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Abstract: 

     In this paper, the homotopy perturbation method will be used in connection with 

Laplace transformation method to give a hybrid approach as a modification of the 

homotopy perturbation method to find the approximate solutions of random 

ordinary differential equations. The approximate solution is proved also to converge 

to the exact solution, in which the analysis of the proof is based on mean square 

convergence of the sequence of a random process. The proposed hybrid approach is 

effectively used to find the exact solution for the considered examples, which are 

simulated and solved using two generations of Brownian motion with a total length 

of signal processing, namely 500 and 1000 generations.  
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1. Introduction 

     The random ordinary differential equation (RODE) is defined as differential equations 

including random elements in their vector field. There are many researchers whose wrote a 

lot of articles interested in random differential equations that have emerged in recent years, 

such as [1] and [2]. To solve the RODE which sometimes does not close to the exact solution 

or is difficult to evaluate, then it is important and essential to derive and use analytical 

approximate or numerical methods to find the solution for such equations with its results 

close to the exact solution as possible [3]. 

 

     In the previous mathematical fields of science and engineering, RODE’s were studied with 

the vector field including random variables instead of depending on stochastic processes parts 

[4], [5]. Such RODE’s are still of major relevance in the field of uncertainty qualification 

community, which are a specific instance of stochastic models explored by Xiaoying Han and 

Peter E. Kloden, and will therefore not be discussed separately [6], [7] and [8]. In many real-

life applications such as engineering, natural sciences, biology (the population growth 

problem), physics and in chemistry (the problems that include the rate of change that count 

on the interaction of the basic particles), etc., which may contained the stochastic and/or 

random process, that are going to produce models as RODE’s, so the solution of the 

differential equation that is evaluated experimentally are indeed not predictable, [9]. 

 

     The homotopy perturbation method (HPM) is a semi-analytical methodology for solving a 

variety of linear or nonlinear mathematical problems. J. He suggested the HPM in 1999 [10], 

and he developed a novel perturbation method facility using the homotopy approach. It does 

not need small parameters in the equations, also can easily exclude the limitations of the 

traditional perturbation techniques. Indeed, the small parameter assumption is still depended 

on all known perturbation methods. So, these small parameters for several nonlinear 

problems need numerous techniques for evaluating or estimating. Such parameters are 

supersensitive and then any small swap in them will impact the results. A suitable alternative 

of small parameters gives us perfect results. 

 

     The aim of this paper is to find the approximate solution of RODE’s using a hybrid 

approach between Laplace transformation method in connection with the HPM and for 

comparison purpose then we demonstrate the convergence of the obtained approximate 

solution to the exact analytical solution. The hybrid approach is introduced by combining the 

Laplace transformation method with the HPM, which will be abbreviated as LHPM, for the 

sake of evaluating a highly efficient closed form of the solution. Two illustrative examples, 

for linear and nonlinear RODEs, are given and simulated two simulated Brownian motion in 

order to illustrate the applicability of the proposed approach of this article. Finally, some 

conclusions gathered from this work are summarized. 

 

2. Preliminaries 

     In this section, we will give some basic concepts, which are necessary to understand this 

work. Stochastic process 𝑥(𝑡, ω) which is a family of random variables that is denoted in this 

work by 𝑥𝑡(ω) (or briefly 𝑥𝑡) of two variables t and ω, where t∈[t0,T] ⊂ [0,∞), T∈ℝ, ω on 

the probability space (, A, P), which assuming real values and as a function is P-measurable 

with respect to ω for each fixed t. The independent variable t is assumed to represent the time 

increment, while 𝑥𝑡(. ) represents a random variable on the above probability space , and 

𝑥.(ω) is considered a sample path or trajectory of the stochastic process, [11]. 
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Definition 2.1: [12] [A stochastic process Wt, t  0, is said to be a Brownian motion or 

Wiener process, if”: 

1. “p({ω  Ω | W0(ω) = 0}) = 1, i.e., p(W0 = 0) = 1”. 

2. “For 0 < t0 < t1 < … < tn, the increments 𝑊𝑡1 −𝑊𝑡0, 𝑊𝑡2 −𝑊𝑡1…, 𝑊𝑡𝑛 −𝑊𝑡𝑛−1 are 

independent”. 

3. “For an arbitrary t and h > 0, Wt + h − Wt has a normal distribution with mean 0 and 

variance h”. 

In stochastic calculus, convergence of sequence of random variables may be defined using 

different approaches and among them is given in the next definition which will be used in this 

paper. 

 

Definition 2.2: [13] “A sequence of random variables {𝑥𝑡𝑛(ω)}, 𝑛 ∈ ℕ, such that 

𝐸(𝑥𝑡𝑛
2 (ω)) < ∞, for all 𝑛 ∈ ℕ is said to be converges in the mean square to x() if 

lim
𝑛→∞

|𝑥𝑡𝑛(ω) − 𝑥𝑡(ω)|
2
= 0”. 

Now, consider the probability space (, A, P) and let Wt : [0,T] ⎯→ ℝ𝑚 be an ℝ𝑚-

valued stochastic process with continuous sample paths. Also, let g : ℝ𝑑ℝ𝑚 ⎯→ ℝ𝑑 be a 

continuous function, then RODEs may be defined as [11]: 
𝑑𝑥𝑡(𝜔)

𝑑𝑡
= 𝑔(𝑥𝑡(𝜔),𝑊𝑡(𝜔)), 𝑥𝑡(𝜔) ℝ𝑑, t  [0,T]. (1) 

To investigate the existence and uniqueness theorem, after a noise sample path is fixed, the 

RODE (1) will be interpreted as an ODE with random variables included. Because the noise 

modifies the vector field over time, it will resemble a non-autonomous ODE. If the vector 

field function g in the RODE (1) is continuous in both of its variables and the sample path of 

the noise process Wt are continuous too, then the vector filed function 𝑔(𝑥𝑡(𝜔),𝑊𝑡(𝜔)) of 

the related non-autonomous ODE for each fixed  is continuous in both of its variables. 

Hence, conventional existence and uniqueness theorem of ODEs may be extended and 

generalized to the RODEs and in this case is stated without proof. Among the classical 

assumptions used in this theorem is to suppose that the vector field g given in Equation (1) is 

at least continuous in both of its variables and the sample paths of the noise Wt are 

continuous. Fixing a sample path, i.e.,  with 𝑔(𝑥𝑡(𝜔),𝑊𝑡(𝜔)) then, the solution of the 

initial value problem (1) is a continuously differentiable function  𝑥𝑡(ω) : [t0, T] ⎯→ ℝ𝑑 

with 𝑥𝑡0(ω) = 𝑥𝑡0, such that Equation (1) is satisfied when integrating both sides of this 

equation gives the integral equation [11]: 

𝑥𝑡(ω) = 𝑥𝑡0 + ∫ 𝑔(𝑥𝑠(ω)
𝑡

𝑡0
, 𝑊𝑠(ω)) 𝑑𝑠, t  [t0, T]. (2) 

Hence, a solution of the Equation (1) is a solution of the integral Equation (2). The converse 

also holds, whenever the solution 𝑥𝑡(ω) is differentiable. 

