DOI: 10.47831/mjpas.v3i4.458

MUSTANSIRIYAH JOURNAL OF PURE AND APPLIED SCIENCES

Journal homepage: https://mjpas.uomustansiriyah.edu.iq/index.php/mjpas

RESEARCH ARTICLE - CHEMISTRY

Synthesis and Antimicrobial Evaluation of Mandelonitrile Derivatives

Yusuf Hassan^{1*}, Abubakar Sani¹

¹Department of Chemistry, Umaru Musa Yar'adua University, Katsina, Nigeria

* Corresponding author E-mail: yusuf.hassan@umyu.edu.ng

The search for alternative antimicrobial agents has continued to be a top priority due to the growing cases of resistant strains of bacterial and fungal species. This work evaluated the antimicrobial activity of some known mandelonitrile derivatives. Thus, the compounds were successfully obtained by reacting the appropriate aldehydes with the solution of sodium metabisulphite and sodium cyanide at room temperature. The structures of the compounds were confirmed by the NMR and FTIR techniques. Evaluation of the susceptibility of the compounds
antimicrobial activity of some known mandelonitrile derivatives. Thus, the compounds were successfully obtained by reacting the appropriate aldehydes with the solution of sodium metabisulphite and sodium cyanide at room temperature. The structures of the compounds were
successfully obtained by reacting the appropriate aldehydes with the solution of sodium metabisulphite and sodium cyanide at room temperature. The structures of the compounds were
confirmed by the NMR and FTIR techniques. Evaluation of the susceptibility of the compounds
Tomining of the 1 and 1.111 teeming act. Evaluation of the susceptionity of the compounds
against four bacterial and one fungal species using disc diff method showed excellent zones of
inhibitions for compounds 2b, 2d, 2e, and 2f against Pseudomonas aeruginosa. (30.1 mm - 17.2
mm) compared to the control drug, piperacillin (25.8 mm – 13.4 mm). The minimum inhibitory concentration (MIC) and minimum inhibitory concentration (MBC) of compounds 2b , 2d , 2e , and 2f were similarly found to be lower against the same organism. All the synthesised compounds demonstrated mild activity against the fungal specie, <i>E. coli</i> . This work has demonstrated the potential of the studied nitrile-containing compounds against the investigated bacterial and fungal species.
is an open-access article under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/) The official journal published by the College of Education at Mustansiriya University
i:

1. INTRODUCTION

Antimicrobial resistance (AMR) is increasingly threatening the public health. It was estimated that antibacterial resistance caused approximately 4.95 million deaths in 2019 globally [1]. While, more than 1 billion people are affected by fungal infections in which over 150 million accounts for severe and life-threatening cases [2]. Recently, a number of different compounds were synthesised and tested against various bacterial and fungal species in an attempt to discover a new generation of antimicrobial agents especially small molecules with novel mechanism of action. For instance, the antibacterial evaluation of benzyl acetate derivatives against *Staphylococcus aureus* and *Shigella spp* was reported by Umar et al., 2023 [3]. Also, Benzyl alcohol derivatives were evaluated for antifungal activity against *Candida albicans* and *Trichophyton rubrum* [4]. Similarly, the antibacterial activity of those benzyl alcohol derivatives was investigated against *Staphylococcus aureus* and *Pseudomonas aeruginosa* [5]. Some new aryl-substituted-1,2,3-triazoles containing carbohydrate moieties were evaluated against *Staphylococcus aureus* and *Pseudomonas aeruginosa* for antibacterial activity [6]. Another chemical scaffold found in different biologically important compounds is a nitrile group. Compounds containing a nitrile group are currently used for the treatment of various disease conditions as well as those in clinical development [7-14]. This claim is supported by a review which highlights more than thirty drugs approved by the Food and Drugs Agency of the United States; some examples (Figure

1) include anastrozole, verapamil, and tofacitinib [16]. The favourable properties associated with the nitrile group in drug action include enhanced binding affinity, improved pharmacokinetic profile, and reduced drug resistance [15]. Thus, the aim of the present work was to synthesise and evaluate the *in vitro* antimicrobial activity of some mandelonitrile derivatives against four bacterial and one fungal species.

Verapamil (Antihypertensive Drug)

Figure 1. Some Nitrile containing Drugs

2. MATERIALS AND METHODS

2.1.Chemistry

All chemicals were sourced from Sigma-Aldrich (Munich, Germany). NMR and FTIR spectroscopic techniques on Bruker AVANCE 500 spectrometer and Perkin–Elmer BX spectrophotometer respectively.

