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Fractional Order Proportional Integral Derivative (FOPID) controllers are commonly utilized in reactors, power systems, 

robotic systems, and various industrial processes. Properly setting the parameters of an FOPID controller is crucial, as 
well-chosen parameters can significantly enhance performance in dynamic systems. This article introduces a meta-

heuristic approach using the dragonfly algorithm, combined with a proposed objective function based on the Root Mean 

Square Error (RMSE), to optimize the parameters of the FOPID controller for a four-tank system (Quadruple Tank Process, 
QTP). The method is implemented in MATLAB and compared with traditional techniques. Simulation results demonstrate 

the effectiveness of the proposed approach, as evidenced by improved performance metrics such as the Integral of Square 

Error (ISE) and the Integral of Absolute Error (IAE). 
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1. Introduction 

Today, Proportional Integral Derivative (PID) controllers are widely used in industrial processes They are widely used due to their simple 

structure and reliable performance. Researchers have dedicated considerable attention to the creation and tuning of PID controllers since 1942 

[1]. A significant body of research has accumulated since then, encompassing the design, stability analysis, performance evaluation, and diverse 

applications of PID controllers [2, 3]. The Fractional Order PID (FOPID) controller emerges as a subsequent evolution of the standard PID 

controller, distinguished by the inclusion of two supplementary parameters representing fractional order integration and differentiation. The 

FOPID controller finds broad applicability in a range of engineering domains, including intelligent reactors [4], electronic power converters 

[5], rehabilitation apparatus [6], automatic voltage regulators [7], industrial process simulations [8], robotic mechanisms [9], power grids 

utilizing synchronous generators [10], and wind energy turbines [11]. It is critical to understand that the specific numerical values of FOPID 

controller parameters will vary, depending on the unique requirements of each application, yielding an individualized optimal operational 

profile. There are various methods such as trial-and-error method, curve method, Ziegler-Nichols method, and methods based on meta-heuristic 

algorithms to adjust FOPID controller coefficients. Recently, methods based on meta-heuristic algorithms have been widely noticed by 

researchers [12-15]. In [16], The genetic algorithm is presented to tune FOPID parameters. Within this approach, the ISE index is utilized for 

the goal of the function, and the sequence of bands are in the range of 0 to 100. The outcomes indicate that the proposed FOPID control system 

remains controllable even under variations in fractional parameters. even when the fractional factor values go beyond the standard limits. In 

[17], A FOPID controller optimized through a multi-objective genetic algorithm A magnetically damp semi-active seat suspension system is 

the subject of this proposal. The core focus of this method is the gain crossover frequency and the phase margin. Findings show the continuous 

FOPID (cFOPID) provides superior results compared to conventional integer controllers. The evolutionary multi-objecturbines, dominated 

sorting genetic algorithm (NSGA-II) is employed in [18] as a tuning strategy for cFOPID within hydraulic turbines; its operation relies on two 

objective functions: the Integral Squared Error (ISE) and the Integral of the Time-weighted Squared Error (ITSE). The findings confirm that 

the NSGA-II effectively optimizes cFOPID. In [19], a cloud model-based quantum genetic algorithm (CQGA) is proposed to fine-tune cFOPID 

parameters for controlling the motion of an autonomous underwater vehicle (AUV). This method combines cloud model theory with quantum 

genetic algorithms, leveraging principles of quantum computing, with the integral weighted absolute error as the objective function. Results 

show that cFOPID enhances control over both heading and diving. In [20], The genetic algorithm designed for tuning the cFOPID controller is 

implemented in a conical tank system, with the Integral of Time Absolute Error (ITAE) serving as the objective function. Reference [21] 

proposes a genetic algorithm specifically designed for tuning the cFOPID parameters within a boiler turbine system. Utilizing floating-point 

coding, a selection process predicated on ranking, and a strategy to retain elite solutions, alongside a grouping mechanism, this algorithm is 

built to boost search effectiveness and prevent early convergence to suboptimal results.  Research found in reference [22] investigates a frenzy-

based particle swarm optimization algorithm.  
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Nomenclature & Symbols   

FOPID Fractional Order Proportional Integral Derivative PSO Particle Swarm Optimization 

QTP Quadruple Tank Process ISE Integral Squared Error 

PID Proportional Integral Derivative ITSE Integral of the Time-weighted Squared Error 

ITAE Integral of Time Absolute Error GA Genetic Algorithms 

ASO Atom Search Optimization ICA Imperialist Competitive Algorithm 

HPS Hybrid Power System RMSE Root Mean Square Error 

WOA Whale Optimization Algorithm DA Differential Algebra 

NSGA- II  Non-Dominated Sorting Genetic Algorithm COA Cuckoo Optimization Algorithm 

CQGA Cloud Model-Based Quantum Genetic Algorithm IAE Integral Absolute Error 

cFOPID Continuous Fractional Order Proportional Integral Derivative DA Dragonfly Algorithm 

 

This study's goal is to identify ideal PID controller parameters suitable for the task of frequency regulation within a multi-source microgrid, 

featuring the integration of renewable energy. Reference [23] details the implementation of the Atom Search Optimization (ASO) algorithm. 