 

3. Application of the HPM for solving RODEs 

      Ji Huan He presented the standard HPM in 1999 as a strong tool for solving a wide range 

of linear and nonlinear problems. The HPM is viewed as a hybrid of the conventional 

perturbation approach and homotopy analysis (which has a basis in topology), but it is not 

limited to very small parameters as standard perturbation methods are. For example, the HPM 

technique takes only a few iterations to achieve extremely precise results, rather than minimal 

parameters or a linearization approach [10], [14]. 

To see how the HPM approach works, consider the following broad nonlinear problem in 

operator form: 

𝐴(𝑈) − 𝑓(𝑡) = 0,   𝑡 ∈ 𝐷,
 (3)

 

with the following boundary conditions: 
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𝐵 (𝑢,
𝛿𝑢

𝛿𝑡
) = 0, 𝑡 ∈ 𝜕𝐷, (4) 

 

     where A is a generic differential operator, B is a boundary operator, f(t) is a known 

analytical function, and 𝛿𝐷 is the domain's boundary. Operator A may be decomposed into 

two operators L and N, where L is linear and N is nonlinear, such that the Equation (3) can be 

modified and rewritten as: 

𝐿(𝑈) + 𝑁(𝑈) − 𝑓(𝑡) = 0. (5) 

In general, a homotopy function 𝑢(𝑡, 𝑝): 𝐷 × [0,1]
              
→    ℝ can be constructed to satisfy the 

homotopy Equation [10]: 

𝐻(𝑢, 𝑝) = (1 − 𝑝)[𝐿(𝑢) − 𝐿(𝑈0)] + 𝑝[𝐿(𝑢) + 𝑁(𝑢) − 𝑓(𝑡)] = 0, 𝑝 ∈ [0,1], 𝑡 ∈ 𝐷            (6) 

or equivalently: 

𝐻(𝑢, 𝑝) = 𝐿(𝑢) − 𝐿(𝑈0) + 𝑝[𝐿(𝑈0) + 𝑁(𝑢) − 𝑓(𝑡)] = 0, 𝑝 ∈ [0,1], 𝑡 ∈ 𝐷  (7) 

 

where 𝑝 ∈ [0,1] is a homotopy parameter, and u0 is the first approximation for the solution of 

Equation (5) that satisfies the boundary conditions. Also, from Equation (6), one can have: 

𝐻(𝑢, 0) = 𝐿(𝑢) − 𝐿(𝑈0) = 0, 
𝐻(𝑢, 1) = 𝐿(𝑢) + 𝑁(𝑢) − 𝑓(𝑡) = 0. 

 

Assuming that solution for Equation (6) after the equating the like powers of p can be written 

as a power series of p as: 

𝑢(𝑡, 𝑝) = ∑ 𝑝𝑖𝑢𝑖(𝑡)
∞
𝑖=0 = 𝑢0 + 𝑝𝑢1 + 𝑝

2𝑢2 +⋯.                                          (8) 

Substituting back Equation (8) into Equation (7) and equating similar powers of p terms 

produces values for the sequence u0, u1, u2, …, and when p ⎯→ 1, it yields in the 

approximate solution for Equation (3) in the form: 

𝑈 = lim
𝑝→1
  𝑢(𝑡, 𝑝) = ∑ 𝑝𝑖𝑢𝑖(𝑡)

∞
𝑖=0 = 𝑢0 + 𝑢1 + 𝑢2 +⋯.                                      (9) 

Now, the HPM will be used to solve the RODE’s (1), But firstly, rewrite Equation (1) in the 

operator form as: 

        𝐿(𝑥𝑡(ω)) + 𝑁(𝑥𝑡(ω)) − 𝑔(𝑡, 𝑥𝑡(ω),𝑊𝑡(ω)) = 0 (10) 

and by letting 𝐿(𝑥𝑡(ω)) =
𝑑𝑥𝑡(ω)

𝑑𝑡
, 𝑁(𝑥𝑡(ω)) = 𝑔(𝑡, 𝑥𝑡(ω),𝑊𝑡(ω)), then the following 

homotopy may be constructed 𝑢𝑡(𝜔, 𝑝): 𝐷 × Ω × [0,1]
              
→    ℝ, which satisfies: 

𝐻(𝑢, 𝑝) =   
𝑑𝑢𝑡(ω,𝑝)

𝑑𝑡
−
d𝑥𝑡0(ω)

d𝑡
 + 𝑝 [

𝑑𝑥𝑡0(ω)

𝑑𝑡
− 𝑔(𝑡, 𝑢𝑡(ω, 𝑝),𝑊𝑡(ω))] = 0            (11) 

where 𝑝 ∈ [0, 1], 
𝑑𝑥𝑡0(𝜔)

𝑑𝑡
 is the derivative of the initial approximation for the solution of 

Equation (1). From (11) it follows that: 

𝐻(𝑢, 0) =
𝑑𝑢𝑡(ω, 𝑝)

𝑑𝑡
−
d𝑥𝑡0(ω)

d𝑡
= 0, 

𝐻(𝑢, 1) =
𝑑𝑢𝑡(𝜔, 𝑝)

𝑑𝑡
− 𝑔(𝑡, 𝑢𝑡(𝜔, 𝑝),𝑊𝑡(𝜔)) = 0, 

and the variation practicability of p from 0 to 1 is just like that of changing of 𝑢𝑡(𝜔, 𝑝) from 

𝑥𝑡0(ω) to 𝑥𝑡(𝜔). Therefore: 

𝑑𝑢𝑡(𝜔, 0)

𝑑𝑡
−
𝑑𝑥𝑡0(𝜔)

𝑑𝑡
 ≅  

𝑑𝑢𝑡(𝜔, 1)

𝑑𝑡
−  𝑔(𝑡, 𝑢𝑡(𝜔, 1),𝑊𝑡(𝜔)) 

And 

𝑥𝑡0(𝜔) ≅ 𝑥𝑡(𝜔),   𝑡 ∈ 𝐷. 

Next, we assume that the solution Equation (11) can express as:  

𝑢𝑡(𝜔, 𝑝) = ∑ 𝑝𝑖∞
𝑖=0 𝑢𝑖𝑡(𝜔).                                                                                  (12) 
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Therefore, the approximate solution of Equation (1) is defined upon taking the limit as 𝑝
            
→   1, i.e., 

 𝑥𝑡(𝜔) = lim
𝑝→1
𝑢𝑡(𝜔, 𝑝) = ∑ 𝑢𝑖𝑡(𝜔).

∞
𝑖=0                                                           (13) 

By substituting the approximated solution (12) in Equation (11), one can get: 

∑ 𝑝𝑖
𝑑𝑢𝑖𝑡(𝜔)

𝑑𝑡

∞
𝑖=0 −

𝑑𝑥𝑡0(𝜔)

𝑑𝑡
 + 𝑝 [

𝑑𝑥𝑡0(𝜔)

𝑑𝑡
− 𝑔 (t, ∑ 𝑝𝑖∞

𝑖=0 𝑢𝑖𝑡(𝜔),𝑊𝑡(𝜔))] = 0.  

