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1. Introduction 

Uncertainty and ambiguity abound in our lives, leading to major and complex challenges in all areas of 

economic, environmental, and other life. In 1965, Zadeh discovered his theory, which changed many 

mathematical concepts. It is the fuzzy theory (FT), which is considered a generalization of classical set 

[1]. Since then, the world has begun to rely on this innovative method for data analysis and accuracy in 

decision-making. Since then, the fuzzy set (FS) has solved all the problems that classical logic cannot 

solve, and it has become of interest to scientists and researchers because it is more general than the 

classical logic What is acquired under the work of the fuzzy theory is more expressive power and more 

comprehensive, and in addition, it is more systematic and easy to provide solutions with lower costs 

for many problems.  [2-5]. While researchers are still preoccupied with the fuzzy theory (FT) and the 

events that it caused in terms of tremendous development, the scientist Molodtsov appeared with new 

development ideas in 1999, when he first presented his theory, which was known as the soft theory 

(ST) [6]. This development aims to deal with data in a more accurate way. It is an interesting topic, as 

the scientist Maji and others introduced a new concept, which is merging the two concepts, i.e. 

merging the fuzzy theory (FT) with the soft theory (ST), so that we have a new term that has 

revolutionized mathematics under the name fuzzy soft theory (FST) [7-8]. This is a remarkable 

achievement in itself, as it covers a wide area and scope, has a wonderful vision of the future, free 

from impurities, and pays great attention to every minute detail that produces the best results [9]. 

Research has continued on this topic, and many researchers have delved into these topics [10-14]. This 

development had to be included in the topics of functional analysis because of its extreme importance, 

as it is considered the cornerstone of all branches of pure mathematics, there is no doubt that the theory 

of operators [TO] is considered the most important pillar in this science, and it was necessary for it to 
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have its share in the subject of fuzzy mathematics, and this is what we will work on in this research, 

Where they started studying fuzzy soft  metric (FSMS), fuzzy soft norm space(FSNS), etc.[15-23]. the 

soft fuzzy point was created to develop research in this field [24-25]. In 2020, Freud and a group of 

other researchers presented a theory that is considered one of the most important current theories, cited 

in many solid studies. This theory is the theory of fuzzy soft operators (FSO), through studying fuzzy 

soft linear operators (FSLO), with a discussion of a group of important advantages and characteristics. 

In addition, many applications were proposed by a significant number of researchers [26-30]. 

 

 2. Preliminaries  

This section outlines the crucial principles relevant to the study of 𝜂 − quasi fuzzy soft paranormal 

operator (briefly "𝜂 − 𝑄𝐹𝑆𝑃𝑂") within fuzzy soft Hilbert space (FS-HS). 

Definition 2.1[28]: Assume that 𝑈  is the universal set, The fuzzy set  𝐴̃ in 𝑈 is a set of ordered pairs 

𝐴̃  = {(𝑥, 𝜇𝐴̃(𝑥): 𝑥 ∈  𝑈 }, where 𝜇𝐴̃: 𝑈 → [0,1] is said the membership function. 

Definition 2.2 [8]: Assume that 𝑈  is the universal set, with 𝐷 as a set of parameters,𝑃(𝑈) the power 

set of 𝑈,and 𝐴̃ ⊆ 𝐷,let 𝐻 be a function from 𝐴̃ to 𝑃(𝑈) , 𝐻𝐴̃ = {𝐻(𝑒) ∈ 𝑃(𝑈): 𝑒 ∈ 𝐴̃}. 𝐻𝐴̃  or the pair 

is (𝐻, 𝐴̃)  said to be soft set on 𝑈 with regards 𝐴̃ 

Definition 2.3 [28]: Let 𝐻: 𝐴̃ → 𝐼𝑈 is mapping and fuzzy soft collection is {𝑒 ∈ 𝐴, 𝐻𝐴̃(𝑒) ∈ 𝐼𝑈} then 

𝐻𝐴̃ is said to be fuzzy soft set on  𝑈 and symbolized by FS. 