The ASO is applied to fine-tune the FOPID controller parameters for managing frequency and load within a linked Hybrid Power System 

(HPS). The HPS incorporates renewable sources, including wind and solar, alongside plug-in electric vehicles.  The presented results clearly 

illustrate that the FOPID controller, when optimized through the ASO approach, performs favorably when compared to standard controllers 

such as I, PI, PID, FOI, and FOPI.  Finally, reference [24]. The utilization of the Whale Optimization Algorithm (WOA) is explored concerning 

the ideal configuration of a FOPID controller within a multi-area power grid featuring multiple energy sources. This WOA-integrated FOPID 

controller shows a desirable dynamic response. Specifically, it excels in aspects of settling time and peak overshoot, while also demonstrating 

stability amidst fluctuations in system characteristics. 

Given the importance of automatic liquid level control in industrial applications, an effective and efficient control method is crucial. The 

dynamics of a four-tank system closely mirror those of real-world processes, such as boiler operations, distillation columns, and oil refineries 

in the petrochemical industry. These processes involve intricate interactions within the four-tank system, making control a complex challenge. 

This complexity drives the need for a robust control method to adjust the parameters of the FOPID controller in the four-tank system. 

This study introduces the dragonfly optimization method for fine-tuning the parameters of the FOPID controller in a four-tank system. 

Dragonfly's performance in reaching optimal solutions swiftly makes it a strong contender, outshining methods like Particle Swarm 

Optimization (PSO), Genetic Algorithms (GA), and the Imperialist Competitive Algorithm (ICA). Furthermore, the adoption of Root Mean 

Square Error (RMSE) in the cost assessment introduces an innovative approach. 

Here's how the subsequent sections are organized in this investigation: Section II serves as an introduction to the four-tank system. Following 

that, Section III delves into the FOPID controller, along with an explanation of the introduced approach. We then move onto Section IV, which 

shows the outcomes of the simulation runs. Section V analyzes these simulation results thoroughly, and finally, Section VI brings the study to 

a close. 

2. Four-Tank System 

The four-tank system is a nonlinear parameter-varying process utilized in chemical and oil-and-gas processes. The system contains two water 

tanks and two pumps that are connected; the tanks are filled by two pumps (see Fig. 1) [25]. The power supplied to the pumps serves as the 

input signal, whereas the water level present in the lower tanks constitutes the output of the system. Each tank's mathematical representation is 

formulated utilizing Bernoulli's principle and the principle of mass conservation. The goal is to manage the water levels in the two lower tanks, 

utilizing the control action afforded by the two pumps.  Each pump's output is divided into two streams through three-way valves. In this setup, 

into each tank water is pumped in the top of this tank and out through the bottom of the tank. 

 

Fig. 1. Four tank system[25] 
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The mathematical equation of the four-tank system according to Bernoulli's law and conservation of mass is as follows: 

𝐴1
𝑑ℎ1(𝑡)

𝑑𝑡
= 𝑞𝑖𝑛1

+ 𝑞𝑜𝑢𝑡3 − 𝑞𝑜𝑢𝑡1=𝛾1𝑘1𝑉1 + 𝑎3√2𝑔ℎ3(𝑡) − 𝑎1√2𝑔ℎ1(𝑡)                                                                               (1) 

The non-linear relations of each tank, similar to Eq. (1) are obtained below. 

𝑑ℎ1(𝑡)

𝑑𝑡
=

𝛾1𝑘1

𝐴1
𝑉1 +

𝑎3

𝐴1
√2𝑔ℎ3(𝑡) −

𝑎1

𝐴1
√2𝑔ℎ1(𝑡)                                                                                                                          (2) 

𝑑ℎ2(𝑡)

𝑑𝑡
=

𝛾2𝑘2

𝐴2
𝑉2 +

𝑎2

𝐴2
√2𝑔ℎ2(𝑡) −

𝑎4

𝐴2
√2𝑔ℎ4(𝑡)                                                                                                                          (3) 

𝑑ℎ3(𝑡)

𝑑𝑡
=

(1−𝛾2)

𝐴3
𝑘2𝑉2 −

𝑎3

𝐴3
√2𝑔ℎ3(𝑡)                                                                                                                                            (4) 

𝑑ℎ4(𝑡)

𝑑𝑡
=

(1−𝛾1)

𝐴4
𝑘1𝑉1 −

𝑎4

𝐴4
√2𝑔ℎ4(𝑡)                                                                                                                                             (5) 

The above relations are non-linear due to the existence of the root term, which makes the design of the controller challenging. Therefore, the 

operating region of the system is determined through a first-order Taylor series expansion of the nonlinear dynamics around the equilibrium 

point after the computation of Jacobian matrix using the Taylor series expansion after transformation of Jacobian matrix. 