Now, equating the terms with identical powers of p, we get: 

 𝑝0 :  
𝑑𝑢0𝑡(𝜔)

𝑑𝑡
=
𝑑𝑥𝑡0(𝜔)

𝑑𝑡
 

𝑝1 :  
𝑑𝑢1𝑡(𝜔)

𝑑𝑡
= 𝑔(𝑡, 𝑢0𝑡(𝜔),𝑊𝑡(𝜔)) −

𝑑𝑥𝑡0(𝜔)

𝑑𝑡
 

𝑝𝑗 : 
𝑑𝑢𝑗𝑡(𝜔)

𝑑𝑡
= 𝑔(𝑡, 𝑢(𝑗−1)𝑡(𝜔),𝑊𝑡(𝜔)), for all 𝑗 = 2,3, … . 

Consequently, by applying the first integral operator to the above differential equations in 

order to calculate 𝑢0𝑡 , 𝑢1𝑡 , 𝑢2𝑡 , . .., implying: 

 𝑢0𝑡(𝜔) = 𝑥𝑡0(𝜔) 

𝑢1𝑡(𝜔) = ∫ 𝑔(𝑡, 𝑢0𝑠(𝜔),𝑊𝑠(𝜔))
𝑡

𝑡0
 𝑑𝑠 − 𝑥𝑡0(𝜔)  

𝑢𝑗𝑡(𝜔) = ∫ 𝑔 (𝑡, 𝑢(𝑗−1)𝑠(𝜔),𝑊𝑠(𝜔))
𝑡

𝑡0
 𝑑𝑠 ,   for all 𝑗 = 2,3, … . 

Then, by using Equation (12), the approximate solution of RODEs (1) utilizing HPM is: 

𝑥𝑡(𝜔) = lim
𝑝→1
𝑢𝑡(𝜔, 𝑝) 

            = lim
𝑝→1
[𝑢0𝑡(𝜔) + 𝑝𝑢1𝑡(𝜔) + 𝑝

2𝑢2𝑡(𝜔)+. . . . ] = ∑ 𝑢𝑖𝑡(𝜔)
∞
𝑖=0 .         (14)       

 

4. Convergence Analysis 

In this section, the convergence of the solution series of (12) will be presented in connection 

with the mean square convergence. 

We start with the following which is known in kind of literatures as Cauchy Schwartz and 

triangle inequalities. 

Lemma 4.1: [15] Suppose that X and Y are random variables, then: 

(i) 𝐸(|𝑋𝑌|) ≤ √𝐸(|𝑋|2)   √𝐸(|𝑌|2). 

(ii) √𝐸(|𝑋 ± 𝑌|2) ≤ √𝐸(|𝑋|2) + √𝐸(|𝑌|2). 
 

      In addition, inequality (i) is known as the Cauchy- Schwartz inequality for expectation, 

and the inequality (ii) is known as the triangle inequality relate also to expectation. 

 

Theorem 4.2: Suppose that 𝐴 ⊂ ℝ is a Banach space with a norm ‖. ‖ = √𝐸|. |2 over which 

the sequence 𝑢𝑖𝑡(𝜔) of (14) is defined. Assume also that the initial approximation 𝑢0𝑡(ω) 

remains inside the ball of the solution 𝑢𝑡(ω). Taking 𝑟 ∈ ℝ to be a constant, then the 

following statements hold: 

(a) If ‖𝑣(𝑘+1)𝑡(𝜔)‖ ≤ 𝑟  ‖𝑣𝑘𝑡(𝜔)‖ for all k, given some 0 < 𝑟 < 1, then the series 

solution given by Equation (12) is absolutely converges when p = 1 to the series given in 

Equation (14) over the domain in which t is defined. 

(b) If the series solution defined in Equation (14) is convergent, then it converges to the 

exact solution of the nonlinear problem (10). 

Proof: (a) The proof is evidently based on the ratio test of the power series p. However, to be 

able to provide an estimate of the HPM's truncation error, we will briefly present the entire 

proof here. 
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Suppose that 𝑆𝑛𝑡(𝜔) is a sequence of partial sums of the series (14), we need to show that 

𝑆𝑛𝑡(𝜔) is a Cauchy sequence in the Banach space A. For this objective, consider 

‖𝑆(𝑛+1)𝑡(𝜔) − 𝑆𝑛𝑡(𝜔)‖ = ‖𝑢(𝑛+1)𝑡(𝜔)‖ 

                                        ≤ 𝑟  ‖𝑢𝑛𝑡(𝜔)‖   ≤ 𝑟
2 ‖𝑢(𝑛−1)𝑡(𝜔)‖ ≤ 𝑟

3 ‖𝑢(𝑛−2)𝑡(𝜔)‖ 

                                              ≤  …  ≤  𝑟𝑛+1 ‖𝑢0𝑡(𝜔)‖.                                         (15) 

It should be noted that, according to inequality (15), all of the approximations obtained from 

homotopy (11) will fall within the ball containing 𝑢𝑡(𝜔). For every 𝑚, 𝑛 ∈ ℕ, 𝑛 > 𝑚, and 

using (15) and the triangle inequality repeatedly, we have: 

‖𝑆𝑛𝑡(𝜔) − 𝑆𝑚𝑡(𝜔)‖ = √𝐸|𝑆𝑛𝑡(𝜔) − 𝑆𝑚𝑡(𝜔)|
2
  

= √𝐸 |
(𝑆𝑛𝑡(𝜔) − 𝑆(𝑛−1)𝑡(𝜔)) + (𝑆(𝑛−1)𝑡(𝜔) − 𝑆(𝑛−2)𝑡(𝜔))

+. . . +(𝑆(𝑚+1)𝑡(𝜔) − 𝑆𝑚𝑡(𝜔))
|

2

  

= √𝐸|𝑢𝑛𝑡(𝜔) + 𝑢(𝑛−1)𝑡(𝜔)+. . . +𝑢(𝑚+1)𝑡(𝜔)|
2
  

= √𝐸|∑ 𝑢𝑖𝑡(𝜔)
𝑛
𝑖=𝑚+1 |

2
  

≤ ∑ √𝐸|𝑢𝑖𝑡(𝜔)|
2𝑛

𝑖=𝑚+1  (by Lemma 4.1)  

= √𝐸|𝑢(𝑚+1)𝑡(𝜔)|
2
+√𝐸|𝑢(𝑚+2)𝑡(𝜔)|

2
+. . . +√𝐸|𝑢𝑛𝑡(𝜔)|

2
  

= ‖𝑢(𝑚+1)𝑡(𝜔)‖ + ‖𝑢(𝑚+2)𝑡(𝜔)‖+. . . +‖𝑢𝑛𝑡(𝜔)‖ 

≤ 𝑟𝑚+1‖𝑢0𝑡(𝜔)‖ + 𝑟
𝑚+2‖𝑢0𝑡(𝜔)‖+. . . +𝑟

𝑛‖𝑢0𝑡(𝜔)‖ 

= (𝑟𝑚+1 + 𝑟𝑚+2+. . . +𝑟𝑛) ‖𝑢0𝑡(𝜔)‖ 

= 𝑟𝑚+1(1 + 𝑟 + 𝑟2+. . . +𝑟𝑛−𝑚−1) ‖𝑢0𝑡(𝜔)‖ 

≤ 𝑟𝑚+1(1 + 𝑟 + 𝑟2+. . . ) ‖𝑢0𝑡(𝜔)‖ 

= (
𝑟𝑚+1

1−𝑟
) ‖𝑢0𝑡(𝜔)‖. (16) 

Since 0 < 𝑟 < 1, then we get from inequality (16) 

lim
𝑚,𝑛→∞

‖𝑆𝑛𝑡(𝜔) − 𝑆𝑚𝑡(𝜔)‖ = 0. (17) 

Therefore, 𝑆𝑛𝑡(ω) is a Cauchy sequence in the Banach space A, which implies that the series 

solution (14) is convergent. 

