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Abstract:

In this paper, the homotopy perturbation method will be used in connection with
Laplace transformation method to give a hybrid approach as a modification of the
homotopy perturbation method to find the approximate solutions of random
ordinary differential equations. The approximate solution is proved also to converge
to the exact solution, in which the analysis of the proof is based on mean square
convergence of the sequence of a random process. The proposed hybrid approach is
effectively used to find the exact solution for the considered examples, which are
simulated and solved using two generations of Brownian motion with a total length
of signal processing, namely 500 and 1000 generations.
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1. Introduction

The random ordinary differential equation (RODE) is defined as differential equations
including random elements in their vector field. There are many researchers whose wrote a
lot of articles interested in random differential equations that have emerged in recent years,
such as [1] and [2]. To solve the RODE which sometimes does not close to the exact solution
or is difficult to evaluate, then it is important and essential to derive and use analytical
approximate or numerical methods to find the solution for such equations with its results
close to the exact solution as possible [3].

In the previous mathematical fields of science and engineering, RODE’s were studied with
the vector field including random variables instead of depending on stochastic processes parts
[4], [5]. Such RODE’s are still of major relevance in the field of uncertainty qualification
community, which are a specific instance of stochastic models explored by Xiaoying Han and
Peter E. Kloden, and will therefore not be discussed separately [6], [7] and [8]. In many real-
life applications such as engineering, natural sciences, biology (the population growth
problem), physics and in chemistry (the problems that include the rate of change that count
on the interaction of the basic particles), etc., which may contained the stochastic and/or
random process, that are going to produce models as RODE’s, so the solution of the
differential equation that is evaluated experimentally are indeed not predictable, [9].

The homotopy perturbation method (HPM) is a semi-analytical methodology for solving a
variety of linear or nonlinear mathematical problems. J. He suggested the HPM in 1999 [10],
and he developed a novel perturbation method facility using the homotopy approach. It does
not need small parameters in the equations, also can easily exclude the limitations of the
traditional perturbation techniques. Indeed, the small parameter assumption is still depended
on all known perturbation methods. So, these small parameters for several nonlinear
problems need numerous techniques for evaluating or estimating. Such parameters are
supersensitive and then any small swap in them will impact the results. A suitable alternative
of small parameters gives us perfect results.

The aim of this paper is to find the approximate solution of RODE’s using a hybrid
approach between Laplace transformation method in connection with the HPM and for
comparison purpose then we demonstrate the convergence of the obtained approximate
solution to the exact analytical solution. The hybrid approach is introduced by combining the
Laplace transformation method with the HPM, which will be abbreviated as LHPM, for the
sake of evaluating a highly efficient closed form of the solution. Two illustrative examples,
for linear and nonlinear RODEs, are given and simulated two simulated Brownian motion in
order to illustrate the applicability of the proposed approach of this article. Finally, some
conclusions gathered from this work are summarized.

2. Preliminaries

In this section, we will give some basic concepts, which are necessary to understand this
work. Stochastic process x(t, w) which is a family of random variables that is denoted in this
work by x;(w) (or briefly x;) of two variables t and ®, where t€[t, T] € [0,0), TER, ®e on
the probability space (€2, A, P), which assuming real values and as a function is P-measurable
with respect to o for each fixed t. The independent variable t is assumed to represent the time
increment, while x;(.) represents a random variable on the above probability space (2, and
x.(w) is considered a sample path or trajectory of the stochastic process, [11].
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Definition 2.1: [12] [A stochastic process W; t > 0, is said to be a Brownian motion or
Wiener process, if”:

I. “p({loe Q| W(w)=0})=1,1e,p(Wo=0)=1".

2. “For 0 <ty <t <...<ty the increments W, — W, , Wy, —W, ..., W, —W,  are
independent”.

3. “For an arbitrary ¢ and & > 0, W; + » — W; has a normal distribution with mean 0 and
variance h”.

In stochastic calculus, convergence of sequence of random variables may be defined using
different approaches and among them is given in the next definition which will be used in this

paper.

