dragonfly does to survive against the enemy's influence. This function can be seen according
to Eq. (28).

E =X +X (28)

Initially, the dragonfly algorithm initializes the position and step vectors randomly, Limited by the minimum and maximum values. defined for
the problem's variables. Subsequently, during each cycle of the iterative process, both the optimal position and step of the dragonflies undergo
sequential refinement. To determine the updated position vector for a dragonfly, the step vector, designated as AX, is incorporated alongside
the current positional vector. This step vector effectively dictates the direction in which the dragonfly will move, and it is computed based on
the mathematical relationship provided in Eq. (29).

AXipq = (sS;+ ad; + cC; + fF; + eE;) + wAX, (29)
In this regard, g, s, ¢, f, e, w are weight vectors. Also, the position of the dragonflies is updated using Eq. (30).

Kevr — Xp = AXeyq (30)
In this regard, the parameter ¢ is the number of repetitions.

4.3. Objective functions

Objective functions are typically classified into three categories: classical time-domain objective functions (such as maximum overshoot and
time-varying functions), frequency-domain objective functions (like phase limits), and time-domain error it considers time-domain error
objectives: ISE, IAE, and RMSE. This research focuses on error objective functions due to their general applicability and widespread
acceptance. The RMSE is used according to Eq. (31).

RMSE = /}l n_ e?(k) 31)

e(k) = ri(k) — h;y(k) (32)

In Eq. (32), e(k) is the difference between the input signal r;(k)and the output signal h;(k) in the closed loop system. Since each FOPID
controller has five parameters, ten parameters must be tuned in total. Therefore, the optimization algorithm searches the controlling parameters
in a 10-dimensional space. The vector of FOPID controlling parameters for the i# member of the population is considered according to Eq.
(33).

X, = [Kp1, Kir, Ka1, Kpa, Kiz, Kaz) A1, b1, A2, 1] (33)

where parameters Kpq, Kj1, Kg1, Kp2, Kiz, Ka2, A1, U1, A2, 42 The elements that make up the initial controller are presented here, followed by
those of the subsequent controller.

Objective Function Clarification: it uses the Root Mean Squared Error (RMSE) as the primary scalar objective for tuning because it directly
penalizes sustained tracking errors and is scale-consistent across outputs. We do not claim novelty for RMSE itself; our contribution lies in the
overall tuning framework and comparative evaluation. For each output k{2,1} thediscrete-time RMSE is

RMSE = % n_ e2(k) (34)

And the aggregate objective used in optimization is

total RMSE = | XMSERMSES (35)

To facilitate fair benchmarking, we also report ISE and IAE as secondary criteria in the results section
4.4. Sensitivity analysis

To verify robustness against implementation inaccuracies, we performed a simple sensitivity check on the optimized FOPID parameters for the
two loops (Loop-1, Loop-2). Each parameter (KP, KI, KD, A, ) was perturbed individually by +10% while the others were kept fixed, it drew
a small set of random joint perturbations within £10% for all parameters to mimic simultaneous errors. The results are summarized in Figs. 3
to 5 and indicate that performance degrades modestly while closed-loop stability is preserved within the tested ranges.
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4.5. Practical implementation considerations
Translating the proposed design to a physical quadruple-tank setup requires accounting for sensing, actuation, and computation realities.

=  Sensing and filtering. Level measurements are affected by quantization and noise; a first-order low-pass filter (cutoff in the 10-20 Hz
range for typical level sensors) and proper sensor-gain calibration improve signal quality. The same filter should be included in validation
simulations to avoid optimistic performance estimates.

= Actuation limits and nonlinearities. Pumps exhibit saturation, dead-zones, and rate limits. The controller output must be bounded to the
admissible voltage range, augmented with an anti-windup mechanism and a slew-rate limiter. If a dead-zone is present, a small bias or
feed-forward can be applied to overcome it while keeping steady-state error negligible.

=  Sampling and fractional realization. The sampling period T, should be chosen relative to the dominant tank time constants (e.g., tens of
milliseconds for lab rigs). The FOPID can be implemented via a discrete approximation (e.g., Oustaloup/CRONE) of moderate order to
balance accuracy and computational load; the same approximation order should be used in both design and validation.