𝑑𝑥1

𝑑𝑡
= 𝑓1(ℎ1, ℎ2, … , ℎ𝑛, 𝑢1, 𝑢2, … , 𝑢𝑛)                                                                                                                                            (6) 

𝑑𝑥𝑛

𝑑𝑡
= 𝑓𝑛(ℎ1, ℎ2, … , ℎ𝑛, 𝑢1, 𝑢2, … , 𝑢𝑛)                                                                                                                                           (7) 

General vector form 

𝐻𝑒 = ℎ𝑒 + ∆ℎ                                                                                                                                                                                 (8) 

𝑈𝑒 = 𝑢𝑒 + ∆𝑢                                                                                                                                                                                (9) 

Linear approximation with Taylor series 

𝑥̇ =
𝑑𝑥

𝑑𝑡
𝑓(𝐻𝑒 , 𝑈𝑒) = 𝑓(ℎ𝑒 + ∆ℎ, 𝑢𝑒 + ∆𝑢)                                                                                                                                (10) 

𝑓(𝑥, 𝑢) = 𝑓(ℎ𝑒 , 𝑢𝑒) +
𝑑𝑓

𝑑ℎ
(ℎ𝑒 , 𝑢𝑒) +

𝑑𝑓

𝑑𝑢
(ℎ𝑒 , 𝑢𝑒)                                                                                                                       (11) 

The form of the system space is as follows 

𝑥̇1 = −
𝑎1

𝐴1
√

𝑔

2ℎ1𝑜
𝑥1 +

𝑎3

𝐴1
√

𝑔

2ℎ3𝑜
𝑥3 +

𝛾1𝑘1

𝐴1
𝑢1                                                                                                                              (12) 

𝑥̇2 = −
𝑎2

𝐴2
√

𝑔

2ℎ2𝑜
𝑥2 +

𝑎4

𝐴2
√

𝑔

2ℎ4𝑜
𝑥4 +

𝛾2𝑘2

𝐴2
𝑢2                                                                                                                               (13) 

𝑥̇3 = −
𝑎3

𝐴3
√

𝑔

2ℎ3𝑜
𝑥3 +

(1−𝛾2)

𝐴3
𝑘2𝑢2                                                                                                                                              (14) 

𝑥̇4 = −
𝑎4

𝐴4
√

𝑔

2ℎ4𝑜
𝑥4 +

(1−𝛾1)

𝐴4
𝑘1𝑢1                                                                                                                                               (15) 

Time constants: 

𝑇𝑖 =
𝐴𝑖

𝑎𝑖
√

2ℎ𝑖𝑜

𝑔
                                                                                                                                                                             (16) 

The transformation function after linearization is according to Eq. (17). 

𝐺(𝑠) = [

𝛾1𝑐1

1+𝑇1

(1−𝛾2)𝑐1

(1+𝑇3𝑠)(1+𝑠𝑇1)

(1−𝛾1)𝑐2

(1+𝑠𝑇4)(1+𝑠𝑇2)

𝛾2𝑐2

1+𝑠𝑇2

]                                                                                                                                     (17) 

In Eq. (17), the values of  𝑐1 and   𝑐2are equal: 

𝑐1 =
𝑇1𝑘1𝑘𝑐

𝐴1
                                                                                                                                                                               (18) 

𝑐2 =
𝑇2𝑘2𝑘𝑐

𝐴2
                                                                                                                                                                               (19) 

3. Principles of Operation of the FOPID Controller 

In 1999 Podlubny proposed the FOPID controller [26]. An FOPID controller has five parameters. These are proportional gain, integral gain and 

derivative gain, as well as order of integration and differentiation [27]. The law describing the control is presented in (20). 

𝑢(𝑡) = 𝑘𝑝𝑒(𝑡) + 𝑘𝐼𝐷𝑡
−𝜆𝑒(𝑡) + 𝑘𝐷𝐷𝑡

𝛿                                                                                                                                        (20) 
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The FOPID transfer function is obtained by Laplace transform according to Eq. (21). 

