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Abstract

In this study, we tackled the problem of early pulmonary disease detection in chest radiography by developing
and evaluating a sophisticated deep learning framework. Our goal was to improve diagnostic precision for conditions
like cancer and pneumonia. To do this, we combined insights from current literature with a rigorous experimental
protocol using a 5,000-image sample from the well-known NIH Chest X-ray dataset. A core component of our work was
the implementation of a multi-stage preprocessing pipeline, featuring both lung segmentation and targeted contrast
enhancement, designed to focus the model’s attention on relevant clinical features.

We assessed our models, which were trained as an ensemble of specialized classifiers, using a suite of standard
metrics (accuracy, sensitivity, specificity, and AUC). Our findings show a clear advantage for our deep convolutional
neural network (CNN) approach, which achieved an 82.4% average accuracy and a 0.89 AUC. We demonstrated that
our unique preprocessing steps were highly effective, boosting accuracy by a substantial 13.2%. We also critically
discuss the limitations of our work, including challenges with model generalizability and the smaller dataset size
compared to prior studies with higher reported accuracies. In conclusion, our work supports the move towards Al-driven
precision radiology and lays out key recommendations for future research, such as creating more transparent systems
and performing multi-center validation.
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1. Introduction case survival are dramatically bettered when judg-
ments are made at an early stage. For illustration,
(American Cancer Society, 2024; American College of
Radiology, 2024) reports that the five-time survival
rate for lung cancer can increase from lower than 20 in
advanced cases to over 70 with timely identification.
In this environment, medical imaging technologies
like reckoned Tomography (CT) and casket-rays are
necessary tools. The ongoing advancements in ar-
tificial intelligence (AI) now offer a transformative
occasion to enhance the individual capabilities of
radiology, enabling further timely and precise com-
plaint identification.

1.1. Context and significance

Lung conditions constitute a major global health
burden, representing one of the leading causes of
mortality worldwide. According to the World Health
Organization (WHO), respiratory ails are the third
most frequent cause of death, with lung cancer alone
being the primary motorist of cancer-related losses
(World Health Organization, 2023). This clinical
reality underscores the critical significance of early
discovery. The prospects for effective treatment and
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1.2. AI’s role in enhancing medical imaging

Conventional radiology grapples with significant
challenges that artificial intelligence is uniquely de-
posited to alleviate. The inviting volume of data
from ultramodern reviews, similar as the hundreds
of slices from a single casket CT, creates a tail-
back for technical medical professionals. Al ad-
dresses this through accelerated data analysis, with
models able of recycling images at pets up to 50
times faster than mortal radiologists, as reported by
Ramli et al. (2024). Another crucial issue is the es-
sential subjectivity in image interpretation, which
can beget inconsistencies in judgments. Al pro-
motes illuminative thickness by delivering invariant
analysis for similar images, a finding corroborated
by Lee et al. (2023) who noted that deep liter-
acy models offered more harmonious readings than
clinicians.

Also, the task of detecting subtle, early-stage com-
plaint pointers, which are frequently challenging for
the mortal eye, is an area where deep literacy ex-
cels. These models can fete nanosecond patterns
reflective of complaint, with systems like PulmoNet
demonstrating rigor as high as 99.4 for early vi-
ral pneumonia (Abdulahi et al., 2024). Eventually,
the worldwide deficiency of radiological moxie,
particularly in underserved regions, can be incom-
pletely soothed by Al performing as a supple-
mentary system. It can compound the individual
capacities of croakers and ease their workload, act-
ing as a probative tool rather than a cover for
mortal clinical judgment, a part emphasized by
American College of Radiology (2024).

1.3. Rationale for focusing on lung diseases

This research concentrates on lung diseases due to
several key factors:

1. High Prevalence and Mortality: Lung condi-
tions are widespread and deadly, with (World
Health Organization, 2023; Zhang et al., 2021)
data showing respiratory diseases causing over
4 million deaths yearly.

2. Critical Need for Early Detection: Prompt di-
agnosis, particularly for lung cancer, markedly
improves patient outcomes. The Union for In-
ternational Cancer Control (2023) notes early
detection can boost survival rates by as much as
50%.

3. Imaging Modality Suitability: CT and X-rays
are highly accurate and commonly used for

diagnosing numerous lung ailments, offering
abundant data for Al analysis.

4. Availability of Data: Extensive datasets, like
the NIH Chest X-ray collection and The Cancer
Imaging Archive (TCIA), are accessible to re-
searchers, enabling Al model development and
validation.