=  Delays and computation. I/O and computation delays should be measured and, if non-negligible, compensated (e.g., by phase margin
budgeting or simple Smith-type prediction in software).

=  Safety and constraints. Hard bounds on water levels (min/max) must be enforced with software interlocks and emergency shut off. Initial
transients during start-up and restart after disturbances should be handled by a bump less transfer to prevent overshoot.

Remark. These considerations can be replicated on standard real-time platforms (e.g., microcontroller/DAQ/PC) without modifying the nominal

tuning; they primarily ensure that laboratory behavior matches the validated simulation model.

5. Implementation and Examination of the Results

The proposed method is put to the test through a comprehensive comparison, pitting it against well-established algorithms. Specifically, we
examine the performance relative to the classic Genetic Algorithm (GA), as detailed in reference [29], the Cuckoo Optimization Algorithm
(COA) from publication [30], Particle Swarm Optimization (PSO), found in reference [31], and finally, the Imperialist Competitive Algorithm
(ICA) according to [32]. All experiments were carried out in MATLAB R2023a on a laptop with an Intel Core i7 (2.27 GHz) and 16 GB RAM.

5.1. Evaluation criteria

Evaluation criteria commonly used in control are employed to assess the effectiveness of the proposed approach. For this purpose, in the subject
of setting the controller parameters, different algorithms for setting the parameters of FOPID in the four-tank system are measured with various
criteria.

= Integral of square value of error (ISE)

The ISE is according to Eq. (36). If the ISE is low, it is more suitable.

ISE = [ e?(t)dt (36)
= Integral of absolute value of error (IAE)

The IAE is according to Eq. (37). The IAE is lower, it is more suitable.

IAE = [|e(t)|dt (37)

RMSE was selected as the primary tuning objective for its direct interpretability in time-domain tracking; we do not claim novelty for RMSE
itself. For fair benchmarking with prior work, ISE and IAE are additionally reported in the results.

5.2. Experimental results

The parameters of the four-tank system are chosen to be constant in accordance with Table 1 in these experiments in order to It is crucial to
steer clear of any parameter value choices that might skew the outcomes when analyzing the four-tank system. The initial population size
strongly affects convergence; very large populations increase runtime. Compared to the other algorithms being compared, the suggested
approach uses a considerably smaller population to demonstrate its capabilities. The initial size of the population for GA, PSO, ICA, and COA
algorithms are considered to be 90, and the number of the initial population for the DA is considered to be 40 (Table 2). In this article, the range
of FOPID controller parameters is considered based on Table 3. Three sets of experiments are conducted. The suggested method's rate of
convergence is studied in the first set. The proposed method's performance in the four-tank system is evaluated in the second set, while the third
set compares the proposed method's performance to that of current approaches.

Table 1. Introducing the parameters of the four-tank system

Parameter Name Values
ap, as Cross section of the outlet of the first and third tanks 0.081 cm?
ay, Ay Cross-sectional of the outlet of the second and fourth tanks 0.067 cm?
ki, ky Constants (relationship between control voltages and the 3.33,3.35

pumps' water flow)
k. Fixed measuring device 0.50
Ronax Maximum height of tanks 20
Ay Ay Cross section of the second and fourth tanks 40
Ay, Az Cross section of the first and third tanks 30
g 981
Y1, Y2 The parameters of the three-way valve 0
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All physical parameters follow the standard quadruple-tank benchmark used in the literature and were kept constant throughout all experiments.
Cross-sections A; come from tank geometry; outlet orifice areas a;were obtained from steady-drain tests using Torricelli's relation gy, =

v/ 2gha; pump gains k; , k,were measured by a linear fit between flow and voltage; and the sensor gaink..was obtained by level calibration
against a ruler. Units are shown explicitly in the Table L.