𝐺𝑐(𝑠) = 𝑘𝑃 + 𝑘𝐼𝑠
−𝜆 + 𝑘𝐷𝑠𝛿                                                                                                                                                     (21) 

The design of FOPID includes the determination of three parameters 𝑘𝑃, 𝑘𝐼, 𝑘𝐷 and two orders 𝜆, 𝛿. Different design methods have been 

presented for this type of controller. In this article, it employs the Dragonfly meta-heuristic to obtain the optimal FOPID settings for a Fractional 

Order PID (FOPID) controller. 

4. Proposed Method 

This section introduces a proposed method that employs Differential Algebra (DA) to fine-tune the parameters of the FOPID controller, as 

shown in Fig. 2. The following discussion will elaborate on this approach. 

 

Fig. 2. Flowchart of FOPID controllers design for four-tank system 

4.1. Decoupling 

In this case, the two-input-two-output system will turn into two single-input-single-output systems, or in other words, the system will be 

decoupled. In fact, the fluid level within the initial tank is solely dictated by the output rate of the secondary pump, while the second tank's level 

is determined only by the first pump's output. This characteristic allows for straightforward, separate design of two controllers. Thus, the overall 

multivariable control strategy simplifies into a collection of isolated control loops.  However, a key consideration is that this decoupling 

approach remains valid only if any direct flow of water into the lower tanks is minimal, effectively rendering it negligible as an external 

disturbance. 

Assumptions and Robustness of the Decoupling Strategy: Let the linearized two-input two-output model around the operating point be written 

in the standard partitioned form 

𝐵 = [
0 𝐵1

𝐵2 0
] , 𝐴 = [

𝐴11 𝐴12

𝐴21  𝐴22
] , 𝑥̇ = 𝐴𝑥 + 𝐵𝑢, 𝑦 = 𝑐𝑥                                                                                                                               (22) 

Where 𝑦⊤ = [ℎ1 , ℎ2] are the lower-tank levels and 𝑢⊤ = [𝑉1 𝑉2] are the pump voltages. The physical cross-coupling arises from (i) the three-

way valve splitting ratios (𝛾1, 𝛾2) that route fractions of the pump flows to the "opposite" branch, and (ii) hydraulic interactions that appear as 

off-diagonal blocks  𝐴12 𝐴21 in the Jacobian. 

It quantifies the "minimal direct-flow" condition by requiring that the off-diagonal influence is small relative to self-dynamics, namely. 

 𝜀 ≥
‖𝐴12‖

‖𝐴11‖
       max (𝛾1, 𝛾2) ≥  

‖𝐴21‖

‖𝐴22‖
                                                                                                                                                                                         (23) 

With design guidelines 𝜀 ≥ 0.10 and max(𝛾1, 𝛾2) ≥ 0.10. Under these bounds the closed-loop matrix with two independent SISO controllers 

is strictly diagonally dominant, which ensures decentralized stability by Gershgorin's theorem; practically, the residual coupling acts as a 

bounded disturbance that the. FOPID loops can reject. 

Robustness check under finite coupling. To assess how sensitive the loops are to cross-terms, the above bounds can be relaxed in analysis to 

𝜀 [0.20,0.05] and (𝛾1, 𝛾2)[0.20,0]. The decentralized design remains valid provided the closed-loop matrix  cl𝐴 satisfies |( 𝐴𝑐𝑙) 𝑖𝑖| > |( 𝐴𝑐𝑙)𝑖𝑗| 
for = 𝑖 1,2. This condition can be verified from the linearized model without time-domain simulations and gives a clear, quantitative envelope 

for which decoupling is justified. 

Practical guideline for experiments. If a laboratory setup is available, (𝛾1, 𝛾2) can be estimated by simple flow tests (fixed voltage, measure 

split), and the Jacobian blocks 𝐴12,𝐴21 can be obtained from small perturbations around the operating point. Reporting the measured (𝛾1, 𝛾2) 

and the ratios ‖𝐴12‖/‖𝐴11‖, ‖𝐴21‖/‖𝐴22‖ assumes explicit and reproducible. If (𝛾1, 𝛾2) are larger than the stated bounds, a static pre-

compensator 𝑁 = (𝐾12𝑘21)
−1 can be introduced to partially. cancel the steady-state coupling prior to FOPID loops. 

4.2. Dragonfly algorithm 

The dragonfly algorithm, A meta-heuristic technique was put forth by Mirjalili and collaborators during the year 2015. as documented in 

reference [28]. The core concept of this algorithm draws inspiration from the way dragonflies behave in the real world. The dragonflies' 

intelligent conduct is guided by these five key rules: dodging other nearby dragonflies to avoid clashes, modulating their flight velocity in 

reaction to where their neighbors are, seeking the center of gravity of their surrounding companions, heading toward potential food sources, 

and, finally, avoiding any detected threats. To simulate these behaviors, the dragonfly algorithm employs five distinct mathematical functions. 
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Separation function: It happens when dragonflies follow it to avoid collision with their neighbors. The mathematical relationship of this function 

is according to Eq. (24). 