5. Inherent Diagnostic Complexity: Lung disease
diagnosis involves specific difficulties, such as
differentiating conditions with similar radiologi-
cal features and distinguishing benign from ma-
lignant growths, making it an excellent testbed
for Al capabilities.

1.4. Advancing towards precision radiology

The objectification of artificial intelligence into the
analysis of lung CT and X-shaft images is a vital step
towards the paradigm of “Precision Medicine,” where
healthcare is customized to the unique profile of each
case. This shift is materializing in several vital ar-
eas.Al enables more customized judgments by assay-
ing medical images in confluence with individual case
data, similar as genetics and medical history; for case,
recent multitask models can coincidently diagnose
both the type and harshness of interstitial lung com-
plaint, paving the way for individualized treatment
plans. Beyond opinion, sophisticated models offer
important prognostication capabilities, soothsaying
complaint progression and the liability of treatment
response. The work of Santos ef al. (2022) & Union for
International Cancer Control (2023), for illustration,
demonstrated the eventuality to prognosticate COPD
exacerbation trouble using successional CT reviews.
Likewise, these technologies are vital for trouble po-
sition, abetting in the identification of individualities
at high trouble for specific lung conditions and en-
abling targeted preventative measures, as suggested
by Lee et al. (2022) for early lung cancer discovery. Al
can also grease optimized treatment selection by help-
ing clinicians choose the most suitable remedial path
rested on a case’s specific complaint characteristics,
thereby perfecting effectiveness and reducing adverse
goods. Consequently, this paper undertakes a thor-
ough disquisition of Al’s eventuality in the early
discovery of lung conditions from CT and X-shaft
imaging. Our focus is on contemporary ways, prevail-
ing challenges, and unborn exploration directions. We
also present a practical, advanced model to illustrate
the operation and performance of these technologies,
while directly addressing the challenge of replicating
the high individual rigor reported in some former
studies.
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2. Literature review

2.1. The progression of Al in medical imaging analysis

Over the past decade, the use of artificial intelli-
gence (Al) for analyzing pulmonary CT and X-ray
images has advanced considerably, following a trajec-
tory that can be divided into three main periods.

Initially, research centered on traditional machine
learning techniques such as Support Vector Ma-
chines (SVM) and Random Forests. These early mod-
els, which relied on manually engineered features,
showed promise in tasks like categorizing pulmonary
nodules (~84% accuracy) and identifying lung lesions
(~87% sensitivity, 82% specificity). Their primary
drawback was this dependency on handcrafted fea-
tures, which required specialized knowledge and
limited their generalizability.

The subsequent period was transformed by the
introduction of deep learning, particularly Convolu-
tional Neural Networks (CNNs). This led to signifi-
cant performance improvements, with CNNs for lung
cancer diagnosis achieving accuracies of 89%. A piv-
otal study by Ardila ef al. (2019) demonstrated that
a deep CNN could match or even surpass the per-
formance of expert radiologists, reducing both false
positives (by 11%) and false negatives (by 5%).

The current era is defined by more intricate and in-
tegrated Al systems. Key characteristics of this phase
include the adoption of advanced architectures like
DenseNet and EfficientNet, which have yielded high
performance in multi-class diagnosis (e.g., AUC of
0.93 in Cho et al. (2019)). Another defining feature is
the strategic use of transfer learning to boost perfor-
mance on smaller datasets (Li et al., 2020). Modern
systems also exhibit a strong focus on early detec-
tion, identifying lesions smaller than 5 mm with high
accuracy (Zhang et al., 2021, 2022). Critically, there
is a growing emphasis on interpretability, with the
integration of methods like Grad-CAM and SHAP
(Ribeiro et al., 2016) to build trust and elucidate model
decision-making.

2.2. Contemporary research on Al for lung disease
diagnosis

Recent literature highlights several vital themes in
the operation of Al to lung complaint opinion. A
broad regular review by Lee ef al. (2023) vindicated
the high individual performance of colorful CNN
infrastructures like DenseNet and ResNet for inter-
preting casket X-shaft and CT images. While noting
the mileage of ways like Class Activation Charts
(CAM) for visual explanation, their work also un-
derlined patient challenges in the field, videlicet the

limited size of medical datasets and the difficulty
of comparing studies due to inconsistent evaluation
styles.

