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Abstract

This paper studies the mixed triple optimal control vector problem (MTOCVP)
controlled by nonlinear system of triple elliptic PDEs (or for short TNES) under
appropriate hypotheses. The existence theorem of a unique triple state vector
solution (TSVS) for the weak formulation resulting from the TNES is demonstrated
by employing the Browder theorem, with fixed mixed triple control vector
(MTCV). The Lipshcitz operator between the MTCV and its conforming TSVS is
demonstrated continuous. The existence theorem of a mixed triple optimal control
vector (MTOCYV) controlling by the TNES is stated and demonstrated, under
suitable assumptions.

Keywords: Mixed Triple Optimal Control Vector, Triple Nonlinear Elliptic
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1. Introduction

The subject of control theory has many implementations in real life. Mainly in the fields
of science and engineering, like that in elective power [1], economy [2], medicine [3], robot
science [4], conditions for the weather [5], removal mission for space debris[6], chemistry[7],
biology [8], management [9], aircraft [10] and many other branches of the field of sciences.
Optimal control problems (OCPs) towards the field of mathematical science are usually
described by ordinary differential equations_ (ODEs) [11], [12] and partial differential
equations (PDEs) [13], [15] in general. Through the past few years, many researchers
concerned their focus on studding OCPs dominating by “single” PDEs of hyperbolic,
parabolic and elliptic kinds [16]-[ 18], and by couple PDEs of theses the three kinds[19]- [21],
whilst other investigators focused their studies about mixed OCPs controlling by couple
PDEs of the kinds of parabolic and elliptic resp. [22] &[24]. On the other hand, the
researchers [25]- [27] focused their attentions about studding OCPs dominating by triple
PDE:s of the three kinds of hyperbolic, parabolic and elliptic PDEs.

All of these previous studies motivated us to search for a new type of the OCPs, that is the
MOCVP controlling with TNES, because this type of problem has not been addressed yet,
and on the other hand, this type of study give a green light for the investigators about
studding the numerical solution of this type of problems. Of course, such types of new study
“on proposing mathematical model” requires generalization the governing PDEs (the TNES)
including of the boundary conditions, and the objective function (OF) needs to be
generalized.

The paper begins with giving a description about the new proposed problem, the MOCVP.
At first the weak formulation (WF) of the TNES is formulated. Then the existence and
uniqueness theorem of the TSVS of the WF of the TNES for a given MTCYV is developed and
demonstrated through utilizing the theorem of Browder [20] under appropriate hypotheses.
The continuity of the Lipshcitz operator (LIPO) between the MTCV and its conforming
TSVS has also demonstrated. Finally, and under appropriate hypotheses, the existence
theorem of a MTOCYV relating with TNES is developed and demonstrated.

2. Problem Depiction
Consider I' be a boundary of the bounded domain £2 ¢ R2. The MTOCVP is described by

the following TNES:
A1yr + a0y — b(x)y, — c(x)ys + fi(x, 37' ) = fo(x,uy) (D
Azy, + azo(x)y, + b(x)y; + d(x)ys + h1(x;)’) = h,(x) ()
Azys + a3o(ng’3 +c()y, — d()yz + ki (x, ¥, u3) = ko (x,u3) (3)
gjzlalijﬁzo , inT (4)
) .
%jzlazijfzuz . inT (5)
a ,

f‘j:lagij§=0 , inT (6)

0 ay, o0
where Ay, = — Ei:la_xj(a”f(x) 6_9};-)' a,;;(x), a,0(x), b(x), c(x),d(x) € C*(), for 1 =

1,2,3 , ﬁ = (ul, U,, U3) € LZ(Q) X LZ(F) X LZ(Q) is the MTCV, 5} = (yl,yz,yg) =
3. . - -
(yl(x)fyZ(x)fy3(x)) € (Hl(ﬂ)) 1S 1ts TSVS> (fl!hl' kl) = (flx’ hl(x' }’).k1(x, Y U3)) €

(L2 (Q))3 and (fy, hy, ky) = (fz (x,uq), hy(x), ky(x, u3)) € (L2 (Q))3 are a vector of given
functions for all x = (x4,x,) € .
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The set of the MTCV is W = {1 € L2(Q) x L*(T) x L2(Q)|[u € U c R3 a.e.in Q x T x Q},
where U = U; X U, X Uj has the convexity property.
The objective function is represented as:

Go(W) = ﬂﬂ[gm(x' Yo ug)]dxydx; + fr‘[gOZ (x, uz)]dy + ffg[gOS (x, Y, uz)]dx,dx, (7)
The MTOCVP is to minimize (7) subject to % € W.