Definition 2.4 [10]: The fuzzy soft point (FS-Point) on 𝑈, It is a special case of FSS, If  𝑥 ∈ 𝑈 and e∈ 

𝐴, such that: 

𝜇𝐻(𝑒)(𝑒) = {
⍺  if   𝑥 = 𝑥𝑜 𝑎𝑛𝑑 𝑒 = 𝑒0 ∈  𝐴̃

0  𝑖𝑓 𝑢 ∈  𝑈 − {𝑥0} 𝑜𝑟 𝑒 ∈  𝐴 − {𝑒0} 𝑤ℎ𝑒𝑟𝑒 ⍺ ∈ (0,1]
 

 

Definition 2.5 [27]: let 𝑈̃ fuzzy soft vector, and a function ‖ .  ‖̃: 𝑈̃ → 𝑅̃+(𝐴̃) is said FS-Norm on  𝑈̃, if 

‖ .  ‖̃ satisfies the following: 

(a) ‖ 𝑥̃𝜇𝐻(𝑒)
‖̃ ≥ 0̃ ∀𝑥̃𝜇𝐻(𝑒)

∈ 𝑈̃  , and ‖ 𝑥 ̃𝜇𝐻(𝑒)
‖̃ = 0̃  ↔  𝑥 ̃𝜇𝐻(𝑒)

= 0 ̃   

(b) ‖ 𝑟̃ ∙ 𝑥̃𝜇𝐻(𝑒)
‖̃ = |𝑟̃|‖𝑥 ̃𝜇𝐻(𝑒)

‖̃  , ∀ 𝑥̃𝜇𝐻(𝑒)
∈ 𝑈̃, ∀ 𝑟̃ ∈ 𝑅̃+(𝐴̃) . 

(c) ‖ 𝑥̃𝜇1𝐻(𝑒1)
+ 𝑦 ̃𝜇2𝐻(𝑒2)

‖̃ ≤ ‖ 𝑥 ̃𝜇1𝐻(𝑒1)
‖̃ + ‖𝑦 ̃𝜇2𝐻(𝑒2)

‖̃ , ∀  𝑥̃𝜇1𝐻(𝑒1) 
, 𝑦̃𝜇2𝐻(𝑒2)

∈ 𝑈̃.  

 𝑈̃ with FS-Norm ‖ .  ‖̃ is called FS-Normed space (FSN-Space). 

Definition 2.6 [27]: The mapping 〈. , . 〉̃ ∶ 𝑈̃  × 𝑈̃  → (𝐶̃(𝐴)𝑜𝑟 𝑅̃(𝐴)) is said to be FS-inner product 

over FS-vector space 𝑈̃, Provided that the following conditions are satisfied: 

(a) 〈𝑥̃𝜇1𝐻(𝑒1)
, 𝑥̃𝜇1𝐻(𝑒1)

〉̃ ≥ 0̃ and 〈𝑥̃𝜇1𝐻(𝑒1)
, 𝑥̃𝜇1𝐻(𝑒1)

〉̃ = 0̃  ⟺  𝑥̃𝜇1𝐻(𝑒1)
= 0̃  

(b)  〈𝑥̃𝜇1𝐻(𝑒1)
, 𝑦̃𝜇2𝒢(𝑒2)

〉̃ = 〈𝑦̃𝜇2𝐻(𝑒2)
, 𝑥̃𝜇1𝐻(𝑒1)

〉̃̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
     

(c)  〈𝛼̃𝑥̃𝜇1𝐻(𝑒1)
, 𝑦̃𝜇2𝐻(𝑒2)

〉̃ = 𝛼̃ 〈𝑥̃𝜇1𝐻(𝑒1)
, 𝑦̃𝜇2𝐻(𝑒2)

〉̃  , for all 𝛼̃ ∈ 𝐶̃(𝐴). 

(d)  〈𝑥̃𝜇1𝐻(𝑒1)
+ 𝑦̃𝜇2𝐻(𝑒2)

, 𝑧̃𝜇3𝐻(𝑒3)
〉̃ = 〈𝑥̃𝜇1𝐻(𝑒1)

, 𝑧̃𝜇3𝐻(𝑒3)
〉̃ + 〈𝑦̃𝜇2𝐻(𝑒2)

, 𝑧̃𝜇3𝐻(𝑒3)
〉̃  
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  ∀𝑥̃𝜇1𝐻(𝑒1)
, 𝑦̃𝜇2𝐻(𝑒2)

, 𝑧̃𝜇3𝐻(𝑒3)
∈ 𝑈̃ 

  𝑈̃ with FS-inner product 〈. , . 〉̃ said to FS-inner product space (FSI), and denoted by (𝑈̃, 〈. , . 〉̃). 