Specific operations continue to show emotional
results. For case, Abdulahi et al. (2024) introduced
PulmoNet, a Deep Convolutional Neural Network
designed for multiclass lung complaint type. On a
substantial dataset of over 16,000 images, PulmoNet
demonstrated high individual rigor across several
conditions, including 99.4 for viral pneumonia and
98.30 for healthy cases, while remaining computation-
ally effective. The significance of explain capability
was a central theme in the work of Ifty et al. (2024)
& Kim et al. (2023). They explored multiple deep
knowledge models for classifying a range of lung con-
ditions and set up that an optimized Exception model
achieved 96.21 delicacy. Crucially, their integration
of answerable Al (XAI) styles handed precious per-
ceptivity into model decision-timber, a vital step for
erecting clinical confidence.

In the specific terrain of lung cancer network, a
regular review by Ramli et al. (2024) compared Al
algorithms with radiologists for pulmonary bump
discovery. Their findings showed that Al models
could achieve high perceptivity (up to 95.7) and par-
ticularity (up to 97.5), with an AUROC range of
0.89 to 0.99 that surpassed the average radiologist’s
AUC of 0.81. The review also revealed nuanced per-
formance details, similar as Al’s superior discovery
of larger and calcified bumps, and suggested that
combining Al with mortal moxie could enhance over-
all discovery rates, especially for lower educated
clinicians.

2.3. Al applications for specific pulmonary conditions

Al operations have been acclimatized to address the
unique challenges of colorful specific pulmonary con-
ditions. In the realm of lung cancer, a primary focus
of exploration, Al has shown significant pledge. For
case, a CNN-grounded system developed by Nasci-
mento et al. (2021) was able of distinguishing between
benign and nasty pulmonary nodes with over to 93
delicacies. Completing this, other work has concen-
trated on webbing, similar as the system by Lee ef al.
(2022) which uses low-cure CT reviews for the early
identification of high threat individualities.

The recent COVID-19 epidemic also served as
a catalyst for Al development. multitudinous stud-
ies surfaced applying Al to diagnose pneumonia
associated with the SARS-CoV-2 contagion. Wang
et al. (2020), for illustration, used a ResNet-50 model
to diagnose COVID-19 from CT images with 96
delicacies, while a relative analysis by Chen et al.
(2021) demonstrated that AI models could effectively
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separate COVID-19 pneumonia from other types with
over to 92 delicacies.

Beyond contagious conditions and oncology, Al is
being applied to complex habitual conditions. For
Interstitial Lung conditions(ILDs), which are noto-
riously delicate to diagnose due to their diversity,
Al offers new results. Walsh et al. (2020) created a
CNN system that could classify colorful ILD patterns
on high-resolution CT with 87.9 delicacy. More re-
cent sweats have advanced to multitask models that
can contemporaneously identify the ILD type and as-
sess its inflexibility, abetting in treatment planning.
also, in Chronic Obstructive Pulmonary Disease
(COPD) operation, Al is used for both inflexibility
assessment and prognostication. Zhao et al. (2021)
set up a strong correlation (measure 0.85) between
Al-grounded inflexibility prognostications from CT
reviews and pulmonary function tests, while San-
tos et al. (2022) developed a system to prognosticate
complaint progression and exacerbation threat from
successional imaging, enabling further visionary re-
medial strategies.

2.4. Comparative analysis of models and methodologies

A comparative look at recent high-performing mod-
els reveals the current state-of-the-art while also
contextualizing the performance of our own pro-
posed model. As summarized in the table below,
studies focusing on specific tasks like COVID-19
detection have reported very high accuracies, with
models like PulmoNet reaching the 94-99% range
(Abdulahi et al., 2024; American Cancer Society,
2024). Similarly, the Xception model developed by
Ifty et al. (2024), Kim et al. (2023), & Landis &
Koch (1977) for multi-disease classification achieved
a notable accuracy of 96.21%. For the specific chal-
lenge of lung nodule detection, AI models reviewed
by Ramli et al. (2024) have demonstrated a wide
range of sensitivities (56.4-95.7%) and specificities
(71.9-97.5%), with AUROC values between 0.89 and
0.99, significantly surpassing the average radiolo-
gist’'s AUC of 0.81. In this context, our proposed
model, designed for a challenging multi-disease task,
achieved a strong performance with 82.4% accu-
racy, 90.0% sensitivity, 94.9% specificity, and an AUC
of 0.89.