(b) Since, by hypothesis, the approximate series solution (14) is converge, then 

lim
𝑛→∞

  𝑢𝑛𝑡(𝜔) = 0, and further producing the homotopy series coefficients 𝑢𝑖𝑡(𝜔) of Equation 

(12). 

Now, from Equation (6), we get after substituting 𝑢𝑡(𝜔, 1) instead of 𝑢: 

           0 = 𝐻(𝑢𝑡(𝜔, 1), 1) = (1 − 1)[𝐿(𝑢𝑡(𝜔, 1)) − 𝐿(𝑈0)] + 1 × [𝐿(𝑢𝑡(𝜔, 1)) +

                   𝑁(𝑢𝑡(𝜔, 1)) − 𝑓(𝑡)]. 

Thus, 𝐿(𝑢𝑡(𝜔, 1)) + 𝑁(𝑢𝑡(𝜔, 1)) − 𝑓(𝑡) = 0, i.e., 𝐿(𝑢𝑡(𝜔, 1)) + 𝑁(𝑢𝑡(𝜔, 1)) = 𝑓(𝑡), 

which means that 𝑢𝑡(𝜔, 1) = ∑ 𝑢𝑖𝑡(𝜔)
∞
𝑖=0  satisfied the original RODE (3), so 𝑢𝑡(𝜔, 1) =

∑ 𝑢𝑖𝑡(𝜔)
∞
𝑖=0  is the exact solution of the problem. This the complete the proof.       
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5. Application of Laplace-HPM 

     In this section, an improved approach will be introduced which is a hybrid between the 

Laplace transformation method and the HPM (abbreviated as LHPM), this method may give 

a closed form and accurate results. 

To introduce this approach, apply first Laplace transformation to both sides of the homotopy 

Equation (11) getting: 

L {
𝑑𝑢𝑡(𝜔,𝑝)

𝑑𝑡
−
𝑑𝑥𝑡0(𝜔)

𝑑𝑡
 + 𝑝  [

𝑑𝑥𝑡0(𝜔)

𝑑𝑡
− 𝑔(𝑡, 𝑢𝑡(𝜔, 𝑝),𝑊𝑡(𝜔))]}  = 0  

and so 

L {
𝑑𝑢𝑡(𝜔,𝑝)

𝑑𝑡
}  = L {

𝑑𝑥𝑡0(𝜔)

𝑑𝑡
} − 𝑝L {

𝑑𝑥𝑡0(𝜔)

𝑑𝑡
− 𝑔(𝑡, 𝑢𝑡(𝜔, 𝑝),𝑊𝑡(𝜔))},  

using the differential properties of the Laplace transformation we get: 

𝑠L{𝑢𝑡(𝜔, 𝑝)} − 𝑢(0) = L {
𝑑𝑥𝑡0(𝜔)

𝑑𝑡
} − 𝑝L {

𝑑𝑥𝑡0(𝜔)

𝑑𝑡
− 𝑔(𝑡, 𝑢𝑡(𝜔, 𝑝),𝑊𝑡(𝜔))} , 

and so: 

L{𝑢𝑡(𝜔, 𝑝)} =
1

𝑠
{𝑢(0) + L {

𝑑𝑥𝑡0(𝜔)

𝑑𝑡
}} − 𝑝 {

1

𝑠
L {
𝑑𝑥𝑡0(𝜔)

𝑑𝑡
− 𝑔(𝑡, 𝑢𝑡(𝜔, 𝑝),𝑊𝑡(𝜔))}}. (18) 

Utilizing the inverse of the Laplace transform for both sides of Equation (18), getting: 

𝑢𝑡(ω, 𝑝) = L
 −1 {

1

𝑠
{𝑢(0) + L {

𝑑𝑥𝑡0(𝜔)

𝑑𝑡
}}} − 𝑝L −1 {

1

𝑠
L {
𝑑𝑥𝑡0(𝜔)

𝑑𝑡
𝑔(𝑡, 𝑢𝑡(𝜔, 𝑝),𝑊𝑡(𝜔))}}. (19) 

Assuming that the solutions of (10) may be written as a power series of p, as provided in 

Equation (12). Then substituting the Equation (12) into Equation (19), we get: 

∑ 𝑝𝑖∞
𝑖=0 𝑢𝑖𝑡(ω) = L

 −1 {
1

𝑠
{𝑢(0) + L {

𝑑𝑥𝑡0(𝜔)

𝑑𝑡
}}} −  

                            𝑝L −1 {
1

𝑠
L {

𝑑𝑥𝑡0(𝜔)

𝑑𝑡
− 𝑔(𝑡, ∑ 𝑝𝑖∞

𝑖=0 𝑢𝑖𝑡(𝜔),𝑊𝑡(𝜔))}}.  

Comparing coefficients of p with the same power leads to: 

𝑝0:  𝑢0𝑡(𝜔) = L
 −1 {

1

𝑠
{𝑢(0) + L {

𝑑𝑥𝑡0(𝜔)

𝑑𝑡
}}}  

𝑝1:  𝑢1𝑡(𝜔) = L
 −1 {

1

𝑠
L {𝑔(𝑡, 𝑢0𝑡(𝜔),𝑊𝑡(𝜔)) −

𝑑𝑥𝑡0(𝜔)

𝑑𝑡
}}  

𝑝𝑗:  𝑢𝑗𝑡(𝜔) = L
 −1 { 

1

𝑠
L {𝑔 (𝑡, 𝑢(𝑗−1)𝑡(𝜔),𝑊𝑡(𝜔))}} , for all 𝑗 = 2,3, … . 

Assuming that the initial approximation has the form 𝑢(0) = 𝑥𝑡0(𝜔) = 𝛼0, 𝑢′(0) = 𝛼1, …, 

𝑢(𝑛−1)(0) = 𝛼𝑛−1: therefore, the approximate solution may be obtained as follows: 

𝑥𝑡(𝜔) = lim
𝑝→1
𝑢𝑡(𝜔, 𝑝)  

           = lim
𝑝→1
(𝑢0𝑡(𝜔) + 𝑝𝑢1𝑡(𝜔) + 𝑝

2𝑢2𝑡(𝜔)+. . . ) = ∑ 𝑢𝑖𝑡(𝜔).
∞
𝑖=0   

 

6. Illustrative Examples and Numerical Simulation: 

In this section, two examples will be simulated and solved using the previously suggested 

HPM and LHPM, but first, it is crucial to highlight that the production of distinct discretized 

Brownian motions within the unit interval [0,1] will be explored. Figure 1 illustrates these 

generations, which have total numbers N = 500 and 1000. 
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Figure 1:Discretized Brownian path with 500 and 1000 generations. 