Definition 2.7: [27]: Let 𝐻̃  be FS-inner product space and it is called fuzzy soft Hilbert space if   𝐻̃ is 

complete space and symbolize by FSH-space. 

Definition 2.8: [30]: Assume that 𝐻̃  be FSHS and Ŧ̃: 𝐻̃ → 𝐻̃is FS-operator thus Ŧ̃ is said to be fuzzy 

soft linear operator (FSL-operator) if:  

a) Ŧ̃(𝑥̃𝜇1𝐻(𝑒1)  + 𝑦̃𝜇2𝐻(𝑒2)
̃ ) = Ŧ̃(𝑥̃𝜇1𝐻(𝑒1) ̃ ) + Ŧ̃(𝑦̃𝜇2𝐻(𝑒2)

̃ ) , For all 𝑥̃𝜇1𝐻(𝑒1), 𝑦̃𝜇2𝐻(𝑒2) ∈  𝐻̃ 

b) Ŧ̃(𝜆𝑥̃𝜇1𝐻(𝑒1) ̃ ) = 𝜆Ŧ̃(𝑥̃𝜇1𝐻(𝑒1) ̃ ), For all 𝑥̃𝜇1𝐻(𝑒1) ∈  𝐻̃ and 𝜆 ∈ 𝑅̃+(𝐴̃). 

Definition 2.9: [30]: Assume that 𝐻̃ is FSH-space and  Ŧ̃ belongs to  Ɓ̃(𝐻̃), then FS-adjoint operator 

Ŧ̃∗is defined as:〈Ŧ̃𝑥̃𝜇1𝐻(𝑒1) , 𝑦̃𝜇2𝐻(𝑒2)
̃ 〉 =̃  〈𝑥̃𝜇1𝐻(𝑒1) , Ŧ̃

∗
𝑦̃𝜇2𝐻(𝑒2)

̃
〉 ∀ 𝑥̃𝜇1𝐻(𝑒1), 𝑦̃𝜇2𝐻(𝑒2)  ∈̃ 𝐻,̃ where Ɓ̃(𝐻̃) 

The collection of all fuzzy soft bounded linear operator in Hilbert space. 

Definition 2.10: [21]: Assume that 𝐻̃ be FSH-space and  Ŧ̃ belongs to  Ɓ̃(𝐻̃), then Ŧ ̃is called   fuzzy 

soft normal operator (FS-Normal) if Ŧ̃Ŧ̃∗ =̃ Ŧ̃∗Ŧ̃  

Definition 2.11: [22]: Let Ŧ̃ FS-operator of 𝐻̃. Then Ŧ̃ is called  FS-self adjoint operator if Ŧ̃ =̃ Ŧ̃∗. 

Definition 2.12:[28]: Assume that 𝐻̃ is FSH-space and  Ŧ̃ belongs to  Ɓ̃(𝐻̃), then  Ŧ̃  is said to be FS- 

isometry operator if achieve 〈Ŧ̃ 𝑥̃𝜇1𝐻(𝑒1) , Ŧ̃ 𝑦̃𝜇2𝐻(𝑒2)
̃ 〉 =̃  〈𝑥̃𝜇1𝐻(𝑒1) , 𝑦̃𝜇2𝐻(𝑒2)

̃ 〉 ∀ 𝑥̃𝜇1𝐻(𝑒1), 𝑦̃𝜇2𝐻(𝑒2)  ∈̃ 𝐻̃, 

Definition 2.13  [27]: AFS-operator Fuzzy 𝐼  it is called soft identity operator 𝐼  ∶  𝐻̃ → 𝐻̃if 

𝐼(𝑥̃𝜇1𝐻(𝑒1)) = 𝑥̃𝜇1𝐻(𝑒1), ∀𝑥̃𝜇1𝐻(𝑒1) ∈̃ 𝐻̃ 

Definition 2.14  [30]: Assume that 𝐻̃ is FSH-space and  Ŧ̃ belongs to  Ɓ̃(𝐻̃), then  Ŧ̃  is said FS-unitary 

operator if achieve Ŧ̃Ŧ̃∗ = 𝐼 = Ŧ̃∗Ŧ̃. 