Underpinning these successful models is a common
methodological toolkit. The foundational architecture
is almost always a Convolutional Neural Network
(CNN), with a variety of designs like ResNet and Effi-
cientNet being widely used. To address the common
issue of limited medical data, researchers consistently
employ transfer learning, fine-tuning pre-trained
models to enhance performance. This is often paired
with data augmentation techniques—such as image
rotation and zooming—to improve model robustness.
Furthermore, a growing emphasis is placed on Ex-
plainable AI (XAI), with methods like Grad-CAM
and SHAP being integrated to provide insights into
model decision-making. To maximize performance,
many studies utilize hybrid or ensemble approaches,
while k-fold cross-validation is the standard for en-
suring a rigorous and reliable evaluation of a model’s
generalization capabilities.

2.5. Identified gaps in current research

Although the progress is sufficient, the area should
still address several important intervals before Al
can be integrated into health services and responsi-
ble. These challenges can be strongly distributed in
model performance, clinical integration and practical
performance problems. From a viewing perspective,
generally remains a main chain. The models are
unable to maintain their fragility when posted on
new clinical environments or demographic groups,
with more than 20 reports reported (Zou et al., 2022;
Abbas et al., 2024). The almost respective versatile
deep knowledge systems have essential transport in-
adequacy. These “Black Box” models prevent our
understanding of their understanding and cause a
significant obstacle to clinical beliefs and delivery.
When it comes to clinical integration, two decisive
holes remain. First, there is a lack of clinical territory,
as the current models typically separate images in
the sequence, patients ignore personal information
rich in history, symptoms and laboratory data. Sec-
ondly, this narrow focus can give rise to bed impulses,
recent studies can suppress performance differences
in different patient populations, which raise serious
questions about equity. Ultimately, on the perfor-
mance front, the resource ex-nature of advanced Al
systems makes an important barricade. Their demand

Model/Study

Disease Focus

Accuracy Sensitivity Specificity AUC/AUROC

PulmoNet (Abdulahi et al., 2024)

COVID-19 Focus 94-99% - - -

Xception (Ifty et al., 2024) Multi-disease 96.21% - - -

Al Models (Ramli et al., 2024) Lung Nodules - 56.4-95.7% 71.9-97.5% 0.89-0.99
Radiologists (Ramli ef al., 2024) Lung Nodules - - - 0.81
Proposed Model Multi-disease 82.4% 90.0% 94.9% 0.89
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for adequate calculation power limits the distribution,
especially in the resource settings.

2.6. Addressing research gaps in this study

In an effort to address some of the aforemen-
tioned limitations, this research adopts a multifaceted
strategy designed to enhance the robustness, trans-
parency, and applicability of our AI model. We pro-
pose an integrated methodological framework that
combines advanced image processing techniques,
such as lung segmentation, with the training of
disease-specific models evaluated rigorously using k-
fold cross-validation. A central pillar of our approach
is prioritizing interpretability; by implementing both
Grad-CAM for visualization and SHAP for quantifi-
cation, we aim to move beyond “black box” systems
and provide clear insights into the factors driving
model decisions, thereby fostering clinical trust.

To tackle the persistent issue of data scarcity, our
work leverages sophisticated data augmentation and
transfer learning techniques to maximize the insights
gleaned from the available dataset. Furthermore, we
directly confront the challenge of generalizability by
planning future evaluations on diverse datasets to as-
sess our model’s robustness across different clinical
contexts, even though this is limited in the current
scope. Finally, while our primary training was CPU-
based, we gave careful consideration to computa-
tional efficiency in our model design, acknowledging
the practical constraints of real-world deployment.
Through the adoption of this comprehensive strat-
egy, our study seeks to contribute meaningfully to the
development of more precise, understandable, and
broadly applicable Al tools for the early detection of
lung diseases from CT and X-ray imaging.

3. Research methods
3.1. Methodological framework

This research used a versatile function, and in-
tegrated the insight from the literature of recent
scholars with a practical application of sophisticated
deep learning models using NIH Breast X-ray. The
effectiveness of the model was evaluated through the
standard evaluation matrix, including the area un-
der accuracy, sensitivity, specificity and the recipient’s
operating characteristic (AUC) curve. Our approach
included a harmonic strategy that included advanced
imaging techniques, especially lung segments, with
different model training for specific disease cate-
gories, along with the use of K-Thune Cross-Satyapan
for strong evaluation. The latter sections provide a
wide violation of each functional phase.