𝑆𝑖 = −∑ 𝑋 − 𝑋𝑗
𝑁
𝑗=1                                                                                                                                                                         (24)   

Speed function: This function calculates the speed of dragonflies according to the neighboring dragonfly as Eq. (25). 

𝐴𝑖 =
∑ 𝑉𝑗

𝑁
𝑗=1

𝑁
                                                                                                                                                                                   (25) 

Cohesion function: This function calculates the cohesion of neighbors according to Eq. (26). 

𝐶𝑖 =
∑ 𝑋𝑖

𝑁
𝑗=1

𝑁
− 𝑋                                                                                                                                                                              (26) 

Attraction function: It shows the tendency of dragonflies towards the food source, which is calculated according to Eq. (27).  

𝐹𝑖 = 𝑋+ − 𝑋                                                                                                                                                                               (27) 

Distraction function: the natural behavior that every dragonfly does to survive against the enemy's influence. This function can be seen according 

to Eq. (28). 

𝐸𝑖 = 𝑋− + 𝑋                                                                                                                                                                                 (28) 

Initially, the dragonfly algorithm initializes the position and step vectors randomly, Limited by the minimum and maximum values. defined for 

the problem's variables. Subsequently, during each cycle of the iterative process, both the optimal position and step of the dragonflies undergo 

sequential refinement. To determine the updated position vector for a dragonfly, the step vector, designated as ∆X, is incorporated alongside 

the current positional vector. This step vector effectively dictates the direction in which the dragonfly will move, and it is computed based on 

the mathematical relationship provided in Eq. (29). 

∆𝑋𝑡+1 = (𝑠𝑆𝑖 + 𝑎𝐴𝑖 + 𝑐𝐶𝑖 + 𝑓𝐹𝑖 + 𝑒𝐸𝑖) + 𝑤∆𝑋𝑡                                                                                                                     (29) 

In this regard, a, s, c, f, e, w are weight vectors. Also, the position of the dragonflies is updated using Eq. (30). 

𝑋𝑡+1 − 𝑋𝑡 = ∆𝑋𝑡+1                                                                                                                                                                          (30) 

In this regard, the parameter t is the number of repetitions. 

4.3. Objective functions 

Objective functions are typically classified into three categories: classical time-domain objective functions (such as maximum overshoot and 

time-varying functions), frequency-domain objective functions (like phase limits), and time-domain error it considers time-domain error 

objectives: ISE, IAE, and RMSE. This research focuses on error objective functions due to their general applicability and widespread 

acceptance. The RMSE is used according to Eq. (31). 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ 𝑒2(𝑘)𝑛

𝑘=1                                                                                                                                                                  (31) 

𝑒(𝑘) = 𝑟𝑖(𝑘) − ℎ𝑖(𝑘)                                                                                                                                                                 (32) 

In Eq. (32), 𝑒(𝑘) is the difference between the input signal 𝑟𝑖(𝑘)and the output signal ℎ𝑖(𝑘) in the closed loop system. Since each FOPID 

controller has five parameters, ten parameters must be tuned in total. Therefore, the optimization algorithm searches the controlling parameters 

in a 10-dimensional space. The vector of FOPID controlling parameters for the ith member of the population is considered according to Eq. 

(33). 

𝑋𝑖
⃗⃗  ⃗ = [𝐾𝑃1, 𝐾𝑖1, 𝐾𝑑1,  𝐾𝑃2, 𝐾𝑖2, 𝐾𝑑2, 𝜆1, 𝜇1, 𝜆2, 𝜇2]                                                                                                                              (33) 

where parameters   𝐾𝑃1, 𝐾𝑖1, 𝐾𝑑1,  𝐾𝑃2, 𝐾𝑖2, 𝐾𝑑2, 𝜆1, 𝜇1, 𝜆2, 𝜇2   The elements that make up the initial controller are presented here, followed by 

those of the subsequent controller. 

Objective Function Clarification: it uses the Root Mean Squared Error (RMSE) as the primary scalar objective for tuning because it directly 

penalizes sustained tracking errors and is scale-consistent across outputs. We do not claim novelty for RMSE itself; our contribution lies in the 

overall tuning framework and comparative evaluation. For each output 𝑘{2,1} thediscrete-time RMSE is 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ 𝑒2(𝑘)𝑛

𝑘=1                                                                                                                                                                                (34) 

And the aggregate objective used in optimization is 

total RMSE = √RMSE1
2+RMSE2

2

2
                                                                                                                                                                                  (35) 

To facilitate fair benchmarking, we also report ISE and IAE as secondary criteria in the results section 

4.4. Sensitivity analysis  

To verify robustness against implementation inaccuracies, we performed a simple sensitivity check on the optimized FOPID parameters for the 

two loops (Loop-1, Loop-2). Each parameter (KP, KI, KD, λ, μ) was perturbed individually by ±10% while the others were kept fixed, it drew 

a small set of random joint perturbations within ±10% for all parameters to mimic simultaneous errors. The results are summarized in Figs. 3 

to 5 and indicate that performance degrades modestly while closed-loop stability is preserved within the tested ranges. 
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4.5. Practical implementation considerations 

Translating the proposed design to a physical quadruple-tank setup requires accounting for sensing, actuation, and computation realities. 