 Definition 2.15 [30]: Assume that  𝐻̃ is  FSH-space with  Ŧ̃ belongs to  Ɓ̃(𝐻̃),  then Ŧ̃ be FS-

paranormal operator if achieved : ‖Ŧ2𝑥̃𝜇𝐻(𝑒)
̃

‖‖𝑥̃𝜇𝐻(𝑒)
̃ ‖ ≥̃ ‖Ŧ̃𝑥̃𝜇𝐻(𝑒)

̃ ‖2∀ 𝑥̃𝜇𝐻(𝑒)  ∈̃  𝐻̃ So: 

‖Ŧ̃
2
𝑥̃𝜇𝐻(𝑒)
̃

‖ ≥̃ ‖Ŧ̃𝑥̃𝜇𝐻(𝑒)
̃ ‖2  for all 𝑥̃𝜇𝐻(𝑒)  belongs in 𝐻̃. 

We know that  𝐻̃  is FS-Hilbert space with Ŧ̃  belongs to  Ɓ̃(𝐻̃) , hence  Ŧ̃ is called FS-Paranormal 

operator and symbolized by (FSPO). 

3. Results and discussion 

In this section, we present an important definition within the theory operators and discuss the 

theoretical aspects and properties related to this term within the framework of the fuzzy soft theory in 

Hilbert space. 

Definition 3.1: Let 𝐻̃ is FSH-space with  Ŧ̃ belongs in Ɓ̃(𝐻̃), An operator Ŧ̃ is said 𝜂 −quasi fuzzy soft 

paranormal operator, for anon negative integer 𝜂,(briefly "𝜂 − QFSPO")if it achieves 

‖Ŧ̃𝜂+1𝑥̃𝜇𝐻(𝑒)
̃ ‖

2

≤̃ ‖Ŧ̃𝜂+2𝑥̃𝜇𝐻(𝑒)
̃ ‖‖Ŧ̃𝜂𝑥̃𝜇𝐻(𝑒)̃ ‖ for all   𝑥̃𝜇𝐻(𝑒) ∈̃ 𝐻̃. 

Remark 3.2: From the above definition, the following fact: for = 1 , 1-fuzzy soft quasi paranormal 

operator, obviously gives the class of quasi fuzzy soft paranormal operator for any   𝑥̃𝜇𝐻(𝑒) ∈̃ 𝐻̃. 

Theorem 3.3: The  𝜂 − quasi fuzzy soft paranormal operator is closed under scalar multiplication. 

Proof: Assume that Ŧ̃ belongs in Ɓ̃(𝐻̃) is  𝜂 -QFSPO and let 𝜉 be any complex scalar. 
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 For all 𝑥̃𝜇𝐻(𝑒) ∈̃ 𝐻̃ we have  

‖(𝜉Ŧ̃)𝜂+1𝑥̃𝜇𝐻(𝑒)
̃ ‖

2

=̃ |𝜉|2𝜂+2 ‖Ŧ̃𝜂+1𝑥̃𝜇𝐻(𝑒)
̃ ‖

2

≤̃ |𝜉|2𝜂+2(‖Ŧ̃𝜂+2𝑥̃𝜇𝐻(𝑒)
̃ ‖‖Ŧ̃𝜂𝑥̃𝜇𝐻(𝑒)̃ ‖) 

                   =̃ ‖(𝜉Ŧ̃)𝜂+2𝑥̃𝜇𝐻(𝑒)
̃ ‖‖(𝜉Ŧ̃)𝜂𝑥̃𝜇𝐻(𝑒)̃ ‖, then, 𝜉Ŧ̃ is also   𝜂 -QFSPO. 

Theorem 3.4: If Ŧ̃ belongs in Ɓ̃(𝐻̃), is invertible  𝜂 -QFSPO, then Ŧ̃ −1 is also  𝜂 -QFSPO. 