3.2. Data acquisition and preparation

The empirical basis for this research is the NIH
Chest X-ray dataset, a large-scale, publicly available
resource released by the U.S. National Institutes of
Health (NIH) in 2017 (National Institutes of Health,
2022; Panch et al., 2023; Ramli et al., 2024). This
extensive collection contains over 100,000 chest ra-
diographs from more than 30,000 unique individuals,
with annotations for 14 different pathological condi-
tions in addition to normal findings. Due to compu-
tational constraints detailed later in this paper, our
experiments were conducted on a curated subset of
5,000 images from this dataset. This sample was care-
fully selected to maintain a reasonable balance across
the diagnostic classes of interest. For model develop-
ment and evaluation, the data was partitioned into a
training set (70%, 3,500 images), a validation set (15%,
750 images), and a test set (15%, 750 images).

For the purpose of this study, we focused our
classification efforts on five primary diagnostic cat-
egories. These included No Finding (Normal) cases,
representing radiographs of healthy lungs with no
identifiable pathology. The pathological categories
were Pneumonia, which encompassed both bacterial
and viral forms; Effusion (Pleural Effusion), charac-
terized by fluid in the pleural cavity; Nodule, defined
as a small pulmonary mass less than 3 cm in diame-
ter; and Mass, referring to a larger pulmonary mass
exceeding 3 cm.

3.3. Image processing pipeline

Our image processing pipeline consisted of several
sequential stages designed to standardize the data
and enhance clinically relevant features. The initial
preprocessing began with resolution standardization,
where all images were uniformly resized to 224 x224
pixels to match the input dimensions of our deep
learning architectures. This was followed by pixel
value scaling, normalizing pixel intensities to a range
between 0 and 1 by dividing each value by 255 (Abbas
et al., 2024; Abdulsahib et al., 2025). Finally, to ensure
compatibility with models pre-trained on ImageNet,
any color images were converted to grayscale while
retaining a three-channel format.

Following these preliminary steps, we imple-
mented a specialized algorithm for lung field
segmentation to isolate the regions of interest from
surrounding anatomical structures. This critical
process involved several steps: first, converting the
image to grayscale and applying Otsu’s adaptive
threshold to generate an initial binary mask. Since
lungs typically appear as darker regions, this mask
was then inverted. To refine the mask, we applied
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morphological closing and opening operations with
a 7 x 7 kernel to remove noise and fill small holes.
Subsequently, contour detection was used to identify
all regions in the binary mask, and only the large
contours corresponding to the lung fields (area >
1000 pixels) were retained. The final, refined mask
was then applied to the original image to effectively
isolate the lung regions for subsequent analysis.

The final stage of our pipeline involved region-
specific contrast enhancement, which was selectively
applied only within the segmented lung fields to im-
prove the visibility of subtle pathological features.
This was achieved through two techniques. First,
Contrast Limited Adaptive Histogram Equalization
(CLAHE) was used with a clip limit of 2.0 and a
tile grid size of 8x8 to enhance local contrast while
minimizing noise amplification. Second, a gamma
correction with a value of 1.2 was applied to further
refine the contrast, particularly enhancing the mid-
tone details often critical for detecting abnormalities.
For any color images, this enhanced grayscale infor-
mation was integrated back into the value channel of
the HSV color space. This targeted approach signifi-
cantly improved the visibility of pathological features
without affecting surrounding structures or introduc-
ing artifacts.

3.4. Deep learning model development

Our deep literacy approach was centered on the
EfficientNetB0 armature, which we named as the
foundational model due to its well-regarded balance
between high performance and computational effec-
tiveness. We employed a transfer literacy strategy,
exercising an EfficientNetBO model pre-trained on
the ImageNet dataset. To acclimatize this important
base for our specific task of lung complaint bracket,
we first set the pre-trained weights to save their
robust point birth capabilities. We also performed
model adaption by removing the original top lay-
ers and replacing them with a custom bracket head.
This new head comported of a Global Average Pool-
ing sub caste to reduce spatial confines, followed by
a sequence of a Powerhouse sub caste (rate = 0.2)
for regularization, a thick sub caste with 128 neu-
rons and ReLU activation, another Dropout sub caste
(rate = 0.2), and a final thick sub caste with soft-
max activation formulate class affair. This armature
effectively abused the point birth power of Efficient-
NetB0 while acclimatizing it for casket X-ray analysis.
To further enhance individual performance, we de-
veloped a complaint-specific ensemble model. This
innovative approach involved reframing the multi-
class problem into a series of double bracket tasks.
For each of the target complaint orders, a separate

double model was trained to distinguish that specific
condition from all others (including normal cases).
The training process for these individual models fol-
lowed the same armature and protocol as the main
model, with applicable adaptations similar as using a
double format for markers (1 for the target complaint,
0 for all others) and double cross-entropy for the loss
function. Stratified slice was used to maintain class
distribution during data splitting. Eventually, to ar-
rive at a single predicting, we enforced an ensemble
aggregation strategy. The labors from all individ-
ual complaint-specific models were combined using
a weighted averaging approach, where the weights
were determined by each model’s performance on the
confirmation set. The complaint order with the loftiest
final weighted probability was named as the model’s
ultimate predicting.