LetV =V xV XV = H}(Q) x H1(Q) x H1(Q). Let (v, v)and (3, D)
171l

V.

(Hl(Q))3 ( ”v”Hl(Q) and

(Hl(ﬂ))s = i1 llvill y1(qy)are represent the inner product ( the norm ) in H'() and in

2.1. Weak formulation of the TSVS:
The WF of ((1)-(6)) is
a;(y1,v1) + (oY1, V1) — (bY2, v1)a — (cy3,v1)o + (L (V,u1), v1)q

= (fz(u),v1)g Vv EVy 3
az(¥2,v2) + (aoy2,v2)q + (by1, v2)q + (dys, v2)o + (R (¥), v2)q

= (hy,v2)a + (U, V)r YV, €V, ©)
a3 (¥3,v3) + (agy3, v3)a + (cy1,v3)q — (dy2, v3)q + (k1 (¥, u3), v3)q

= (kz(x,u3),v3)q Vv3 EV; (10)

where (v, 1) q((v, v)r) refer to the inner product in L?(Q)(L?(T))resp.

Adding ((8)-(10)) to get

a(y,v) + (i, u1), v1)a + (1 (3),v2)q + (k1 (F,u3), v3)o = (f2(U1),v1)q + (hy, v3)q +
(uz, v2)r + (k2 u3), v3)q (11)
where a(y,v) = a;(y1,v1) + (aoy1,v1)a — (by2, v1)q — (c¥3,v1)q + a2 (¥2, V) +
(agy2, v2)a + (bys, v2)a + (dys, v2)q + as(¥s, v3) + (agys, v3)q + (€y1,V3) —
(dy2,v3)q

. 2 dy, Oy,
itha,(y,v,) =)f_,a,;i—— ,1=1,2,3.
\\4 L(yt t) i,j=1"uj dx; 0x;

The following assumptions are useful in the study of the existence solution for the TSVS.

Assumptions (ASSU)1:
a) a(y,5) = cllyll? s>0, VyeV.

(@)

b) la(@, B)| < 44117l (1@ )

¢) f1(x,¥,uy), hy(x,9), ki (x, y,us3) are of type of Caratheadory (TC) on QxR? x U;, QxR?
and QxR? X Uz resp. and the following conditions for @, ®,, @5 € L>(Q) and &, ¢,
3, C3,C3 = 0 are held
11y, u)l < 01(x) + &1yl + &1 lwal, 1y (e, Y| < 0,(x) + &1
|y (x, ¥, uz)| < B3(x) + Gyl + &3 lusl
d) f;(x, y,uy), hy(x,9), k1 (x,¥,us) are monotonic (MC) for any x € 2 w.r.t.
(J,uq), ¥, and (y,us)resp., with  f;(x,0,u,) =0, V(x,u;) € QX U,
hi(x,0) =0, Vx € Q, ki(x,0,u3) =0, V(x,uz) € QX Us.
e) fo(x,uy), hi(x), ky(x,u3) are of CT on Q% Uy, Q and QX Us resp. and the following
conditions for @,, @s, @ € L?>(Q) and &7, ¢z = 0 are satisfied
120, u)l < By(x) + C1lual, V(x,uq) € QX Uy
|h,(X)| < Bs(x), Vx€Q
lkz(x, us)| < Be(x) + G5 lusl , V(x,u3) € QX Us

)3||17||( s VY EV,8,>0
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Main Results

3. Existence of a unique TSVS

The demonstration of existence of the unique TSVS for the WF (11) is demonstrated in the
next theorem.