Proof: Since Ŧ̃ is a  𝜂 -QFSPO, then ‖Ŧ̃𝜂+1𝑥̃𝜇𝐻(𝑒)
̃ ‖

2

≤̃ ‖Ŧ̃𝜂+2𝑥̃𝜇𝐻(𝑒)
̃ ‖‖Ŧ̃𝜂𝑥̃𝜇𝐻(𝑒)̃ ‖ for all   𝑥̃𝜇𝐻(𝑒) ∈̃ 𝐻̃. 

Then: 
‖Ŧ̃𝜂+1𝑥̃𝜇𝐻(𝑒)

̃ ‖
2

‖Ŧ̃𝜂+1𝑥̃𝜇𝐻(𝑒)
̃ ‖

≤̃
‖Ŧ̃𝜂+2𝑥̃𝜇𝐻(𝑒)

̃ ‖‖Ŧ̃𝜂𝑥̃𝜇𝐻(𝑒)̃ ‖

‖Ŧ̃𝜂+1𝑥̃𝜇𝐻(𝑒)
̃ ‖

 

‖Ŧ̃𝜂+1𝑥̃𝜇𝐻(𝑒)
̃ ‖ ≤̃

‖Ŧ̃𝜂+2𝑥̃𝜇𝐻(𝑒)
̃ ‖‖Ŧ̃𝜂𝑥̃𝜇𝐻(𝑒)̃ ‖

‖Ŧ̃𝜂+1𝑥̃𝜇𝐻(𝑒)
̃ ‖

 

‖Ŧ̃𝜂+1𝑥̃𝜇𝐻(𝑒)
̃ ‖

‖Ŧ̃𝜂+2𝑥̃𝜇𝐻(𝑒)
̃ ‖

≤̃
‖Ŧ̃𝜂+2𝑥̃𝜇𝐻(𝑒)

̃ ‖‖Ŧ̃𝜂𝑥̃𝜇𝐻(𝑒)̃ ‖

‖Ŧ̃𝜂+2𝑥̃𝜇𝐻(𝑒)
̃ ‖‖Ŧ̃𝜂+1𝑥̃𝜇𝐻(𝑒)

̃ ‖
 

‖Ŧ̃𝜂+1𝑥̃𝜇𝐻(𝑒)
̃ ‖ 

‖Ŧ̃𝜂+2𝑥̃𝜇𝐻(𝑒)
̃ ‖ 

≤̃
‖Ŧ̃𝜂𝑥̃𝜇𝐻(𝑒)

̃ ‖

‖Ŧ̃𝜂+1𝑥̃𝜇𝐻(𝑒)
̃ ‖ 

, Now replacing 𝑥̃𝜇𝐻(𝑒) by Ŧ̃−𝜂−2 𝑥̃𝜇𝐻(𝑒), we have  

 

‖Ŧ̃𝜂+1Ŧ̃−2𝜂−2 𝑥̃𝜇𝐻(𝑒)
̃ ‖ 

‖Ŧ̃𝜂+2Ŧ̃−2𝜂−2 𝑥̃𝜇𝐻(𝑒)
̃ ‖ 

≤̃
‖Ŧ̃𝜂Ŧ̃−2𝜂−2 𝑥̃𝜇𝐻(𝑒)

̃ ‖

‖Ŧ̃𝜂+1Ŧ̃−2𝜂−2 𝑥̃𝜇𝐻(𝑒)
̃ ‖ 

 

‖Ŧ̃−η−1 𝑥̃𝜇𝐻(𝑒)
̃ ‖

‖Ŧ̃−η 𝑥̃𝜇𝐻(𝑒)
̃ ‖

≤̃
‖Ŧ̃−𝜂−2 𝑥̃𝜇𝐻(𝑒)

̃ ‖

‖Ŧ̃−η−1 𝑥̃𝜇𝐻(𝑒)
̃ ‖

 