2.1.1. Procedure for the Synthesis of Mandelonitrile Derivatives

Aldehyde (20 mmol) was added dropwise to a cold aqueous solution (10 mL) of $Na_2S_2O_5$ (12 mmol) and stirred continuously. Then a cold aqueous solution (10 mL) of NaCN (20 mmol) was added dropwise and the mixture stirred for 24 h at ambient temperature. The reaction mixture was extracted with CH_2Cl_2 (3 x 15 mL), dried with $MgSO_4$, filtered and the solvent evaporated under reduced pressure to furnish the desired products. Subsequently, NMR and FTIR spectroscopic techniques confirmed that the data of the synthesised compounds conforms with the literature [17-19].

Compound 2a

White solid; Yield: 82%; 1 H-NMR (500 MHz, CDCl₃) δ (ppm): 4.51 (s, 1H, OH), 5.52 (s, 1H, CH), 7.38 – 7.41 (m, 5H, Ar). 13 C-NMR (125 MHz, CDCl₃) δ (ppm): 63.2 (CH), 119.1 (CN), 128.2 – 135.1 (5C, ArC). FTIR (cm⁻¹): 3409 (OH), 2252 (CN).

Compound 2b

White solid; Yield: 84%; 1 H-NMR (500 MHz, CDCl₃) δ (ppm): 2.53 (s. 3H, CH₃), 5.10 (s, 1H, OH), 5.28 (s, 1H, CH), 7.17 – 7.30 (m, 4H, Ar). 13 C-NMR (125 MHz, CDCl₃) δ (ppm): 13.7 (CH₃), 54.4 (CH), 120.2 (CN), 128.2 (2C, Ar), 129.1 (2C, Ar), 139.3 (2C, Ar). FTIR (cm⁻¹): 3401 (OH), 2250 (CN).

Compound 2c

Clear oil; Yield: 91%; 1 H-NMR (500 MHz, CDCl₃) δ (ppm): 3.63 (s, 1H, OH), 3.74 (s. 3H, OCH₃), 5.11 (s, 1H, CH), 5.98 – 7.68 (m, 4H, Ar). 13 C-NMR (125 MHz, CDCl₃) δ (ppm): 55.3 O(CH₃), 61.3 (CH), 120.6 (CN), 128.4 (2C, Ar), 129.3 (2C, Ar), 137.3 (2C, Ar). FTIR (cm⁻¹): 3401 (OH), 2250 (CN).

Compound 2d

White solid; Yield: 83%; 1 H-NMR (500 MHz, CDCl₃) δ (ppm): 3.64 (s, 1H, OH), 5.23 (s, 1H, CH), 5.71 (s, 1H, Ar-OH), 7.41 - 7.65 (m, 4H, Ar). 13 C-NMR (125 MHz, CDCl₃) δ (ppm): 64.1 (CH), 120.3 (CN), 129.5 (2C, Ar), 131.4 (2C, Ar), 137.4 (2C, Ar). FTIR (cm⁻¹): 3395 (OH), 2261 (CN).

Compound 2e

Clear oil; Yield: 86%; 1 H-NMR (500 MHz, CDCl₃) δ (ppm): 3.72 (s, 1H, OH), 5.51 (s, 1H, CH), 6.95 - 7.61 (m, 4H, Ar). 13 C-NMR (125 MHz, CDCl₃) δ (ppm): 64.3 (CH), 119.9 (CN), 128.1 (2C, Ar), 130.1 (2C, Ar), 133.2 (2C, Ar). FTIR (cm⁻¹): 3400 (OH), 2261 (CN).