Theorem 3.1: In addition to ASSU1, if f; is monotone strictly. Then for each given MTCV

i € W, then y € V is the unique TSVS of WF (11).
Proof: Let A: V —> V* | then the WF (11) can be expressed as
(AG), V)= (F@,V) (12)
where (A(3), ‘7) =a@,v) + (i, u1), v)a + (i (3), v2)a + (k1 (¥, u3), v3)q,
and (ﬁ(ﬁ), ‘7) = (f2(u1), v + (hy, v2)q + (Uz, v2)r + (k2 (u3), v3)q.
Then
i.  Ais coercive (from ASSUI (a, d)).
ii. The mapping ¥ —> (A(3),V) is continuous w.r.t. ¥ (from ASSU1(b, c) with applying
Proposition (3.1).
iii. A is monotone strictly w.r.t. ¥ (from ASSU1(a, d) with utilizing portion (i) above.

At the end by applying the Border’s theorem, once get that the TSVS y € V of (12) is
unique.

4. Existence of the MTOCV

In this section, the existence of a MTOCYV is studied under appropriate hypotheses. The
following lemmas and assumptions are necessary in this study.

Lemma 4.1: With ASSUI, if the functions f, f, (kq,k;) are LIP w.r.t.uq(uz), hy is LIP

w.r.t. §, hy is bounded. Thus the LIP operator i — 3 from W € L2(Q) x L2(T") x L2(Q)

s < L[au| , with L > 0.

satisfies the continuity property, i.e. ||E|| L2 (@XI2(DXL2()

(2@)
Proof: Let %, € W are two given MTOCYV, then from Theorem 3.1 y and y represent the

TSVS of (1 1), subtracting the WF (for ¥ ) from that for y, setting Ay y y, Au=1-— u,
with ¥ = Ay, then collecting the resulting WF to secure

a1(Ayy, Ay1) + (aoly1, Ay1)a + a2 (Ayz, Ay,) + (aglys, Ayz)a + as(Ays, Ays) +

(aolys, Ay3)a + (fi(§ + By, uy + buy) — /1 (F, ul):A%)Q + (hi (3 + By) —

hl(J_’))»AJ’z)Q + (ki (7 + Ay, uz + Auz) — kq (3, u3),Ay3)Q = (fo(uy + Auy) —

f2(u1), Ay1)q + (Duy, Ay)r + (ko (us + Aug) — ky(u3), Ays)a, (13)

Taking the absolute value of (13), it yields

—2 N — N
c|[ay]| s < |(AG + By w + dwy) = 1), ) | +

|(h1(37 + E) — h,(9), AYZ)Q| + |(f2(uy + Auy) — fo(uy), Ayy)al +

|(k1(37 + E: uz + Au3) -k, (y, u3),Ay3)Q| + |(Auy, Ay,)r| +

| (k2 (us + Auz) — kz(us), Ays)al (14)
After utilizing ASSUI1 (a, d), the LIP property, and the trace operator in (14), it becomes

(@)

2 — —
C”Ay” (Hl(Q))3 s 2C1||Au”L2(Q)><L2(r)><L2(Q)||Ay“(yl(g))3

= ”E” (Hlm)f = CZHEHLZ(Q)X#(F)XLRQ) » with ¢, = 2%
Therefore

3 < L||Ei|| with L = cc,.

”Ay” (LZ(Q))

LZ(Q)XLA(M)XL2(Q)
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ASSU2: Assume that gy, goz, Jozare of TC on 2 X R3 X U;, 2 X R3 X U, and 22 X R3 X
Us; resp. and the following are held

|gor (6, Y, u)| < Yo (%) + cory? + Coru?, where Yo, €X L1(T), and ¢ypr = 0, fort = 1,3,
1902, u2)| < Yo (x) + Copu3 , where Yo, €X LN(T), and &, = 0.

Lemma 4.2 : With ASSU2, the functional i — G,(%) which is defined on L?(Q) X
L?(I") X L2(£) is continuous.

Proof: By employing Proposition 3.1 in [22] and ASSU2, the functional fr oz (x,uy)dx

and [f, gor(x,¥,u;) dx (for T = 1,3) are continuous on(LZ(F))3 and (L? (Q))3 , which give
the continuity of

Go() = fo 9o1(x, ¥, uy) dx + fr 9oz (x, uz)dy + fo 9o3(x, ¥, u3) dx

on L?(Q) x L? (I x L*(Q).