‖Ŧ̃−η−1 𝑥̃𝜇𝐻(𝑒)
̃ ‖ 

‖Ŧ̃−η 𝑥̃𝜇𝐻(𝑒)
̃ ‖ 

. ‖Ŧ̃−η−1 𝑥̃𝜇𝐻(𝑒)
̃ ‖ ≤̃

‖Ŧ̃−𝜂−2 𝑥̃𝜇𝐻(𝑒)
̃ ‖

‖Ŧ̃−η−1 𝑥̃𝜇𝐻(𝑒)
̃ ‖ 

. ‖Ŧ̃−η−1 𝑥̃𝜇𝐻(𝑒)
̃ ‖ 

‖Ŧ̃−η−1 𝑥̃𝜇𝐻(𝑒)
̃ ‖2

‖Ŧ̃−η 𝑥̃𝜇𝐻(𝑒)
̃ ‖ 

‖Ŧ̃−η 𝑥̃𝜇𝐻(𝑒)
̃ ‖  ≤̃ ‖Ŧ̃−𝜂−2 𝑥̃𝜇𝐻(𝑒)

̃ ‖‖Ŧ̃−η 𝑥̃𝜇𝐻(𝑒)
̃ ‖    

‖Ŧ̃−η−1 𝑥̃𝜇𝐻(𝑒)
̃ ‖2 ≤̃ ‖Ŧ̃−𝜂−2 𝑥̃𝜇𝐻(𝑒)

̃ ‖‖Ŧ̃−η 𝑥̃𝜇𝐻(𝑒)
̃ ‖    for all   𝑥̃𝜇𝐻(𝑒) ∈̃ 𝐻̃ . This shows that Ŧ̃−1  𝜂 -

QFSPO. 

Theorem 3.5: Assume Ŧ̃ belongs to Ɓ̃(𝐻̃) is 𝜂 -QFSPO, If Ɉ̃ is unitary equivalent to operator Ŧ̃ , then Ɉ̃ 
is a 𝜂 -QFSPO. 

Proof: Let  Ŧ̃ belongs to Ɓ̃(𝐻̃) is 𝜂 -QFSPO,  

given that operator Ɉ̃ is unitary equivalent to operator Ŧ̃, there exists an unitary operator U so that 

Ɉ̃ = 𝑈∗Ŧ̃ 𝑈,and Ŧ̃ is 𝜂 -QFSPO then: 

Ŧ̃∗𝜂+1Ŧ̃𝜂+1 − 2𝜆Ŧ̃∗𝜂+2Ŧ̃𝜂+2 + 𝜆2Ŧ̃∗𝜂Ŧ̃𝜂 ≥̃ 0 for all non-negative  𝜆. 

Hence, Ɉ̃∗𝜂+2Ɉ̃𝜂+2 − 2𝜆Ɉ̃∗𝜂+1Ɉ̃𝜂+1 + 𝜆2Ɉ̃∗𝜂 Ɉ̃𝜂 ≥̃ 0, ∀𝜆 > 0 

= (𝑈∗Ŧ̃𝑈)
∗𝜂+2

(𝑈∗Ŧ̃𝑈)
𝜂+2

− 2𝜆(𝑈∗Ŧ̃𝑈)
∗𝜂+1

(𝑈∗Ŧ̃𝑈)
𝜂+1

+ 𝜆2(𝑈∗Ŧ̃𝑈)
∗𝜂

(𝑈∗Ŧ̃ 𝑈)𝜂 ≥̃ 0, 

= 𝑈∗(Ŧ̃∗𝜂+1Ŧ̃𝜂+1 − 2𝜆Ŧ̃∗𝜂+2Ŧ̃𝜂+2 + 𝜆2Ŧ̃∗𝜂Ŧ̃𝜂)𝑈 ≥̃ 0, ∀𝜆 > 0.  So Ɉ̃ is 𝜂 -QFSPO.  
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Theorem 3.6:  Assume Ŧ̃ belongs in Ɓ̃(𝐻̃) is 𝜂 -QFSPO, if Ŧ̃ an isometric operator with 𝒮, then Ŧ̃𝒮 

is 𝜂 -QFSPO.  

Proof: Assume that  𝒮 an isometric operator and let be  𝑀 = Ŧ̃𝒮. Given thatŦ̃ an isometric operator 

with 𝒮 so that Ŧ̃𝒮 = 𝒮Ŧ̃ , Ŧ̃𝒮∗ = 𝒮∗Ŧ̃ and 𝒮∗𝒮 = 𝐼 . 