 

Example 6.1: Consider the problem of solving the linear RODE [16]: 
𝑑𝑥𝑡(𝜔)

𝑑𝑡
= −𝑥𝑡(𝜔) + sin(𝑊𝑡(𝜔)), 𝑥𝑡0(𝜔) = 𝑥0𝑡(𝜔) = 1, t  [0,1],                         (20) 

with the exact solution for comparison purposes as it is given in [7] by: 

𝑥𝑡(𝜔) = 𝑒
−𝑡 + 𝑒−𝑡 ∫ 𝑒𝑠sin(𝑊𝑠(𝜔)) 𝑑𝑠.

𝑡

0
  

First, consider the HPM and take the initial guess approximation to be 𝑥0𝑡(𝜔) = 1, and by 

assuming that 𝐿(𝑥) =
𝑑𝑥𝑡(𝜔)

𝑑𝑡
+ 𝑥𝑡(𝜔), 𝑁(𝑥) = 0, 𝑔(𝑡, 𝑥𝑡(𝜔, 𝑝),𝑊𝑡(𝜔)) = sin(𝑊𝑡(𝜔)). 

Hence, define the homotopy function H(u,p) as: 

𝐻(𝑢, 𝑝) =
𝑑𝑢𝑡(𝜔,𝑝)

𝑑𝑡
+ 𝑢𝑡(𝜔, 𝑝) − 

𝑑𝑥0𝑡(𝜔)

𝑑𝑡
− 𝑥0𝑡(𝜔) + 𝑝 [

𝑑𝑥0𝑡(𝜔)

𝑑𝑡
+ 𝑥0𝑡(𝜔) −

                                 sin(𝑊𝑡(𝜔))] = 0                                                                                   (21) 

Now, substituting the approximated solution (12) in Equation (21), one can get 

𝐻(𝑢, 𝑝) = ∑ 𝑝𝑖∞
𝑖=0

𝑑𝑢𝑖𝑡(ω)

𝑑𝑡
+ ∑ 𝑝𝑖∞

𝑖=0 𝑢𝑖𝑡(ω) − 
𝑑𝑥0𝑡(ω)

𝑑𝑡
− 𝑥0𝑡(ω) + 𝑝 [

𝑑𝑥0𝑡(ω)

𝑑𝑡
+

𝑥0𝑡(ω) − sin(𝑊𝑡(ω))] = 0.  

       

= [
𝑑𝑢0𝑡(ω)

𝑑𝑡
+ 𝑢0𝑡(ω)]+ 𝑝 [

𝑑𝑢1𝑡(ω)

𝑑𝑡
+ 𝑢1𝑡(ω)]  +∑𝑝𝑗

∞

𝑖=2

[
𝑑𝑢𝑗𝑡(ω)

𝑑𝑡
+ 𝑢𝑗𝑡(ω)]−

      
𝑑𝑥0𝑡(ω)

𝑑𝑡
− 𝑥0𝑡(ω) + 𝑝 [

𝑑𝑥0𝑡(ω)

𝑑𝑡
+ 𝑥0𝑡(ω)− sin(𝑊𝑡(ω))] = 0.

 

Thus, by equating the coefficients of like powers of p will yields to: 

𝑝0 :  
𝑑𝑢0𝑡(ω)

𝑑𝑡
+ 𝑢0𝑡(ω) − 

𝑑𝑥0𝑡(ω)

𝑑𝑡
− 𝑥0𝑡(ω) = 0  

𝑝1 :  
𝑑𝑢1𝑡(ω)

𝑑𝑡
+ 𝑢1𝑡(ω) +

𝑑𝑥0𝑡(ω)

𝑑𝑡
+ 𝑥0𝑡(ω) − sin(𝑊𝑡(ω)) = 0  

𝑝𝑗 :  
𝑑𝑢𝑗𝑡(ω)

𝑑𝑡
+ 𝑢𝑗𝑡(ω) = 0,   for all 𝑗 = 2,3, … . 

Consequently, by solving the above differential equations for 𝑢𝑖𝑡(ω), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 0,1,2, … , 

one may get: 

𝑢0𝑡(ω) = 1;  

𝑢1𝑡(ω) = 𝑒
−𝑡 + 𝑒−𝑡 ∫ 𝑒𝑠 sin(𝑊𝑠(ω))

𝑡

0
 𝑑𝑠 − 1;  

𝑢𝑗𝑡(ω) = 0, for all 𝑗 = 2,3, … . 

Now, the approximated solution of Equation (20) is given when p ⎯→1 as: 

𝑥𝑡(ω) = 𝑢0𝑡(ω) + 𝑢1𝑡(ω) + ⋯ 

= 1 + 𝑒−𝑡 + 𝑒−𝑡 ∫ 𝑒𝑠 sin(𝑊𝑠(ω))
𝑡

0
 𝑑𝑠 − 1  

= 𝑒−𝑡 + 𝑒−𝑡 ∫ 𝑒𝑠 sin(𝑊𝑠(ω))
𝑡

0
 𝑑𝑠.  

which is the exact solution for Equation (20). 

Now, by using the LHPM, it possible to find the handy approximate solution as follows: 
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By assuming 𝐿(𝑥) =
𝑑𝑥𝑡(ω)

𝑑𝑡
+ 𝑥𝑡(ω), 𝑁(𝑥) = 0, 𝑔(𝑡, 𝑥𝑡(𝜔, 𝑝),𝑊𝑡(𝜔)) = sin(𝑊𝑡(ω)) and in 

order to obtain an approximate analytical solution for Equation (20), we must construct a 

homotopy function in accordance to Equation (7) as: 
𝑑𝑥𝑡(ω)

𝑑𝑡
+ 𝑥𝑡(ω) − 

𝑑𝑥0𝑡(ω)

𝑑𝑡
− 𝑥0𝑡(ω) + 𝑝 [

𝑑𝑥0𝑡(ω)

𝑑𝑡
+ 𝑥0𝑡(ω) − sin(𝑊𝑡(ω))] = 0.   (22) 

Applying the Laplace transformation on Equation (22), give: 

𝑠L[𝑥𝑡(ω)] − 𝑥(0) + L[𝑥𝑡(ω)]

= L [
𝑑𝑥0𝑡(ω)

𝑑𝑡
+ 𝑥0𝑡(ω)]  

− 𝑝 L [
𝑑𝑥0𝑡(ω)

𝑑𝑡
+ 𝑥0𝑡(ω)

−                                                             sin(𝑊𝑡(ω))], 

and then by solving the last above equation for L[𝑥𝑡(ω)], getting: 

L[𝑥𝑡(ω)] =
1

𝑠+1
[𝑥(0) + L [

𝑑𝑥0𝑡(ω)

𝑑𝑡
+ 𝑥0𝑡(ω)]] −

𝑝

𝑠+1
L [
𝑑𝑥0𝑡(ω)

𝑑𝑡
+ 𝑥0𝑡(ω) −

                     sin(𝑊𝑡(ω))], 

Applying Laplace invers transformation implies to: 

𝑥𝑡(ω) = L
 −1 [

1

𝑠+1
[𝑥(0) + L [

𝑑𝑥0𝑡(ω)

𝑑𝑡
+ 𝑥0𝑡(ω)]]] − 𝑝 L

 −1 [
1

𝑠+1
 L [

𝑑𝑥0𝑡(ω)

𝑑𝑡
+ 𝑥0𝑡(ω) −

                sin(𝑊𝑡(ω))]].                                                                                                         (23) 

Also, we assume a series solution for 𝑥𝑡(ω) in the form of Equation (12), and we choose 

𝑢0𝑡(ω) = 𝑥0𝑡(ω) = 1 as a first approximation for the solution for Equation (20) and 

substituting Equation (12) in Equation (23) will give: 

∑ 𝑝𝑖∞
𝑖=0 𝑢𝑖𝑡(ω) = L

 −1 [
1

𝑠+1
[𝑥(0) + L [

𝑑𝑥0𝑡(ω)

𝑑𝑡
+ 𝑥0𝑡(ω)]]] 

                            

−  𝑝 L −1 [
1

𝑠+1
 L [

𝑑𝑥0𝑡(ω)

𝑑𝑡
+ 𝑥0𝑡(ω) −                                          sin(𝑊𝑡(ω))]].  