Table 2. Parameter values of different meta-heuristic algorithms

Parameters Values
Population size 40
Number of repetitions 1000
Random values n=1,=[01]
Alignment weights 0.1
Dragonfly Algorithm (DA) Separation weight 0.1
Coherence weight 0.7
food factor 1
Enemy factor 1
Inertia factor 0.9-0.2
constant 1.5
Population size 90
. . Combination probability 0.8
Genetic Algorithm (GA) Mutation probability 0.03
Number of repetitions 1000
Population size 90
Particle swarm optimization (PSO) Coefficients of social and cognitive parameters 2
Inertia weight factor [1,0.99]
L . Population size 90
Cuckoo Optimization Algorithm (COA) Maximum number of cuckoos 130
population size 90
Imperialist Competitive Algorithm (ICA) The number of initial empires 12
revolution rate 0.3

Algorithmic settings were initialized from canonical defaults in the original papers and then refined via a small pilot sweep to balance
convergence and runtime under our problem size. Specifically, population sizes were explored in {100,90,80,60,40}; we selected 90 for
GA/PSO/ICA/COA and 40 for DA based on the fastest convergence without degrading final RMSE. The iteration budget and remaining
hyperparameters (e.g., inertia/learning factors or equivalent) follow these defaults unless stated otherwise.

Table 3. Range of FOPID controller parameters

Parameters Values
ky (0,1000]
k; (0,1000]
kg (0,1000]
A [0,2]
u [0,1.5]

The listed FOPID parameters are the optimization outputs obtained by running the Dragonfly Algorithm with the bounds
Kp i .o [min, max], A, 4[min, max] for each loop, using the RMSE ., objective and a fixed iteration budget. We performed multiple independent

runs with different seeds and report the best-achieved parameter set (ties broken by lower IAE). All runs used the same plant model, sampling
period, and fractional approximation as in the nominal setup.

5.2.1. Checking the convergence rate of the proposed method
To assess how quickly the proposed dragonfly algorithm converges, an experiment was conducted employing a system comprised of four tanks.

Fig. 3 shows the cost function versus iterations, illustrating convergence is important since the design of many systems takes time. Therefore,
it is very important to reach the optimal solution in the minimum repetition. According to Fig. 3, Compared with GA, PSO, COA, and ICA,
DA converged faster. Subsequently, it has achieved a minimized value within the Root Mean Square Error (RMSE) cost function.

5.2.2. Investigating the optimal parameter values for FOPID control by the proposed method in the four-tank system

It presents the parameter settings for two fractional-order PID controllers, derived using the method we introduced. You can find the specific
values in Tables 4 to 6.
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Convergence of Objective Function vs. Iterations

— A
—_ P50
0.0025 —_ COA
—_— A
— D (Proposed)
0.0020
g
% 0.0015
H
i
£ 0.0010
0.0005
0.0000
] 20 40 60 80 100
Iteration
Fig. 3. Convergence rate
Table 4. FOPID parameters of the first controller
Ky, Ky Kqq A1 |21
GA 435.548 1000 527.642 1.82 0.714
COA 445.453 1000 535.89 1.043 0.507
PSO 666.64 886.30 791.81 1.091 0.514
ICA 535.897 290.490 434.02 1.59 0.623
Proposed method 766.13 635.132 754.75 1.090 0.246
Controller 1 (Table 4) — Step Response Sensitivity
Kp (£10%) Ki (£10%) Kd (£10%)
1.2 1.2 1.2
y 1 1 A — —
Z o8 Z 08 & 08 ;‘t
2 2 2 f
R R T 06 f
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04 04 0a )
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/
uD 2 4 6 uﬂ 2 4 -] uﬂ/ 2 4 &
Time (s) Time (s) Time (s)
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1 1
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0.4 0.4
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uﬁ 2 4 ] uﬁ 2 4 -]
——kp-10%  —LREfSdekne o Kp410% - — Ki-10%  —— KiBsseline - LRST0% - — Kd-10% Kd Baseline ----- Kd+10% — — A-10%  —— ABaseline
AAAAA Ak #10% = = y-10% —— p Baseling --ee- p+10%

The step response to a change of one parameter (Kp, Ki, Kd, lambda, mu), to changes of —10%, baseline, and +10% is shown in each of the

subplots.