Compound 2f

White solid; Yield: 82%; 1 H-NMR (500 MHz, CDCl₃) δ (ppm): 3.69 (s, 1H, OH), 5.42 (s, 1H, CH), 6.81 (s, 1H, Ar), 7.10 – 754 (m, 3H, Ar). 13 C-NMR (125 MHz, CDCl₃) δ (ppm): 60.9 (CH), 120.1 (CN), 127.9 (Ar-C), 129.5 (Ar-C), 132.5 (Ar-C), 133.1 (Ar-C), 134.0 (Ar-C), 135 (Ar). FTIR (cm⁻¹): 3407 (OH), 2251 (CN)

Compound 2g

White solid; Yield: 87%; 1 H-NMR (500 MHz, CDCl₃) δ (ppm): 3.63 (s, 1H, OH), 3.74 (s, 3H, OCH₃), 5.52 (s, 1H, CH), 5.72 (s, 1H, Ar-OH), 6.81 (s, 1H, Ar-H), 7.23 – 7.61 (m, 2H, Ar). 13 C-NMR (125 MHz, CDCl₃) δ (ppm): 61.2 (CH), 120.2 (CN), 128.1 (Ar-C), 128.9 (Ar-C), 130.1 (Ar-C), 132.4 (Ar-C), 133.1 (Ar-C), 135, 134.5 (Ar-C). FTIR (cm⁻¹): 3406 (OH), 2258 (CN).

2.2.Antimicrobial Activity

2.2.1. Test Microorganisms

Five bacterial and one fungal species were clinical isolates obtained from the Department of Microbiology, Umaru Musa Yar'adua University, Katsina, Nigeria.

2.2.2. Susceptibility Test

Concentrations of the synthesised compounds were prepared at 1000 µg/ml, 500 µg/ml, 250 µg/ml, and 125 µg/ml. Then, discs containing different concentrations of the synthesised compounds were dispensed into the various plates containing test organisms and incubated for 37°C h for 24 h. But *C. albicans* was at incubated at for 30°C h for 48 h. Ciprofloxacin and ketoconazole as positive controls for bacteria and fungi respectively were incubated at 37°C for 24 h. All experiments were performed in triplicate and zone of inhibition was recorded for each plate [4].

2.2.3. Determination of Minimum Inhibitory Concentration (MIC)

The MIC of the compounds was determined using the tube dilution method as per the literature [4].

2.2.4. Determination of Minimum Bactericidal/Fungicidal Concentration (MBC/MFC)

The resulting contents from the MIC testes were subjected to the MBC/MFC determination as reported by Benson et al., 2022 [4].

3. RESULTS AND DISCUSSION

3.1.Chemistry

The synthesised mandelonitrile derivatives were obtained according to Scheme 1. All respective benzaldehydes (**1a-f**) were reacted with the aqueous solutions of sodium metabisulphite and sodium cyanide for 24 h to yield the corresponding mandelonitrile products (**2a-2f**) in excellent yields. The formation of HO-CH-CN bonds was confirmed by the presence of CH peaks within 5.00 ppm – 5.50 ppm, and OH within 3.00 ppm – 3.60 ppm in the ¹H NMR spectra. Similarly, the ¹³C spectra gave peaks within 119.0 ppm – 120.0 ppm for the CN carbons [17-19].

Scheme 1. Synthesis of Mandelonitrile Derivatives

3.2. Antimicrobial Activity

The susceptibility test of the compounds against four bacterial and one fungal species was evaluated at four concentrations, 1000 μg/ml, 500 μg/ml, 250 μg/ml, and 125 μg/ml (Table 1). This was conducted using the disc diffusion method [4]. Staphylococcus aureus was found to be strongly susceptible to compounds 2a, 2c, and 2g at all the tested concentrations compared to the control drug, ciprofloxacin. The range of the zones of inhibitions was 17.1 mm - 7.8 mm. While the control drug at the tested concentrations was 26.4 mm – 12.5 mm. There was no activity determined against Escherichia coli at the tested concentrations. Streptococcus pneumoniae appeared to be susceptible to compounds 2b, 2d, 2e, and 2f though mildly active compared to the the control drug, spiramycin. For instance, compound **2b** gave 16.1 mm zone of inhibition while spiramiycin exhibited 22.9 mm zone of inhibition. Pseudomonas aeruginosa was excellently inhibited by compounds 2b, 2d, 2e, and 2f at all the tested concentrations which appeared to be higher than the control drug, piperacillin. The range of inhibition zones of the compounds was 30.1 mm - 17.2 mm compared to piperacillin, 25.8 mm - 13.4 mm. C. albicans was the only fungal specie evaluated and was found to be reasonably inhibited by compounds 2b, 2c, 2d, 2e, 2f compared to the control drug, clotrimazole. The range of the zone of inhibition was 18.1 mm – 12.0 mm compared to clotrimazole which gave 35.5 mm – 16.5 mm range. The minimum inhibitory concentration (MIC) for all the compounds was found to be 125 µg/ml against all the organisms with the exception of compound 2e which gave an MIC value of 250 μg/ml against Streptococcus pneumoniae. Evaluation of the minimum bactericidal/fungal concentration (MBC/MFC) of the compounds against the organisms gave the highest value of 1,000 µg/ml, and the lowest MBC values of 250 µg/ml. The MFC values similarly gave the highest value of 1,000 µg/ml