Now, 𝑀∗𝜂+1𝑀𝜂+1 − 2𝜆𝑀∗𝜂+2𝑀𝜂+2 + 𝜆2𝑀∗𝜂𝑀𝜂 ≥̃ 0, 

= (Ŧ̃𝒮)∗𝜂+1(Ŧ̃𝒮)𝜂+1 − 2𝜆(Ŧ̃𝒮)∗𝜂+2(Ŧ̃𝒮)𝜂+2 + 𝜆2(Ŧ̃𝒮)∗𝜂(Ŧ̃𝒮)𝜂 ≥̃ 0, 

= Ŧ̃∗3+𝑡Ŧ̃3+𝑡 − 2𝜆Ŧ̃∗2+𝑡Ŧ̃2+𝑡 + 𝜆2Ŧ̃∗1+𝑡Ŧ̃1+𝑡 ≥̃ 0, So Ŧ̃𝒮 is 𝜂 -QFSPO.  

Theorem 3.7:  Assume Ŧ̃ belongs in Ɓ̃(𝐻̃) be 𝜂 -QFSPO. If 𝒜 is a closed Ŧ̃ invariant subset of 𝐻̃, 

then, the restriction  Ŧ̃/𝒜 is a 𝜂 -QFSPO.  

Proof: Let  Ŧ̃ belongs in Ɓ̃(𝐻̃) is 𝜂 -QFSPO, ‖(Ŧ̃/𝒜)η+1 𝑥̃𝜇𝐻(𝑒)
̃ ‖2 =̃ ‖Ŧ̃𝜂+1𝑥̃𝜇𝐻(𝑒)

̃ ‖ 

≤̃ ‖Ŧ̃𝜂+2𝑥̃𝜇𝐻(𝑒)
̃ ‖ ‖Ŧ̃𝜂𝑥̃𝜇𝐻(𝑒)

̃ ‖ 

                                                             =̃ ‖(Ŧ̃/𝒜)𝜂+2𝑥̃𝜇𝐻(𝑒)
̃ ‖ ‖(Ŧ̃/𝒜)𝜂𝑥̃𝜇𝐻(𝑒)

̃ ‖, 

This implies that (Ŧ̃/𝒜) is 𝜂 -QFSPO. 

Theorem 3.8: Assume  Ŧ̃1 , Ŧ̃2 belongs in Ɓ̃(𝐻̃) are 𝜂 −  QFSPO, and Ŧ̃1 Ŧ̃2 = Ŧ̃2 Ŧ̃1 then the product  

Ŧ̃1 . Ŧ̃2  is 𝜂 -QFSPO. 

Proof: Since Ŧ̃1 , Ŧ̃2 commute, we have  

(Ŧ̃1 . Ŧ̃2 )
𝜂+2 = Ŧ̃1 

𝜂+2
. Ŧ̃2 

𝜂+2
  ,  (Ŧ̃1 . Ŧ̃2 )

η+1 = Ŧ̃1 
η+1

. Ŧ̃2 
η+1

  and  (Ŧ̃1 .Ŧ̃2 )
𝜂 = Ŧ̃1 

𝜂
. Ŧ̃2 

𝜂
   

By the property of the norm 

‖(Ŧ̃1  Ŧ̃2 )η+1𝑥̃𝜇𝐻(𝑒)
̃ ‖ =̃ ‖Ŧ̃1 

η+1
 Ŧ̃2 

η+1
𝑥̃𝜇𝐻(𝑒)

̃
‖ ≤̃ ‖ Ŧ̃1 

η+1̃
‖ ‖ Ŧ̃2 

η+1
𝑥̃𝜇𝐻(𝑒)

̃
‖  

Squaring both sides ‖(Ŧ̃1 . Ŧ̃2 )η+1𝑥̃𝜇𝐻(𝑒)
̃ ‖

2

≤̃ ‖ Ŧ̃1 
η+1̃

‖
2

‖ Ŧ̃2 
η+1

𝑥̃𝜇𝐻(𝑒)
̃

‖
2

 

By hypothesis, each operator(Ŧ̃1 , Ŧ̃1 ) satisfies  𝜂 -QFSPO. 