Now, comparing the coefficients of like power of p, we have: 

𝑝0: 𝑢0𝑡(ω) = L
 −1 [

1

𝑠+1
[𝑥(0) + L [

𝑑𝑥0𝑡(ω)

𝑑𝑡
+ 𝑥0𝑡(ω)]]] ;  

𝑝1:  𝑢1𝑡(ω) = −L
 −1 [

1

𝑠+1
L [

𝑑𝑥0𝑡(ω)

𝑑𝑡
+ 𝑥0𝑡(ω) − sin(𝑊𝑡(ω))]] ;  

𝑝𝑗:  𝑢𝑗𝑡(ω) = 0, for all 𝑗 = 2,3, … . 

Consequently, by solving the above differential equations getting: 

𝑢0𝑡(ω) = L
 −1 [

1

𝑠+1
[𝑥(0) + L [

𝑑𝑥0𝑡(ω)

𝑑𝑡
+ 𝑥0𝑡(ω)]]]  

            = L −1 [
1

𝑠+1
[1 + L[1]]]  

= L −1 [
1

𝑠+1
+

1

𝑠(𝑠+1)
] = L −1 [

1

𝑠
] = 1;  

𝑢1𝑡(ω) = −L
 −1 [

1

𝑠+1
 L [

𝑑𝑥0𝑡(ω)

𝑑𝑡
+ 𝑥0𝑡(ω) − sin(𝑊𝑡(ω))]]  

= −L −1 [
1

𝑠+1
 L [1 − sin(𝑊𝑡(ω))]]  

= −L −1 [
1

𝑠(𝑠+1)
−
sin(𝑊𝑡(ω))

𝑠(𝑠+1)
 ]  
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= −1 + 𝑒−𝑡 + sin(𝑊𝑡(𝜔)) − sin(𝑊𝑡(𝜔))𝑒
−𝑡;  

𝑢𝑗𝑡(ω) = 0 , for all  𝑗 = 2,3, … . 

By substituting the results of 𝑢0𝑡(ω), 𝑢1𝑡(ω), . .. back into Equation (12) and calculating the 

limit when p ⎯→ 1, we get the approximate solution of Equation (20) to be as: 

𝑥𝑡(ω) = sin(𝑊𝑡(ω)) − sin(𝑊𝑡(ω))𝑒
−𝑡 + 𝑒−𝑡, 

which is the same as the exact solution of Equation (20). 

Figure 2 illustrates the approximations results for N = 500 and 1000 generations of Brownian 

motion that are given in Figure 1. 

 
Figure 2: Approximate results of Example 1 with 100 and 1000 generations of Brownian 

motion. 

 

Example 6.2: Consider the problem of solving the second order nonlinear RODE: 

         
𝑑𝑥𝑡(ω)

𝑑𝑡
+𝑊𝑡(ω)  𝑥𝑡

2(ω) = 0, t  [0,1], (24) 

with initial condition 𝑥𝑡0(ω)  = 𝑥0𝑡(ω) = 1. 

Similarly in the first example, using the HPM with the initial guess approximate solution 

𝑥0𝑡(ω) = 1 and by assuming that 𝐿(𝑥) =
𝑑𝑥𝑡(ω)

𝑑𝑡
, 𝑁(𝑥) = 𝑊𝑡(ω) 𝑥𝑡

2(ω), 

𝑔(𝑡, 𝑥𝑡(𝜔, 𝑝),𝑊𝑡(𝜔)) = 0. Hence, the homotopy function H(u,p) take the form: 

𝐻(𝑢, 𝑝) =
𝑑𝑢𝑡(ω,𝑝)

𝑑𝑡
−
𝑑𝑥0𝑡(ω)

𝑑𝑡
+ 𝑝 [

𝑑𝑥0𝑡(ω)

𝑑𝑡
+𝑊𝑡(ω) 𝑢𝑡

2(ω, 𝑝)] = 0, (25) 

Now, substituting the approximated solution (12) in Equation (25), one can get: 

𝐻(𝑢, 𝑝) = ∑ 𝑝𝑖∞
𝑖=0

𝑑𝑢𝑖𝑡(ω)

𝑑𝑡
−
𝑑𝑥0𝑡(ω)

𝑑𝑡
+ 𝑝 [

𝑑𝑥0𝑡(ω)

𝑑𝑡
+𝑊𝑡(ω) [∑ 𝑝𝑖∞

𝑖=0 𝑢𝑖𝑡(ω)]
2
]  

=
𝑑𝑢0𝑡(ω)

𝑑𝑡
+ 𝑝

𝑑𝑢1𝑡(ω)

𝑑𝑡
+ ∑ 𝑝𝑗∞

𝑗=0

𝑑𝑢𝑗𝑡
(ω)

𝑑𝑡
−
𝑑𝑥0𝑡(ω)

𝑑𝑡
+  𝑝 [

𝑑𝑥0𝑡(ω)

𝑑𝑡
]+

    𝑝𝑊𝑡(ω)[∑ 𝑝𝑖∞
𝑖=0 𝑢𝑖𝑡(ω)]

2
= 0.

  

𝐻(𝑢, 𝑝) =
𝑑𝑢0𝑡(ω)

𝑑𝑡
+ 𝑝

𝑑𝑢1𝑡(ω)

𝑑𝑡
+ ∑ 𝑝𝑗∞

𝑗=2

𝑑𝑢𝑗𝑡
(ω)

𝑑𝑡
−
𝑑𝑥0𝑡(ω)

𝑑𝑡
+  𝑝 [

𝑑𝑥0𝑡(ω)

𝑑𝑡
]+

                   𝑝𝑊𝑡(ω)[𝑢0𝑡(ω)+ 𝑝 𝑢1𝑡(ω)+ 𝑝
2𝑢2𝑡(ω)+⋯ ]

2
= 0.