and the lowest value of 125 μ g/ml (Table 2). Generally, the best performance observed in compounds **2b**, **2d**, **2e**, **2f** may be attributed to the electronic effect of the different substituents. While compounds **2b**, **2d**, and **2e** possess electron activating groups, compound **2f** contains an electron withdrawing group. Similar trend was observed in our earlier studies on the antibacterial and antifungal activities of some simple aryl substituted compounds [3-5]. The antimicrobial activity observed in this work strengthened the potentiality of nitrile-containing compounds as future source of new antimicrobial agents as supported by other works which evaluated structurally different scaffolds containing nitrile group. Some of them include indole-acrylonitriles [20], acrylonitrile adducts [21], bi- α -amino nitrile compounds [22], polyhalo isophthalonitrile derivatives [23], imidazoline-sulphonamide nitriles [24]. The possible mode of antibacterial /antifungal activity of the compounds evaluated in this work could be associated with their binding affinity to the enzyme involved in the synthesis of peptidoglycan, a major component of bacterial cell walls and /or β -lactamase as had been found in the *in silico* studies of the indole-acrylonitriles [20].

Table 1. Zone of Inhibition of Compounds 2a – 2f against the Bacterial and Fungal Species

	Zone of Inhibition (mm) ^a																			
	S. aureus				E. coli				S. pneumoniae			P. aeruginosa			C. albicans					
Compound	Concentration (µg/ml)				Concentration (µg/ml)				Concentration (µg/ml)			Concentration (µg/ml)			Concentration (μg/ml)					
	1000	500	250	125	1000	500	250	125	1000	500	250	125	1000	500	250	125	1000	500	250	125
2a	16.6	16.0	15.3	13.2	-	-	-	-	-	-	-	-	-	-	-	-	8.5	7.9	7.0	7.0
2 b	-	-	-	-	-	-	-	-	16.1	13.8	11.1	9.7	30.1	29.9	29.7	23.1	12.6	10.3	9.0	7.1
2c	17.1	14.2	11.6	9.5	-	-	-	-	-	-	-	-	-	-	-	-	16.0	13.0	12.6	12.0
2d	-	-	-	-	-	-	-	-	13.4	10.1	8.6	7.1	27.1	25.4	21.6	19.5	16.6	12.8	10.2	8.5
2e	-	-	-	-	-	-	-	-	12.8	10.1	8.3	-	27.7	24.1	21.8	17.2	16.3	11.9	9.1	7.0
2f	-	-	-	-	-	-	-	-	13.9	10.6	9.0	7.2	27.1	25.4	21.6	19.5	18.1	16.9	15.0	12.1
2 g	14.7	13.3	11.9	7.8	-	-	-	-	-	-	-	-	-	-	-	-	9.6	8.2	8.1	7.5
Cipr	26.4	18.5	16.0	12.5	28.8	18.6	15.3	11.7	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt
Spir	nt	nt	nt	nt	nt	nt	nt	nt	22.9	18.3	16.1	14.9	nt	nt	nt	nt	nt	nt	nt	nt
Pipe	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	25.8	22.7	18.1	13.4	nt	nt	nt	nt
Clot	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	35.5	21.0	17.3	16.5

^a = Mean values of triplicate tests; - = Not Determined; nt = Not Tested; Cipr = Ciprofloxacin; Spir = Spiramycin; Pipe = Piperacillin; Clot = Clotrimazole S. aureus = Staphylococcus aureus; E. coli = Escherichia coli; S. pneumoniae = Streptococcus pneumoniae; P. aeruginosa = Pseudomonas aeruginosa; C. albicans = Candida albicans

Table 2. Minimum Bactericidal/Fungal Concentrations of Compounds 2a - 2f

			MIC (µg/	ml)		MBC/MFC (μg/ml)						
Compound	S. aureus E. coli		S. pneumoniae	P. aeruginosa	C. albicans	S. aureus	E. coli	S. pneumoniae	P. aeruginosa	C. albicans		
2a	125	-	-	-	125	500	-	-	-	500		
2b	-	-	125	125	125	-	-	500	250	125		
2c	125	-	-	-	125	1000	-	-	-	500		
2d	-	-	-	125	125	-	-	-	500	250		
2e	-	-	250	125	125	-	-	1000	500	1000		
2f	-	-	125	125	125	-	-	500	250	250		
2g	125	ı	-	-	125	500	-	-	-	500		