▪ Sensing and filtering. Level measurements are affected by quantization and noise; a first-order low-pass filter (cutoff in the 10–20 Hz 

range for typical level sensors) and proper sensor-gain calibration improve signal quality. The same filter should be included in validation 

simulations to avoid optimistic performance estimates. 

▪ Actuation limits and nonlinearities. Pumps exhibit saturation, dead-zones, and rate limits. The controller output must be bounded to the 

admissible voltage range, augmented with an anti-windup mechanism and a slew-rate limiter. If a dead-zone is present, a small bias or 

feed-forward can be applied to overcome it while keeping steady-state error negligible. 

▪ Sampling and fractional realization. The sampling period Tₛ should be chosen relative to the dominant tank time constants (e.g., tens of 

milliseconds for lab rigs). The FOPID can be implemented via a discrete approximation (e.g., Oustaloup/CRONE) of moderate order to 

balance accuracy and computational load; the same approximation order should be used in both design and validation. 

▪ Delays and computation. I/O and computation delays should be measured and, if non-negligible, compensated (e.g., by phase margin 

budgeting or simple Smith-type prediction in software). 

▪ Safety and constraints. Hard bounds on water levels (min/max) must be enforced with software interlocks and emergency shut off. Initial 

transients during start-up and restart after disturbances should be handled by a bump less transfer to prevent overshoot. 

Remark. These considerations can be replicated on standard real-time platforms (e.g., microcontroller/DAQ/PC) without modifying the nominal 

tuning; they primarily ensure that laboratory behavior matches the validated simulation model. 

5. Implementation and Examination of the Results 

The proposed method is put to the test through a comprehensive comparison, pitting it against well-established algorithms. Specifically, we 

examine the performance relative to the classic Genetic Algorithm (GA), as detailed in reference [29], the Cuckoo Optimization Algorithm 

(COA) from publication [30], Particle Swarm Optimization (PSO), found in reference [31], and finally, the Imperialist Competitive Algorithm 

(ICA) according to [32].  All experiments were carried out in MATLAB R2023a on a laptop with an Intel Core i7 (2.27 GHz) and 16 GB RAM. 

5.1. Evaluation criteria 

Evaluation criteria commonly used in control are employed to assess the effectiveness of the proposed approach. For this purpose, in the subject 

of setting the controller parameters, different algorithms for setting the parameters of FOPID in the four-tank system are measured with various 

criteria. 

▪ Integral of square value of error (ISE)  

The ISE is according to Eq. (36). If the ISE is low, it is more suitable. 

𝐼𝑆𝐸 = ∫𝑒2(𝑡)𝑑𝑡                                                                                                                                                                        (36) 

▪ Integral of absolute value of error (IAE) 

The IAE is according to Eq. (37). The IAE is lower, it is more suitable. 

IAE = ∫|e(t)|𝑑𝑡                                                                                                                                                                                (37) 

RMSE was selected as the primary tuning objective for its direct interpretability in time-domain tracking; we do not claim novelty for RMSE 

itself. For fair benchmarking with prior work, ISE and IAE are additionally reported in the results. 

5.2. Experimental results 

The parameters of the four-tank system are chosen to be constant in accordance with Table 1 in these experiments in order to It is crucial to 

steer clear of any parameter value choices that might skew the outcomes when analyzing the four-tank system. The initial population size 

strongly affects convergence; very large populations increase runtime. Compared to the other algorithms being compared, the suggested 

approach uses a considerably smaller population to demonstrate its capabilities. The initial size of the population for GA, PSO, ICA, and COA 

algorithms are considered to be 90, and the number of the initial population for the DA is considered to be 40 (Table 2). In this article, the range 

of FOPID controller parameters is considered based on Table 3. Three sets of experiments are conducted. The suggested method's rate of 

convergence is studied in the first set. The proposed method's performance in the four-tank system is evaluated in the second set, while the third 

set compares the proposed method's performance to that of current approaches. 