Theorem 4.1: Assume that W # @, fi1, kiare independent functions of u; and u; resp.
f>, kpare linear w.r.t. u; and us resp., and they satisfy (with ¢, € L>(Q),¢; = 0,7 = 1,2,3):
/10, M < ¢1(x) + E11Y1, [ha (x, 9] < §2(x) + C21Y1, and [k (x, Y)] < p3(x) + G311

If Gy is coercive, and gy, (for T = 1,2,3) satisfy the convexity property w.r.t u;, then there
is a MTOCV.

Proof: From the condition W % @, then there is W€ W, and a minimum

sequence(seq. }{,} = {(Uyp, Uzn, Usn)} € W, s.t. lim Go(T,) = inf Go(W).
n-—o wew

But from the theorem of Egorov [23] W is closed, but W satisfy the convexity and bounded
property since U satisfy them, hence W is compact weakly , then there is a subsequence
(subseq) of {ii,}, let be again {1} which weakly converges to & € W ,i.e. U, — U weakly
in L?(Q) x L?>(T") X L?(Q). Then from Theorem 3.1, conforming to the seq. TMCV {u,}
there is a seq. of TSVS { ¥,,} with ||y,,]| (s 1(9))3 is bounded for all n) of the seq. of the WF :

a1 (Vin V1) + (@QoVin V1) — (BYon. V1)a = (€Van. V1)a + A2 (Von. V2) + (AgV2n. V2)a +
(bY1n. V2)a + (dYan, V2)a + A2 (Van. V2) + (@gVan. Va)q + (€V1n. V2)a — (dY2n. Va)a +
(V) v1)a + (hi (V) v2) o + (ki (V). v2) o = (F(0)U, V1) o + (ha(X), v2)q +

(Uzm, V2)r + (K2 (X)Usp, V3)a (15)
Hence, there is a subseq of {y,} (from Alaoglu’s theorem) let be one more time {y,,} s.t.
— 7 weakly in V.

To prove that (15) converges to:

a1 (y1,v1) + (Agy1. V1) — (bY2, V1) — (€V2. V1) a + A2 (V2. 12) + (AgY2, V2) o +
(by1.v2)a + (Y. v2)a + a3(¥3,v3) + (V2. v2)a + (€Y1, V2)q — (AV2.V3)q +
(fi(D).v1)a + (ha(¥).v2)a + (ki (V). v2)a = (f2(0)u1, 1) + (ha(x), V2)a + (Uz, v2)r +
(k2 (xX)uz,v3)0 (16)
Let v, € C(Q), for T = 1,2,3, since y;,, — v; weakly inV;, and hence in L2(Q)V: = 1,2,3.
Now subtracting (16) form (15), then taking the absolute value for the resulting equality, with
utilizing the inequality of Cauchy-Schwarz on the L.H.S. of the resulting equality, it yields
las(Yin — Y1, v1) + (@o(Vin — Y1, V1)a — (bY2n — Y1, V1) o — (€Y3n — ¥3, V1o +

a;(Van = Y2, V2) + (@gY2n — Y2, V2)a + (D(V1n — Y1), v2)a + (A(Y3n — ¥3), v2)a +

az(V3n — Y3, v3) + (@0 (V3n — ¥3), v3)a + (€(V1n — Y1), V3)a — (A (Van — ¥2), v3)al

< allymm — yl“Hl(Q)HvlllHl(Q) + callyin — )’1||L2(Q)||U1||L2(Q) —cs3llyzn —
yl“LZ(Q)”vllle(Q) — Cullysn — }’3||L2(Q)||V1||L2(Q) + csllyzn — }’2||H1(Q)||Vz||1-11(n) +

Collyan — YZ||L2(Q)||V2||L2(Q) + crllyin — }’1||L2(Q)||Vz||L2(Q) + cgllysn — y3||L2(Q)||Vz||L2(Q) +
Collyzn — y3”H1(Q)”v3“H1(Q) + ciollysn — J’3||L2(Q)||V3||L2(Q) — cpllyin —
yl“LZ(Q)”v3“L2(Q) + c12llyzn — J’2||L2(Q)||V3||L2(Q) (17)
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From ASSU?2 and Proposition 3.1 in [22], the continuity of the functionals [f of1 (x, yp)vydx,
[ b G, ¥ )vadx, [f ki (x, ¥n)vsdx are produced w.rt. ¥, Buty, —y weakly in
(L2 (Q))3, then by applying the compactness theorem [22] to secure y,, — Yy strongly in
(L2 (Q))3 , hence