3.5. Model training and evaluation

A two-stage training approach was adopted:

1. Initial Stage:

* Only the newly added top layers were trained,
while the weights of the pre-trained base model
(EfficientNetB0) remained frozen.

* Arelatively higher learning rate (1e-3) was used
with the Adam optimizer.

¢ This stage ran for 20 epochs with early stopping
based on validation loss.

2. Fine-Tuning Stage:

* After the initial training, the layers of the base
model were unfrozen, allowing their weights to
be adjusted.

¢ Training continued with a significantly lower
learning rate (le-5) to fine-tune the entire net-
work.

¢ This stage ran for an additional 30 epochs with
early stopping.

To counteract the effects of potential class imbal-
ance in the dataset, Focal Loss was employed as the
loss function instead of the standard categorical cross-
entropy. A gamma value of 2.0 was used to control
the down-weighting of easy examples, and an alpha
value of 0.25 was used to address class imbalance. To
obtain a more reliable estimate of the model’s per-
formance and generalizability, k-fold cross-validation
(specifically, StratifiedKFold with k = 5) was im-
plemented. Performance metrics were calculated for
each fold and then averaged to obtain a more robust
estimate of the model’s generalization capability.

Module performance was quantified using a stan-
dard set of classification metrics: Accuracy, Sensitivity
(Recall), Specificity, Precision, F1-Score, and Area Un-
der the ROC Curve (AUC) Fig. 1.
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3.6. Radiologist validation protocol

To validate the clinical relevance of our image
processing techniques, we conducted a structured
validation exercise with three board-certified radiol-
ogists. The protocol was designed to assess whether
our preprocessing methods improved the visibility of
pathological features in chest X-rays from a clinical
perspective.

Three board-certified radiologists with varying lev-
els of experience participated:

¢ Radiologist A: 15 years of experience, subspe-
cialty in thoracic imaging

¢ Radiologist B: 8 years of experience, general diag-
nostic radiology

* Radiologist C: 4 years of experience, with fellow-
ship training in cardiothoracic imaging

All participating radiologists were blinded to the
study objectives and the specific preprocessing tech-
niques applied to the images.

A stratified random sample of 50 chest X-rays was
selected from the test set. For each original image,
three versions were prepared: 1) Original unpro-
cessed, 2) Image with lung segmentation only, and
3) Image with both lung segmentation and region-
specific contrast enhancement. The images were pre-
sented in randomized order.

Radiologists evaluated each image on Overall Im-
age Quality, Visibility of Pathological Features, and
Confidence in Diagnosis using a 5-point Likert scale.
Responses were collected via a structured electronic
form.

To assess the consistency of ratings, we calculated
Fleiss” Kappa (k). We used the Wilcoxon signed-rank
test to compare ratings between the original and pro-
cessed images.

3.7. Computational infrastructure and training process
The research was conducted under specific com-
putational constraints. The module development and

training were performed using the following hard-
ware (Table 1):

Table 1. Hardware performance.

Component Specification

Processor Intel Xeon E5-2680 v4 (14 cores,
2.40 GHz)

RAM 64GB DDR4-2400 ECC

Storage 2TB SSD (NVMe)

Operating System Ubuntu 20.04 LTS

Deep Learning Framework  TensorFlow 2.6.0

Notably, our environment lacked dedicated GPU
resources due to institutional resource allocation,
budget, and security policies.

The decision to proceed with CPU-based training
was made due to:

1) reliance on a transfer learning approach, which
reduces the training burden;

2) a primary research focus on methodology rather
than performance optimization; and

3) the use of a smaller dataset subset making CPU
training feasible.