 ‖(Ŧ̃1 )η+1𝑥̃𝜇𝐻(𝑒)
̃ ‖

2

≤̃ ‖(Ŧ̃1 )η+2𝑥̃𝜇𝐻(𝑒)
̃ ‖‖(Ŧ̃1 )

η𝑥̃𝜇𝐻(𝑒)̃ ‖ for all   𝑥̃𝜇𝐻(𝑒) ∈̃ 𝐻̃. 

‖(Ŧ̃2 )η+1𝑥̃𝜇𝐻(𝑒)
̃ ‖

2

≤̃ ‖(Ŧ̃2 )η+2𝑥̃𝜇𝐻(𝑒)
̃ ‖‖(Ŧ̃2 )

η𝑥̃𝜇𝐻(𝑒)̃ ‖ for all   𝑥̃𝜇𝐻(𝑒) ∈̃ 𝐻̃. 

Multiplying these two inequalities yields: 

‖(Ŧ̃1 )η+1𝑥̃𝜇𝐻(𝑒)
̃ ‖

2

‖(Ŧ̃2 )η+1𝑥̃𝜇𝐻(𝑒)
̃ ‖

2

≤̃ ‖(Ŧ̃1 )η+2̃ ‖ ‖(Ŧ̃2 )η+2𝑥̃𝜇𝐻(𝑒)
̃ ‖ ‖(Ŧ̃1 )

η
‖‖(Ŧ̃2 )

η𝑥̃𝜇𝐻(𝑒)̃ ‖ 

Under the additional assumption that the norm is multiplicative for these powers i.e. 

‖(Ŧ̃1 Ŧ̃2 )η+2𝑥̃𝜇𝐻(𝑒)
̃ ‖ ‖((Ŧ̃1 Ŧ̃2 )

η𝑥̃𝜇𝐻(𝑒)̃ ‖ =̃ ‖(Ŧ̃1 )η+2̃ ‖ ‖(Ŧ̃2 )η+2𝑥̃𝜇𝐻(𝑒)
̃ ‖ ‖(Ŧ̃1 )

η
‖‖(Ŧ̃2 )

η𝑥̃𝜇𝐻(𝑒)̃ ‖, 

By combining the above inequalities, we get: 

‖(Ŧ̃1 . Ŧ̃2 )η+1𝑥̃𝜇𝐻(𝑒)
̃ ‖

2

≤̃ ‖(Ŧ̃1 )η+1̃ ‖
2

‖(Ŧ̃2 )η+1𝑥̃𝜇𝐻(𝑒)
̃ ‖

2

 

                                     ≤̃ ‖(Ŧ̃1 )η+2̃ ‖ ‖(Ŧ̃2 )η+2𝑥̃𝜇𝐻(𝑒)
̃ ‖ ‖(Ŧ̃1 )

η
‖‖(Ŧ̃2 )

η𝑥̃𝜇𝐻(𝑒)̃ ‖ 
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                                    =̃ ‖(Ŧ̃1 . Ŧ̃2 )η+2𝑥̃𝜇𝐻(𝑒)‖̃ ‖(Ŧ̃1 . Ŧ̃2 )
η

𝑥̃𝜇𝐻(𝑒)‖, 

Thus, ‖(Ŧ̃1 . Ŧ̃2 )η+1𝑥̃𝜇𝐻(𝑒)
̃ ‖

2

≤̃ ‖(Ŧ̃1 . Ŧ̃2 )η+2𝑥̃𝜇𝐻(𝑒)‖̃ ‖(Ŧ̃1 . Ŧ̃2 )
η

𝑥̃𝜇𝐻(𝑒)‖, then Ŧ̃1 . Ŧ̃2  is  𝜂 −QFSPO. 

4. Conclusions 

In this paper, we introduce (η -QFSPO) in a fuzzy soft Hilbert space (FS-HS). We also provide useful 

observations and properties that may pave the way for future work related to this class of operators. 

This class can also solve some types of differential equations When certain conditions mentioned in 

this research are met 
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