^{- =} Not Determined; S. aureus = Staphylococcus aureus; E. coli = Escherichia coli, S. pneumoniae = Streptococcus pneumoniae; P. aeruginosa = Pseudomonas aeruginosa; C. albicans = Candida albicans

4. CONCLUSION

Synthesis of some known mandelonitrile derivatives was carried out following the treatment of the corresponding aldehydes with sodium metabisulfite and sodium cyanide solutions. The obtained compounds were characterised using NMR and FTIR spectroscopic techniques. These techniques gave all the relevant peaks in agreement with the literature. Antimicrobial evaluation of the compounds at four different concentrations against five bacterial and one fungal species showed that the activity of the compounds was more potent against *Pseudomonas aeruginosa*. The potent compounds against *P. aeruginosa* were also found to have lower MIC as well as MBC values against the same organism. Although all the synthesised compounds showed mild activities against the fungal specie, *E. coli*. It was found that they all possessed similar MIC values but with variations in the MFC values. This work proved the efficacy of nitrile-containing compounds against the growth of the bacterial and fungal species evaluated. It further proved that nitrile-containing compounds could be a rich source of future pharmaceutics for various disease conditions [25].

CONFLICT OF INTEREST

The authors declared no conflict of interest.

ACKNOWLEDGEMENT

The Tertiary Education Trust Fund (TETFund) Nigeria is gratefully acknowledged for funding this work under the institution-based research (IBR) grant programme.

REFERENCES

- [1] WHO, "Antimicrobial Resistance Fact Sheet", 21 November 2023. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance. (Accessed 21 February, 2024).
- [2] J. Houšť, J. Spížek, and V. Havlíček. "Antifungal drugs". Metabolites. 2020 Mar 12; 10(3):106.
- [3] M. Sulaiman, Y. Hassan, T. T. Tok, and X. S. Noundou. "Synthesis, antibacterial activity and docking studies of benzyl alcohol derivatives". Journal of the Turkish Chemical Society Section A: Chemistry. 2020; 7(2):481-8.
- [4] J. B. Ogala, Y. Hassan, A. Samaıla, M. I. Bindawa, and T. T. Tok. "Synthesis, antifungal activity and in silico ADMET studies of benzyl alcohol derivatives". İstanbul Journal of Pharmacy. 2022 Apr; 52(1):47-53.