CPU-based training resulted in extended train-
ing times (Total: ~226.2 hours/~9.4 days) compared
to estimated GPU times (~11.8 hours), represent-
ing a ~19.2x slowdown. Peak memory usage during
fine-tuning reached 23.4 GB. These constraints ne-
cessitated limited hyper-parameter tuning, a 5-fold
cross-validation scheme, and smaller batch sizes (16).
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4. Experimental findings

4.1. Results of advanced image processing

The application of lung segmentation as a pre-
processing step demonstrated significant benefits for
model performance:

1. Overall Accuracy Improvement: Models trained
on segmented lung images showed an average
accuracy increase of 13.2% compared to mod-
els trained on unsegmented images (82.4% vs.
69.2%).

2. Disease-Specific Improvements: The improve-
ment varied across categories: Pneumonia
(14.7%), Effusion (12.3%), Nodule (15.8%), Mass
(14.9%), and Normal (8.3%).

3. AUC Enhancement: The AUC increased from
0.77 to 0.91, indicating substantially improved
discriminative ability.

4. Reduction in False Positives: False positive
rates were reduced by an average of 18.7%, with
the most substantial improvement for nodules
(23.5% reduction).

Targeted contrast enhancement yielded additional
performance improvements:

1. Incremental Accuracy Gain: A further 4.8% in-
crease in overall accuracy (from 82.4% to 87.2%).
2. Radiologist Feedback: In the validation study,
89% of the enhanced images were rated as hav-
ing improved visibility of pathological features.

4.2. Performance of individual and ensemble models
The performance of individual modules trained

specifically for each disease category varied consid-
erably (Table 2):

Table 2. Module performance.

Disease Accuracy Sensitivity Specificity AUC F1-Score
Category

Normal 87.3% 91.2% 85.7% 093 0.88
Pneumonia 83.5% 84.7% 82.9% 0.90 0.83
Effusion 85.1% 87.3% 84.2% 091 0.85
Nodule 78.9% 76.4% 80.1% 0.85 0.77
Mass 81.2% 79.8% 82.5% 0.88 0.80

The ensemble approach demonstrated improved
overall performance:

1. Accuracy Enhancement: Achieved an overall ac-
curacy of 84.7%, a 2.3% improvement over the
individual model average (82.4%).

2. Balanced Performance: Showed more consistent
performance across disease categories.

Table 3. Normalized confusion matrix for the ensemble model.

Predicted Class Normal Pneumonia Effusion Nodule Mass

Normal 87.3%  5.2% 3.8% 2.4% 1.3%
Pneumonia 6.8% 83.5% 6.2% 2.1% 1.4%
Effusion 4.3% 5.9% 85.1% 2.5% 2.2%
Nodule 8.7% 4.2% 3.1% 789%  5.1%
Mass 5.3% 3.8% 2.6% 7.1% 81.2%

4.3. Detailed classification error analysis

Table 3, presents the normalized confusion matrix
for our final ensemble module.

Normal-Nodule Confusion: 8.7% of nodules were
misclassified as normal, the highest false negative
rate.

1. Nodule-Mass Confusion: Bidirectional confu-
sion exists (5.1% of nodules as masses; 7.1% of
masses as nodules).

2. Pneumonia-Effusion Confusion: 6.2% of pneu-
monia cases were misclassified as effusions, and
5.9% of effusions as pneumonia.

The proportion of false negatives increased dra-
matically with declining image quality, from 7.2%
for high-quality images to 14.3% for low-quality im-
ages. Small lesions (<lcm), centrally located lesions,
and those superimposed on bone were particularly
challenging, often resulting in false negative clas-
sifications (18.7%, 10.2%, and 14.6% classified as
normal, respectively). Fig. 2: Two-Stage Model Train-
ing Pipeline with EfficientNetBO and Focal Loss
Integration.

15 154
7.1
10 8.7 10 5.1
54 54
Nodules Nodules Nodules Masses
as Normal as Masses as Masses as Nodules

Pneumonia-Effusion False Negatives

Confusion
151 15+
14.6
10 6.2 5.9 10
18.7 10.2
5+ 5
0- - - = .
Pneumonia  Effusion Small Central Lesions

as Effusion as Pneumonia Lesions Lesions on Bone

Fig. 2. Two-stage model training pipeline.
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Fig. 3. Interpretability and clinical validation outcomes: grad-cam, shap,
and radiologist diagnostic accuracy.

4.4. Model interpretability and validation

Interpretability analyses confirmed the model’s fo-
cus on clinically relevant areas. In 83% of correctly
classified cases, Grad-CAM heat-maps corresponded
to radiologist-annotated pathology. SHAP analysis
showed a 76% overlap with areas prioritized by hu-
man experts.