(1), v)a + (hi(Fn), v2)a + (ki (Y, v3)o — (fi(P),vi)a + (R (9), v2)q +

(k1 (3),v3)a (18)
beside this, since u,, — u, weakly in L?(Q)V7 = 1,3 and u,,, — u, weakly in L?(T") then

(f2(0) (Uyn — wq), V1) + (Uzn — Uz, V2)r + (Ko (%) (Ugn — u3), v3)q —— 0 (19) B
The convergent of (15) to (16) it secures from (18) and (19). This convergent holds V¥ € V
(from the density of (c(Q))3 in V') which implies the limit point § = 5 is TSVS of (16).
By Lemma 4.2 and ASSU2 on go(x,y,u;) give that the integral [f gor(x,¥,u,) dx (for
T = 1,3) is weakly lower semicontinuous w.r.t. u, i.e.
[ 9o (%, ¥, us) dx < lim [f,, gor (%, ¥, ur) dx

= 7li_)_nolofo[QO'r(x» 5}1 uln) - gOT(x' }_’)n' uln)]dx +

Tlli_)_ngo ffg 9o (%, Y, Ugn)]dx

= Al_)—rgﬂ-gl 9oz (X, Yo, wrn)]dx , for = 1,3
and,
fp 9oz (x, uz)dy < Tlll_)_ngo fp 9oz (x, uz)dy
Hence,
Z§=1,‘r¢2 fo gO‘L’(x' 5’); u‘r) dx + fp goz(x» uz)dy < YILL)_%Z'%:LT:#Z ffg gOT(x' y)n' u‘rn) dx
ie. Go(u) < lim Go(uy,) = lim Go(i,) = inf Go(W).

n—>00 n-oo wew

Hence u is a MTOCV.

Example: Let O = (0,1) X (0,1), and consider the TNES ((1)-(3)), with

filx, ¥, u) = @1(x) + Cos(yy) + Sin(y;) — Cos(y,) — Sin(y,) + (2 + uy — i)y, ,
hi(x,y) = @2(x) + Cos(y) + Sin(y3) + y1 — Cos(¥,) — ¥, — Sin(y3)

ki(x,y,u3) = @3(x) + 0.5|y3]ys + 0.5]y1ly; + y2 + (3 +uz — 13)y;

f2(oug) =2y +up — 1y, hp(x) = @3(x,t), ka(x,u3) = 0.5[y,|y; + ¥, + 0.5|ysys +
3y3 + uz — us.

where ¢;(x) are given functions, V i = 1,2,3,4.

The OF is

Go(@) = [[ [(y1 — 71)? + (ug — y)?]dxydx, + [ [(up — T)%1dy + [[,[(y3 — ¥3)% +

(us — a3)z]dx1dxz

with U; = [-1,1],U, = {-1,1} U3 = [-1,1].

First, since the functions f;, hy, kq, f2, hy, and k, satisfy ASSU 1, then for % € W be any
given MTCV, then from Thereon 3.1, the WF (11) , has a unique TSVS y € V.

Second, since, gop(X,t,up) = (Up — Up)%, Goi(X, t,yuu) = (v; — ¥)* + (u; — %;)?, for
each i = 1,3 satisfy ASSU 2, if the functions f;(x,t,¥), k;(x,¥) which the defined above
are independent on uq, us resp., Gy is coercive, and satisfy the convexity property w.r.t i,

then by theorem 4.1, there is a MTOCV u € W for the MTOCVP.

Conclusions

During our study for the proposed problem “MTOCVP” controlling by the triple
nonlinear PDES of elliptic types, it was concluding that; the existence theorem for a triple
vector “state” solutions for the weak formulation of the for the TNES with given mixed triple
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control vector was stated and proved successfully through utilizing the Browder’s theorem.
The continuity of Lipchitz operator between the MTCV and its conforming TSVS was
demonstrated. The theory of the existence of MTOCV associated with the TNES was
developed and demonstrated, under appropriable hypotheses.
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