Table 1. Introducing the parameters of the four-tank system 

Parameter Name Values 

𝑎1, 𝑎3 Cross section of the outlet of the first and third tanks 0.081 cm² 

𝑎2, 𝑎4 Cross-sectional of the outlet of the second and fourth tanks 0.067 cm² 

𝑘1, 𝑘2 Constants (relationship between control voltages and the 

pumps' water flow) 

3.33,3.35 

𝑘𝑐  Fixed measuring device 0.50 

ℎ𝑚𝑎𝑥 Maximum height of tanks 20 

𝐴2, 𝐴4 Cross section of the second and fourth tanks 40 

𝐴1, 𝐴3 Cross section of the first and third tanks 30 

𝑔  981 

𝛾1, 𝛾2 The parameters of the three-way valve 0 
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All physical parameters follow the standard quadruple-tank benchmark used in the literature and were kept constant throughout all experiments. 

Cross-sections 𝐴𝑖 come from tank geometry; outlet orifice areas 𝑎𝑖were obtained from steady-drain tests using Torricelli's relation 𝑞𝑜𝑢𝑡 =

√2𝑔ℎ𝑎; pump gains 𝑘1 , 𝑘2were measured by a linear fit between flow and voltage; and the sensor gain𝑘𝑐 .was obtained by level calibration 

against a ruler. Units are shown explicitly in the Table l. 

Table 2. Parameter values of different meta-heuristic algorithms 

Parameters Values 

Dragonfly Algorithm (DA) 

Population size 40 

Number of repetitions 1000 

Random values 𝑟1 = 𝑟2 = [0,1] 
Alignment weights 0.1 

Separation weight 0.1 

Coherence weight 0.7 

food factor 1 

Enemy factor 1 

Inertia factor 0.9-0.2 

constant 1.5 

Genetic Algorithm (GA) 

Population size 90 

Combination probability 0.8 

Mutation probability 0.03 

Number of repetitions 1000 

Particle swarm optimization (PSO) 

Population size 90 

Coefficients of social and cognitive parameters 2 

Inertia weight factor [1 , 0.99] 

Cuckoo Optimization Algorithm (COA) 
Population size 90 

Maximum number of cuckoos 130 

 population size 90 

Imperialist Competitive Algorithm (ICA) The number of initial empires 12 

 revolution rate 0.3 

 

Algorithmic settings were initialized from canonical defaults in the original papers and then refined via a small pilot sweep to balance 

convergence and runtime under our problem size. Specifically, population sizes were explored in {100,90,80,60,40}; we selected 90 for 

GA/PSO/ICA/COA and 40 for DA based on the fastest convergence without degrading final RMSE. The iteration budget and remaining 

hyperparameters (e.g., inertia/learning factors or equivalent) follow these defaults unless stated  otherwise. 

Table 3. Range of FOPID controller parameters 

Parameters Values 

𝑘𝑝 (0, 1000] 
𝑘𝑖 (0, 1000] 
𝑘𝑑  (0, 1000] 
𝜆 [0,2] 
𝜇 [0,1.5] 

 

The listed FOPID parameters are the optimization outputs obtained by running the Dragonfly Algorithm with the bounds 

𝐾𝑝,𝑖,𝑑[min,max], 𝜆, 𝜇[min,max] for each loop, using the RMSE  total  objective and a fixed iteration budget. We performed multiple independent 

runs with different seeds and report the best-achieved parameter set (ties broken by lower IAE). All runs used the same plant model, sampling 

period, and fractional approximation as in the nominal setup. 

5.2.1. Checking the convergence rate of the proposed method 

To assess how quickly the proposed dragonfly algorithm converges, an experiment was conducted employing a system comprised of four tanks. 

Fig. 3 shows the cost function versus iterations, illustrating convergence is important since the design of many systems takes time. Therefore, 

it is very important to reach the optimal solution in the minimum repetition. According to Fig. 3, Compared with GA, PSO, COA, and ICA, 

DA converged faster. Subsequently, it has achieved a minimized value within the Root Mean Square Error (RMSE) cost function.  

5.2.2. Investigating the optimal parameter values for FOPID control by the proposed method in the four-tank system 

It presents the parameter settings for two fractional-order PID controllers, derived using the method we introduced. You can find the specific 

values in Tables 4 to 6.  
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Fig. 3. Convergence rate 

Table 4. FOPID parameters of the first controller 

 𝑲𝒑𝟏 𝑲𝒊𝟏 𝑲𝒅𝟏 𝝀𝟏 𝝁𝟏 

GA 435.548 1000 527.642 1.82 0.714 

COA 445.453 1000 535.89 1.043 0.507 

PSO 666.64 886.30 791.81 1.091 0.514 

ICA 535.897 290.490 434.02 1.59 0.623 

Proposed method 766.13 635.132 754.75 1.090 0.246 

 

 

Fig. 4. Step response sensitivity for controller 1 

The step response to a change of one parameter (Kp, Ki, Kd, lambda, mu), to changes of −10%, baseline, and +10% is shown in each of the 

subplots. 