Fig. 4. Step response sensitivity for controller 1

= Putting more on Kp speeds the system up but can decrease damping.
=  AsKi increases, the steady-state error is eliminated better but very high Ki values lower the stability.
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=  Anincrease of Kd will improve the damping and decrease overshoot; small Kd will make the system oscillate.
= Higher lambda should be considered more powerful integral action, faster tracking, but can add an overshoot.
=  Greater mu gives increased damping and more smooth response.

= All cases remain constant within the test of such percentages as plus/minus 10 percent.

Table 5. FOPID parameters of the second controller

Ky K> K A2 123
GA 732.105 290.810 332.892 1.402 0.776
COA 848.572 978.522 581.073 1.127 0.816
PSO 703.51 280.91 332.781 1.803 0.775
ICA 686.497 669.527 558.426 0.789 0.826
Proposed method 174.31 1000 1000 1.947 0.393

Controller 2 (Table 5) — Step Response Sensitivity
Kp (£10%) Ki (£10%) Kd (£10%)

e % 08 g o8 v
2 2 2
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g g § /
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Fig. 5. Step response sensitivity for controller 2

= Repeat experiment with 10 percent change in sensitivity for Kp, Ki, Kd, lambda, mu.

The Rise time and settling are very dependent on Ki and lambda hence showing sensitivity in the results.
Kp has a bearing on response speed; less of Kp slows the system.

Mu and Kd majorly influence damping and overshooting.

Mu, when increased smooths the response by reducing overshoot and when reduced increases oscillations.
All the tested cases are stable to changes of plus/minus 10 percent.

To show the effectiveness of the proposed method further, the step responses of the water levels h1 and h2 under the DA-tuned FOPID controller
are compared with baseline methods like hybrids GA, PSO and ICA and COA. They are presented in Fig. 6(a and b).

Table 6 shows that the proposed DA-tuned FOPID achieves lower RMSE. Therefore, the FOPID parameters for both the first and secondary
control systems, obtained through the proposed technique, yield outputs that surpass those of the alternative algorithms used for comparison.
Considering the total RMSE cost, the FOPID controller derived from the proposed method demonstrates the overall best performance.

Table 6. The value of the cost function obtained by different algorithms

RMSE, RMSE, RMSE ;01
GA 0.302 x 1073 0.534 x 1073 0.981 x 1073
COA 0.195 x 1073 0.487 x 1073 0.674 x 1073
PSO 0.318 x 1073 0.609 x 1073 0.927 x 1073
ICA 0.219 x 1073 0.475 x 1073 0.627 x 1073
Proposed Method 0.182 x 1073 0.377 x 1073 0.559 x 1073
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Fig. 6a. Step response of level hl
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Fig. 6b. Step response of level h2

How RMSE _total was computed: For each output we first computeRMSE), = ’rll k=1 €2(k). The aggregate value reported as RMSE _total is
\/ (RMSEZ? + RMSE2)/2, evaluated over the same time window and sampling for both outputs.

If your two outputs have very different scales or different importance, you can state a weighted version: RMSE ;) = \/ w; RMSEZ? + w,RMSE2
with w; + w, = 1. (In Table 6 it used equal weights w; = w, = 0.5.)

5.2.3. Checking the proposed method with recent methods

The proposed method's performance was compared to that of current techniques in this section, and the findings are shown in Table 7. Table 7
indicates that method [33] achieves lower ISE and IAE than method [29], The proposed method further reduces both metrics, achieving the
best performance.

Table 7. Checking the performance of the proposed method with other methods

Evaluation criteria Method [33] Method[29] Suggested method
ISE 48.40 49.55 46.02
IAE 107.11 109.61 102.81
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6. Conclusion

In this paper will tune a FOPID controller using the Dragonfly Algorithm (DA). The system considered is a four-tank model and the used cost
function is the Root Mean Squared Error (RMSE). Is chosen because it does well as compared to other meta-heuristics in terms of convergence.
It is better than the GA, PSO, ICA, and cuckoo optimization algorithm in the quadruple-tank system simulations. Future development will focus
on tuning other plants and hybrid time/frequency-domain objectives., considering both time-domain properties and frequency-domain
properties.
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