  

𝐻(𝑢, 𝑝) =
𝑑𝑢0𝑡(ω)

𝑑𝑡
+ 𝑝

𝑑𝑢1𝑡(ω)

𝑑𝑡
+ ∑ 𝑝𝑗∞

𝑗=2

𝑑𝑢𝑗𝑡(ω)

𝑑𝑡
−
𝑑𝑥0𝑡(ω)

𝑑𝑡
  

+𝑝 [
𝑑𝑥0𝑡(ω)

𝑑𝑡
+𝑊𝑡(ω)𝑢0𝑡

2 (ω)] + 𝑝2𝑊𝑡(ω)[2𝑢0𝑡(ω) 𝑢1𝑡(ω)]  

+𝑝3 𝑊𝑡(ω) [2𝑢0𝑡(ω) 𝑢2𝑡(ω) + 𝑢1𝑡
2 (ω)]  

+𝑝5 𝑊𝑡(ω) [2𝑢1𝑡(ω)𝑢3𝑡(ω)+ 𝑢2𝑡
2 (ω)+. . . ]  

+𝑝6 𝑊𝑡(ω) [2𝑢2𝑡(ω)𝑢3𝑡(ω)+⋯ ]+ 𝑝
7 𝑊𝑡(ω) [𝑢3𝑡

2 (ω)+⋯ ]+. . . = 0.  

Thus, by equating the coefficients of like powers of p will yields to: 

𝑝0 : 
𝑑𝑢0𝑡(ω)

𝑑𝑡
 =

𝑑𝑥0𝑡(ω)

𝑑𝑡
;  

𝑝1 :  
𝑑𝑢1𝑡(ω)

𝑑𝑡
= −[

𝑑𝑥0𝑡(ω)

𝑑𝑡
+𝑊𝑡(ω)𝑢0𝑡

2 (ω)] ;  
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𝑝2 :  
𝑑𝑢2𝑡(ω)

𝑑𝑡
= −𝑊𝑡(ω)[2𝑢0𝑡(ω)𝑢1𝑡(ω)];  

𝑝3 :  
𝑑𝑢3𝑡(ω)

𝑑𝑡
= −𝑊𝑡(ω)[2𝑢0𝑡(ω)𝑢2𝑡(ω) + 𝑢1𝑡

2 (ω)];  

𝑝4 :  
𝑑𝑢4𝑡(ω)

𝑑𝑡
= −𝑊𝑡(ω)[2𝑢0𝑡(ω)𝑢3𝑡(ω) + 𝑢1𝑡(ω)𝑢2𝑡(ω)];  

⋮  
Consequently, by applying the first integral operator to the above differential equations, to 

calculate 𝑢0𝑡 , 𝑢1𝑡 , 𝑢2𝑡 , …, we get: 

𝑝0:  𝑢0𝑡(ω) = 1;  

𝑝1:  𝑢1𝑡(ω) = −𝑊𝑡(ω)𝑡;  

𝑝2:  𝑢2𝑡(ω) = 𝑊𝑡
2(ω)𝑡2;  

𝑝3:  𝑢3𝑡(ω) = −𝑊𝑡
3(ω)𝑡3;  

𝑝4:  𝑢4𝑡(ω) = 𝑊𝑡
4(ω)𝑡4;  

⋮  
Now, the approximated solution of Equation (24) is given when p ⎯→ 1 as: 

𝑥𝑡(ω) = 𝑢0𝑡(ω) + 𝑢1𝑡(ω) + 𝑢3𝑡(ω) + 𝑢4𝑡(ω) + ⋯  

= 1 −𝑊𝑡(ω) 𝑡 +𝑊𝑡
2(ω) 𝑡2 −𝑊𝑡

3(ω) 𝑡3 +𝑊𝑡
4(ω) 𝑡4 +⋯  

= ∑ (− 𝑊𝑡(ω) 𝑡)
𝑖∞

𝑖=0   

=  
1

1+ 𝑊𝑡(ω) 𝑡
 .  

Which is the exact solution for Equation (24). 

Also, by using the LHPM, it is possible to find them by hand approximate solution, as 

follows: 

By assuming that 𝐿(𝑥) =
𝑑𝑥𝑡(ω)

𝑑𝑡
, 𝑁(𝑥) = 𝑊𝑡(ω) 𝑥𝑡

2(ω), 𝑔(𝑡, 𝑥𝑡(𝜔, 𝑝),𝑊𝑡(𝜔)) = 0, and to 

obtain an approximate analytical solution for (24), we must construct a homotopy function in 

accordance with Equation (7) as: 
𝑑𝑥𝑡(ω)

𝑑𝑡
−
𝑑𝑥0𝑡(ω)

𝑑𝑡
+ 𝑝 [

𝑑𝑥0𝑡(ω)

𝑑𝑡
+𝑊𝑡(ω) 𝑥𝑡

2(ω)] = 0. (26) 

Applying the Laplace transformation on Equation (26), give: 

𝑠L[𝑥𝑡(ω)] −  𝑥(0) = L [
𝑑𝑥0𝑡(ω)

𝑑𝑡
] − 𝑝L [

𝑑𝑥0𝑡(ω)

𝑑𝑡
] −𝑊𝑡(ω)𝑝 L[𝑥𝑡

2(ω)],  

and then by solving the last equation for L[𝑥𝑡(ω)], we get:  

L[𝑥𝑡(ω)] =
1

𝑠
[𝑥(0) + L [

𝑑𝑥0𝑡(ω)

𝑑𝑡
]] −

𝑝

𝑠
L [
𝑑𝑥0𝑡(ω)

𝑑𝑡
] −

1

𝑠
  𝑊𝑡(ω) 𝑝  L[𝑥𝑡

2(ω)].  

Applying Laplace invers transformation getting: 

𝑥𝑡(ω) = L
 −1 [

1

𝑠
[𝑥(0) + L [

𝑑𝑥0𝑡(ω)

𝑑𝑡
]]] − 𝑝L −1 [

1

𝑠
L [
𝑑𝑥0𝑡(ω)

𝑑𝑡
]]𝑊𝑡(ω)𝑝 L

 −1 [
1

𝑠
  L[𝑥𝑡

2(ω)]].  (27) 

Also, we assume a series solution for 𝑥𝑡(ω) in the form of (12), and we choose 𝑢0𝑡(ω) =

𝑥0𝑡(ω) = 1 as a first approximation for the solution for Equation (24) and substituting 

Equation (12) in Equation (27), will give: 

∑ 𝑝𝑖∞
𝑖=0 𝑢𝑖𝑡(ω) = L

 −1
[
1

𝑠
[𝑥(0)+ L [

𝑑𝑥0𝑡(ω)

𝑑𝑡
]]]− 𝑝L −1 [

1

𝑠
L [
𝑑𝑥0𝑡(ω)

𝑑𝑡
]]−

𝑊𝑡(ω)𝑝 L
 −1
[
1

𝑠
  L [[∑ 𝑝𝑢𝑖𝑡(ω)

∞
𝑖=0 ]

2
]]
𝑖

,  

and hence: 
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𝑢0𝑡(ω) + 𝑝 𝑢1𝑡(ω)+. . . = L
 −1
[
1

𝑠
[𝑥(0) + L [

𝑑𝑥0(0;ω)

𝑑𝑡
]]]− 𝑝L −1 [

1

𝑠
L [
d𝑥0(0;ω)

d𝑡
]]
−

𝑊𝑡(ω) 𝑝 L
 −1
[
1

𝑠
 L [[𝑢0𝑡(ω) + 𝑝 𝑢1𝑡(ω) + 𝑝

2 𝑢2𝑡(ω)+. . . ]
2
]]  

= L −1 [
1

𝑠
[𝑥(0) + L [

𝑑𝑥0𝑡(ω)