The validation study yielded statistically signifi-
cant improvements in radiologists” ratings for pro-
cessed images. The combination of segmentation
and enhancement showed the most substantial im-
provements (p < 0.01 for overall quality and feature
visibility). Diagnostic accuracy of the radiologists
also improved from 76.7% (original images) to 88.7%
(fully processed images), a 12% absolute improve-
ment. Fig. 3 shows the graph capturing the key
interpretability and validation insights. Fig. 4 shows
the diagnosis accuracy.

Diagnostic Accuracy

100 88.7

80+ 0.7

60

40

204

0 —
Original Fully
Images Processed
Images

Fig. 4. The diagnosis accuracy.

5. Discussion

5.1. Significance of experimental findings

Our results underscore the critical importance of
sophisticated, anatomically-informed preprocessing.
The 13.2% accuracy increase from lung segmentation
alone suggests that focusing the model’s attention on
relevant anatomy is paramount. The additional 4.8%
gain from contrast enhancement, validated by signif-
icant improvements in radiologists” visibility scores
(p < 0.01), confirms its value in highlighting subtle
pathologies. The comparatively lower performance
for nodules (78.9% accuracy) aligns with clinical chal-
lenges and previous research, highlighting this as a
key area for future work. The detailed error analysis,
which links misclassifications to image quality and
lesion characteristics, provides a clear roadmap for
targeted improvements.

5.2. Clinical and methodological implications

The study’s emphasis on interpretability and the
positive feedback from the radiologist validation
(85% increased confidence) highlight that a “glass-
box” approach is essential for clinical adoption. The
validation protocol itself, with its rigorous design
and statistical analysis (Fleiss’" Kappa, Wilcoxon
test), serves as a methodological contribution for
evaluating preprocessing techniques. Our ensemble
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approach and detailed error analysis offer novel
perspectives on handling multi-class problems and
understanding model limitations beyond aggregate
metrics.

5.3. Contextualizing performance and limitations

Our model’s overall accuracy (84.7%) is lower
than some studies reporting 94-99%. This is largely
explained by our challenging multi-class task, use of
a dataset with natural class imbalance, and rigorous
k-fold cross-validation, as opposed to simpler binary
tasks or single train-test splits on balanced data.
The documented computational constraints also
placed a ceiling on performance. While these factors
contextualize our results, the study’s primary
limitations remain its relatively small dataset size
(5,000 images) and single-institution origin, which
may affect generalizability.

6. Conclusion and future directions

6.1. Summary of contributions

This research presents an integrated, interpretable
deep learning framework for lung disease de-
tection that demonstrates significant performance
gains through a novel combination of anatomically-
informed preprocessing and ensemble modeling. We
provide a rigorous evaluation of our methodology,
including a detailed error analysis and a clinical vali-
dation study with board-certified radiologists, which
confirms the clinical value of our approach. By trans-
parently documenting our computational constraints,
we provide a realistic performance benchmark for
resource-limited settings.

6.2. Recommendations for future research

Building on the findings and limitations of this
study, we propose several key directions for fu-
ture research to advance the field. A top priority
should be conducting multi-center validation stud-
ies. Such studies are essential for assessing the true
generalizability of Al models by testing them across
diverse patient populations, imaging equipment, and
clinical protocols. Another critical avenue is the inte-
gration of clinical data; incorporating non-imaging
information such as patient history, symptoms, and
laboratory values holds significant potential to im-
prove diagnostic performance, particularly for cases
with ambiguous radiological findings.

Furthermore, future work should focus on ad-
vanced error reduction by implementing the specific
strategies identified in our analysis, including the
development of quality-aware processing and bone

suppression techniques. To better mimic clinical prac-
tice, developing methods for longitudinal analysis is
also crucial. The ability to incorporate and compare
with prior imaging studies would greatly enhance the
detection of subtle, diagnostically significant changes
over time. Finally, from a practical standpoint, re-
search into more resource-efficient architectures is
needed to design computationally efficient models
that can be readily deployed in resource-limited clin-
ical settings.

Ultimately, while these research avenues will refine
the technology, the definitive establishment of clini-
cal value will require prospective randomized trials
that compare Al-augmented interpretation against
the current standard of radiological practice. By pur-
suing these recommended research directions and
addressing the limitations identified, the field can
move closer to realizing the vision of Al-augmented
precision radiology.
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