- [5] M. Sulaiman, Y. Hassan, T. T. Tok, and X. S. Noundou. "Synthesis, antibacterial activity and docking studies of benzyl alcohol derivatives". Journal of the Turkish Chemical Society Section A: Chemistry. 2020; 7(2):481-8.
- [6] A. Siebert, M. Wysocka, B. Krawczyk, G. Cholewiński, and J. Rachoń. "Synthesis and antimicrobial activity of amino acid and peptide derivatives of mycophenolic acid". European journal of medicinal chemistry. 2018 Jan 1; 143:646-55.
- [7] E. Swallow, O. Patterson-Lomba, L. Yin, R. Mehta, C. Pelletier, D. Kao, J. K. Sheffield, T. Stonehouse, and J. Signorovitch. "Comparative safety and efficacy of ozanimod versus fingolimod for relapsing multiple sclerosis". Journal of Comparative Effectiveness Research. 2020 Mar; 9(4):275-85.
- [8] L. Klotz, M. Eschborn, M. Lindner, M. Liebmann, M. Herold, C. Janoschka, B. Torres Garrido, A. Schulte-Mecklenbeck, C. C. Gross, J. Breuer, and P. Hundehege. "Teriflunomide treatment for multiple sclerosis modulates T cell mitochondrial respiration with affinity-dependent effects". Science Translational Medicine. 2019 May 1; 11(490):eaao5563.
- [9] S. Nassereddine, C. J. Lap, and I. A. Tabbara. "Evaluating ivosidenib for the treatment of relapsed/refractory AML: design, development, and place in therapy". OncoTargets and therapy. 2018 Dec 28:303-8.
- [10] Y. D. Fragoso, and J. B. Brooks. "Leflunomide and teriflunomide: altering the metabolism of pyrimidines for the treatment of autoimmune diseases". Expert review of clinical pharmacology. 2015 May 4; 8(3):315-20.
- [11] K. McKeage. "Finafloxacin: first global approval". Drugs. 2015 Apr; 75(6):687-93.
- [12] P. Bose, and H. Ozer. "Neratinib: an oral, irreversible dual EGFR/HER2 inhibitor for breast and non-small cell lung cancer". Expert opinion on investigational drugs. 2009 Nov 1; 18(11):1735-51.
- [13] R. Gupta, S. S. Walunj, R. K. Tokala, K. V. Parsa, S. K. Singh, and M. Pal. "Emerging drug candidates of dipeptidyl peptidase IV (DPP IV) inhibitor class for the treatment of type 2 diabetes". Current drug targets. 2009 Jan 1; 10(1):71-87.
- [14] E. Salamon, R. Mannhold, H. Weber, H. Lemoine, and W. Frank. "6-Sulfonylchromenes as highly potent KATP-channel openers". Journal of medicinal chemistry. 2002 Feb 28; 45(5):1086-97.
- [15] X. Wang, Y. Wang, X. Li, Z. Yu, C. Song, and Y. Du. "Nitrile-containing pharmaceuticals: target, mechanism of action, and their SAR studies". RSC medicinal chemistry. 2021; 12(10):1650-71.
- [16] C. Scotti, and J. W. Barlow. "Natural products containing the nitrile functional group and their biological activities". Natural Product Communications. 2022 May; 17(5).
- [17] B. B. Aggio, A. R. Oliveira, L. Piovan, and J. C. Thomas. "A Chemoenzymatic Process to Achieve Optically Active Mandelic Acid Employing Continuous-Flow Resolution of Cyanohydrin as a Key Step". Revista Virtual de Quimica, 2023, 15(2): 367-373.
- [18] M. Juhl, A. R. Petersen, and J. W. Lee. "CO₂-Enabled Cyanohydrin Synthesis and Facile Iterative Homologation Reactions". Chemistry—A European Journal. 2021 Jan 4; 27(1):228-32.

- [19] D. Alagöz, S. S. Tükel, and D. Yildirim. "Enantioselective synthesis of various cyanohydrins using covalently immobilized preparations of hydroxynitrile lyase from Prunus dulcis". Applied biochemistry and biotechnology. 2015 Nov; 177(6):1348-63.
- [20] A. Kornicka, K. Gzella, K. Garbacz, M. Jarosiewicz, M. Gdaniec, J. Fedorowicz, Ł. Balewski, J. Kokoszka, and A. Ordyszewska. "Indole-acrylonitrile derivatives as potential antitumor and antimicrobial agents—Synthesis, in vitro and in silico studies". Pharmaceuticals. 2023 Jun 22;16(7):918.
- [21] P. Das, N. Devi, N. Gaur, S. Goswami, D. Dutta, R. Dubey, and A. Puzari. "Acrylonitrile adducts: design, synthesis and biological evaluation as antimicrobial, haemolytic and thrombolytic agent". Scientific Reports. 2023 Apr 17; 13(1):6209.
- [22] Z. Abdulhameed, and A. J. Alabdali. "Synthesis, characterization and antimicrobial evolution of new bi-α-amino nitrile compounds". Al-Nahrain Journal of Science. 2023; 26(4):21-7.
- [23] H. C. Huang Chao, Y. S. Yan ShengJiao, H. N. He NengQin, T. Y. Tang YaJuan, W. X. Wang XingHong, and L. J. Lin Jun. "Synthesis and antimicrobial activity of polyhalo isophthalonitrile derivatives". Bioorganic & Medicinal Chemistry Letters. 2013; 23: 2399-2403.
- [24] K. V. Hirpara, S. P. Patel, K. A. Parikh, A. S. Bhimani, and H. H. Parekh. "Preparation, characterisation and antimicrobial activities of some novel nitriles and imidazolines". Journal of Sciences, Islamic Republic of Iran, 2004; 5(2): 135-138.
- [25] F. F. Fleming, L. Yao, P. C. Ravikumar, L. Funk, and B. C. Shook. "Nitrile-containing pharmaceuticals: efficacious roles of the nitrile pharmacophore". Journal of Medicinal Chemistry. 2010 Nov 25; 53(22):7902-17.