𝑑𝑡
]]]− 𝑝L −1 [

1

𝑠
L [
𝑑𝑥0𝑡(ω)

𝑑𝑡
]]−

    𝑊𝑡(ω) 𝑝 L
 −1
[
1

𝑠
 L[𝑢0𝑡

2 (ω) + 2𝑝𝑢0𝑡(ω) 𝑢1𝑡(ω) + 𝑝
2 𝑢1𝑡

2 (ω) +

    2𝑝2𝑢0𝑡(ω) 𝑢2𝑡(ω) + 2𝑝
3𝑢0𝑡(ω)𝑢3𝑡(ω) + 2𝑝

3𝑢1𝑡(ω) 𝑢2𝑡(ω) +

    𝑝4𝑢2𝑡
2 (ω) + 2𝑝4𝑢1𝑡(ω)𝑢3𝑡(ω) + 2𝑝

5𝑢2𝑡(ω)𝑢 3𝑡(ω) +𝑝
6𝑢3𝑡
2 (ω)+. . . ]

  

= L −1 [
1

𝑠
[𝑥(0) + L [

𝑑𝑥0𝑡(ω)

𝑑𝑡
]]] − 𝑝L −1 [

1

𝑠
L [
𝑑𝑥0𝑡(ω)

𝑑𝑡
+

𝑊𝑡(ω) 𝑢0𝑡
2 (ω)]]−𝑝2 𝑊𝑡(ω) L

 −1 [
1

𝑠
L[2 𝑢0𝑡(ω) 𝑢1𝑡(ω)]] − 

𝑝3 𝑊𝑡(ω) L
 −1
[
1

𝑠
L[𝑢1𝑡

2 (ω) +

2𝑢0𝑡(ω) 𝑢2𝑡(ω)]]−𝑝
4 𝑊𝑡(ω) L

 −1
[
1

𝑠
L[2𝑢0𝑡(ω) 𝑢3𝑡(ω) +

2𝑢1𝑡(ω) 𝑢2𝑡(ω)]]−𝑝
5𝑊𝑡(ω) L

 −1
[
1

𝑠
L[𝑢2𝑡

2 (ω) + 2𝑢1𝑡(ω)𝑢3𝑡(ω)+. . . ]] −

𝑝6𝑊𝑡(ω) L
 −1
[
1

𝑠
L[2𝑢2𝑡(ω) 𝑢3𝑡(ω)+. . . ]]− 

𝑝7𝑊𝑡(ω) L
 −1
[
1

𝑠
L[𝑢3𝑡

2 (ω)+. . . ]]+ …  . 

Now, by comparing the coefficients of like power of p, we get: 

𝑝0: 𝑢0𝑡(ω) = L
 −1 [

1

𝑠
[𝑥(0) + L [

𝑑𝑥0𝑡(ω)

𝑑𝑡
]]] ;  

𝑝1:  𝑢1𝑡(ω) = −L
 −1 [

1

𝑠
L [
𝑑𝑥0𝑡(ω)

𝑑𝑡
+𝑊𝑡(ω)𝑢0𝑡

2 (ω)]] ;  

𝑝2: 𝑢2𝑡(ω) = −𝑊𝑡(ω)L
 −1 [

1

𝑠
L[2 𝑢0𝑡(ω)𝑢1𝑡(ω)]] ;  

𝑝3:  𝑢3𝑡(ω) = − 𝑊𝑡(ω)L
 −1 [

1

𝑠
L[𝑢1𝑡

2 (ω) + 2𝑢0𝑡(ω)𝑢2𝑡(ω)]] ;  

𝑝4:  𝑢4𝑡(ω) =  − 𝑊𝑡(ω)L
 −1 [

1

𝑠
L[2𝑢0𝑡(ω)𝑢3𝑡(ω) + 2𝑢1𝑡(ω)𝑢2𝑡(ω)]] ;  

𝑝5: 𝑢5𝑡(ω) = −𝑊𝑡(ω)L
 −1 [

1

𝑠
L[𝑢2𝑡

2 (ω) + 2𝑢1𝑡(ω)𝑢3𝑡(ω) + ⋯ ]] ;  

and so on. 

Consequently, by solving the above differential equations for 𝑢0𝑡(ω), 𝑢1𝑡(ω), . .., getting: 

𝑢0𝑡(ω) = L
 −1 [

1

𝑠
[𝑥(0) + L [

𝑑𝑥0𝑡(ω)

𝑑𝑡
]]]  

= L −1 [
1

𝑠
[1 + L[0]]]  

= L −1 [
1

𝑠
] = 1;  

𝑢1𝑡(ω) = −L
 −1 [

1

𝑠
L [
𝑑𝑥 0𝑡

(ω)

𝑑𝑡
+𝑊𝑡(ω) 𝑢 0𝑡

2 (ω)]] = −L −1 [
1

𝑠
L[0 +𝑊𝑡(ω) [1]

2]]  

= −𝑊𝑡(ω) L
 −1 [

1

𝑠
L[1]]  
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= −𝑊𝑡(ω)L
 −1 [

1

𝑠2
] = −𝑊𝑡(ω) 𝑡;  

𝑢2𝑡(ω) = −𝑊𝑡(ω) L
 −1 [

1

𝑠
L[2 𝑢0𝑡(ω) 𝑢1𝑡(ω)]]  

= −𝑊𝑡(ω) L
 −1 [

1

𝑠
L[2 (1) (−𝑊𝑡(ω)  𝑡)]]  

= 𝑊𝑡
2(ω) L −1 [

1

𝑠
L[2𝑡 ]]  

= 𝑊𝑡
2(ω) L −1 [

1

𝑠
[
2

𝑠2
 ]]  

= 𝑊𝑡
2(ω)L −1 [[

2!

𝑠2+1
 ]] = 𝑊𝑡

2(ω) 𝑡2.  

By the same process, the results of 𝑢3𝑡(ω), 𝑢4𝑡(ω) are founded to be: 

𝑢3𝑡(ω) = −𝑊𝑡
3(ω) 𝑡3;  

𝑢4𝑡(ω) = 𝑊𝑡
4(ω) 𝑡4;  

and so on. 

By substituting the results of 𝑢0, 𝑢1, . .. in (12) and calculating the limit when p ⎯→ 1, we get 

the approximate solution of Equation (24) as: 

𝑥𝑡(ω) = 1 −𝑊𝑡(ω)𝑡 +𝑊𝑡
2(ω)𝑡2 −𝑊𝑡

3(ω)𝑡3 +𝑊𝑡
4(ω)𝑡4 +⋯.  

= ∑ (− 𝑊𝑡(ω) 𝑡)
𝑖∞

𝑖=0   

=  
1

1+ 𝑊𝑡(ω) 𝑡
  

which is the same as the exact solution for Equation (24). 

Figure 3 illustrates the approximation results for N = 500 and 1000 generations of Brownian 

motion that are given in Figure 1. 

 

 

 
  

Figure 3: Approximate results of Example 2 with 100 and 1000 generations of Brownian 

motion 

 

7. Conclusions 

     The HPM, gives us too accurate results as expected, while the hybrid method which 

combines the HPM and Laplace transformation, give exact results. But, the random part (or 

stochastic processes) in the suggested differential equation makes the behavior of the solution 

change according to the total numbers of Brownian motion generations. 
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