▪ Putting more on Kp speeds the system up but can decrease damping. 

▪ As Ki increases, the steady-state error is eliminated better but very high Ki values lower the stability. 
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▪ An increase of Kd will improve the damping and decrease overshoot; small Kd will make the system oscillate. 

▪ Higher lambda should be considered more powerful integral action, faster tracking, but can add an overshoot. 

▪ Greater mu gives increased damping and more smooth response. 

▪ All cases remain constant within the test of such percentages as plus/minus 10 percent. 

Table 5. FOPID parameters of the second controller 

 𝑲𝒑𝟐 𝑲𝒊𝟐 𝑲𝒅𝟐 𝝀𝟐 𝝁𝟐 

GA 732.105 290.810 332.892 1.402 0.776 

COA 848.572 978.522 581.073 1.127 0.816 

PSO 703.51 280.91 332.781 1.803 0.775 

ICA 686.497 669.527 558.426 0.789 0.826 

Proposed method 174.31 1000 1000 1.947 0.393 

 

 

Fig. 5. Step response sensitivity for controller 2 

▪ Repeat experiment with 10 percent change in sensitivity for Kp, Ki, Kd, lambda, mu. 

▪ The Rise time and settling are very dependent on Ki and lambda hence showing sensitivity in the results. 

▪ Kp has a bearing on response speed; less of Kp slows the system. 

▪ Mu and Kd majorly influence damping and overshooting. 

▪ Mu, when increased smooths the response by reducing overshoot and when reduced increases oscillations. 

▪ All the tested cases are stable to changes of plus/minus 10 percent. 

To show the effectiveness of the proposed method further, the step responses of the water levels h1 and h2 under the DA-tuned FOPID controller 

are compared with baseline methods like hybrids GA, PSO and ICA and COA. They are presented in Fig. 6(a and b). 

Table 6 shows that the proposed DA-tuned FOPID achieves lower RMSE. Therefore, the FOPID parameters for both the first and secondary 

control systems, obtained through the proposed technique, yield outputs that surpass those of the alternative algorithms used for comparison. 

Considering the total RMSE cost, the FOPID controller derived from the proposed method demonstrates the overall best performance. 

Table 6. The value of the cost function obtained by different algorithms 

 𝑹𝑴𝑺𝑬𝟏 𝑹𝑴𝑺𝑬𝟐 𝑹𝑴𝑺𝑬𝒕𝒐𝒕𝒂𝒍 

GA 0.302 × 10−3 0.534 × 10−3 0.981 × 10−3 

COA 0.195 × 10−3 0.487 × 10−3 0.674 × 10−3 

PSO 0.318 × 10−3 0.609 × 10−3 0.927 × 10−3 

ICA 0.219 × 10−3 0.475 × 10−3 0.627 × 10−3 

Proposed Method 0.182 × 10−3 0.377 × 10−3 0.559 × 10−3 
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Fig. 6a. Step response of level h1 

 

Fig. 6b. Step response of level h2 

How RMSE _total was computed: For each output we first compute𝑅𝑀𝑆𝐸𝑘 = √
1

𝑛
∑ 𝑒2(𝑘)𝑛

𝑘=1 . The aggregate value reported as RMSE_total is 

√(RMSE1
2 + RMSE2

2)/2, evaluated over the same time window and sampling for both outputs. 

If your two outputs have very different scales or different importance, you can state a weighted version: RMSEtotal = √𝑤1RMSE1
2 + 𝑤2RMSE2

2 

with 𝑤1 + 𝑤2 = 1. (In Table 6 it used equal weights 𝑤1 = 𝑤2 = 0.5.) 

5.2.3. Checking the proposed method with recent methods 

The proposed method's performance was compared to that of current techniques in this section, and the findings are shown in Table 7. Table 7 

indicates that method [33] achieves lower ISE and IAE than method  [29], The proposed method further reduces both metrics, achieving the 

best performance. 

Table 7. Checking the performance of the proposed method with other methods 

Evaluation criteria Method [33] Method[29] Suggested method 

ISE 48.40 49.55 46.02 

IAE 107.11 109.61 102.81 
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6. Conclusion 

In this paper will tune a FOPID controller using the Dragonfly Algorithm (DA). The system considered is a four-tank model and the used cost 

function is the Root Mean Squared Error (RMSE). Is chosen because it does well as compared to other meta-heuristics in terms of convergence. 

It is better than the GA, PSO, ICA, and cuckoo optimization algorithm in the quadruple-tank system simulations. Future development will focus 

on tuning other plants and hybrid time/frequency-domain objectives., considering both time-domain properties and frequency-domain 

properties. 
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