Definition 2.2: [13] “A sequence of random variables {x. (w)}, n €N, such that
E(x{ (w)) < oo, for all n €N is said to be converges in the mean square to x(w) if

lim |x, (@) - xe(w)|* = 07,

Now, consider the probability space (Q2, 4, P) and let W; : [0,T]xQQ ——> R™ be an R™-
valued stochastic process with continuous sample paths. Also, let g : R*xR™ —— R< be a

continuous function, then RODEs may be defined as [11]:

dxctl—(tw) = ’g(xt(w)’ Wf(w))a xt(w)e Rd, t e [O,T] (1)

To investigate the existence and uniqueness theorem, after a noise sample path is fixed, the
RODE (1) will be interpreted as an ODE with random variables included. Because the noise
modifies the vector field over time, it will resemble a non-autonomous ODE. If the vector
field function g in the RODE (1) is continuous in both of its variables and the sample path of
the noise process W; are continuous too, then the vector filed function g(x;(w), W;(w)) of
the related non-autonomous ODE for each fixed o is continuous in both of its variables.
Hence, conventional existence and uniqueness theorem of ODEs may be extended and
generalized to the RODEs and in this case is stated without proof. Among the classical
assumptions used in this theorem is to suppose that the vector field g given in Equation (1) is
at least continuous in both of its variables and the sample paths of the noise W; are
continuous. Fixing a sample path, i.e., ® with g(x;(w), W;(w)) then, the solution of the
initial value problem (1) is a continuously differentiable function x;(w) : [to, 7] —> R%
with x; (w) = x,, such that Equation (1) is satisfied when integrating both sides of this
equation gives the integral equation [11]:

xi(@) = %, + fy, 9(xs(@), Wy(w)) ds, 1 € [to, T]. @)
Hence, a solution of the Equation (1) is a solution of the integral Equation (2). The converse
also holds, whenever the solution x;(w) is differentiable.

3. Application of the HPM for solving RODEs
Ji Huan He presented the standard HPM in 1999 as a strong tool for solving a wide range
of linear and nonlinear problems. The HPM is viewed as a hybrid of the conventional
perturbation approach and homotopy analysis (which has a basis in topology), but it is not
limited to very small parameters as standard perturbation methods are. For example, the HPM
technique takes only a few iterations to achieve extremely precise results, rather than minimal
parameters or a linearization approach [10], [14].
To see how the HPM approach works, consider the following broad nonlinear problem in
operator form:
AWU)—-f(t) =0, teD,

with the following boundary conditions:

)
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B (u, ‘;—Lt‘) =0, tE€aD, 4)

where A is a generic differential operator, B is a boundary operator, f{(f) is a known
analytical function, and 6D is the domain's boundary. Operator 4 may be decomposed into
two operators L and N, where L is linear and N is nonlinear, such that the Equation (3) can be
modified and rewritten as:
LWU)+NW)—f(t)=0. (5)
In general, a homotopy function u(t,p): D X [0,1] —— R can be constructed to satisfy the
homotopy Equation [10]:

H(u,p) = (1 =p)IL(w) = LUyl +p[L(w) + N(w) — f(©)] =0,p € [0,1],t €D (6)
or equivalently:
H(u,p) = L(u) — L(Uy) + p[L(Up) + N(w) — f(O)] = O,p € [0,1],t € D (7)

where p € [0,1] is a homotopy parameter, and uo is the first approximation for the solution of
Equation (5) that satisfies the boundary conditions. Also, from Equation (6), one can have:
H(u,0) =L(w) — LUy =0,
Hu,1) =L(w)+N@)—f(t)=0.

Assuming that solution for Equation (6) after the equating the like powers of p can be written
as a power series of p as:

u(t,p) = Li2op'wi(t) = up + puy + p®uy + - @)
Substituting back Equation (8) into Equation (7) and equating similar powers of p terms
produces values for the sequence ug, u;, u2, ..., and when p —— I, it yields in the
approximate solution for Equation (3) in the form:

U= Li_r)r} u(t,p) = X 2op'ui(t) = ug + uqg +uy + . 9)

Now, the HPM will be used to solve the RODE’s (1), But firstly, rewrite Equation (1) in the
operator form as:

L(xe(w)) + N(xe(w)) — g(t, xe(w), We(w)) =0 (10)
and by letting L(x;(w)) = dx;im) , N(x¢(w)) = g(t, x;(w), W (w)), then the following
homotopy may be constructed u;(w,p): D X Q X [0,1] —— R, which satisfies:

d K dxe, (W) dxe, (W)
H(up) = SoB)_ Z0® oy p [0 gt up(w,p), We(w))| = 0 (11)
Axty(w) .

where p € [0, 1], — 8 the derivative of the initial approximation for the solution of
Equation (1). From (11) it follows that:

du;(w,p) B dx;, () _ o

H(w,0) = dt dt '
_ dut(wl p) _
H(u, 1) = T - g(t, ut(wl p)l Wt(w)) - O'

and the variation practicability of p from 0 to 1 is just like that of changing of u;(w, p) from
X, (W) to x¢(w). Therefore:
dug(w,0) dxy (@) _ dug(w,1)
dt a dt

— 9t ug(w, 1), We(w))
And
x¢, (w) = x;(w), tED.
Next, we assume that the solution Equation (11) can express as:
u(w,p) = LiZop' wy, (w). (12)
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Therefore, the approximate solution of Equation (1) is defined upon taking the limit as p
—1, 1€,

xi(w) = })i_r}r}ut(a), p) = Xio uit(w)- (13)
By substituting the approximated solution (12) in Equation (11), one can get:
© - duj, (w) dxt, (W) dx¢, (W) o , _
YitoP' —— — ¢ [ — 4 (t'2i=0 p'u;, (w), Wt(w))] = 0.

Now, equating the terms with identical powers of p, we get:
0. o, (@) _ dxey(@)
' dat dt

du,, (w) dx; (w)
h e = g (2, (), Wi (@) — 2 —
. dujt(w)

I = 9t ug-q), (@), We(w)), forall j = 2,3, ...

Consequently, by applying the first integral operator to the above differential equations in
order to calculate uy,, uy,, Uy,, . .., implying:
uot(a)) = Xt, ()
t
up, (@) = f, 9t 1o (@), Ws(w)) ds — x¢, (w)

t .
uj, (w) = ftog (t, u(j_l)s(w),Ws(w)) ds, forallj =2,3,...
Then, by using Equation (12), the approximate solution of RODEs (1) utilizing HPM is:
xp(w) = limu,(w,p)
Y id

= Liﬂ[uot(w) + puy, (@) + p?ug (@) +.... ] = T2 uy, (w). (14)

4. Convergence Analysis

In this section, the convergence of the solution series of (12) will be presented in connection
with the mean square convergence.

We start with the following which is known in kind of literatures as Cauchy Schwartz and
triangle inequalities.

Lemma 4.1: [15] Suppose that X and Y are random variables, then:

(O ENXYD < JE(XI1®) JVE(YI?.
(i) VEUX£YI2) <JEUXI2) +VE(YI.

In addition, inequality (i) is known as the Cauchy- Schwartz inequality for expectation,
and the inequality (i1) is known as the triangle inequality relate also to expectation.

Theorem 4.2: Suppose that A R is a Banach space with a norm ||. || = \/E|. |? over which
the sequence u;, (w) of (14) is defined. Assume also that the initial approximation ug, (w)
remains inside the ball of the solution u;(w). Taking r € R to be a constant, then the
following statements hold:

(a) If ||v(k+1)t(a))|| <r ||vkt(a))|| for all £, given some 0 <r <1, then the series
solution given by Equation (12) is absolutely converges when p = [ to the series given in
Equation (14) over the domain in which ¢ is defined.

(b) If the series solution defined in Equation (14) is convergent, then it converges to the
exact solution of the nonlinear problem (10).

Proof: (a) The proof is evidently based on the ratio test of the power series p. However, to be
able to provide an estimate of the HPM's truncation error, we will briefly present the entire
proof here.
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Suppose that S, (w) is a sequence of partial sums of the series (14), we need to show that
Sn,(w) is a Cauchy sequence in the Banach space 4. For this objective, consider
ISen+ 13, (@) = Sn (@] = [y, (@]
<7 Jlun, (@I <7 |-y (@] <7 [[ug-2), (@]
< e ™|y, (). (15)
It should be noted that, according to inequality (15), all of the approximations obtained from

homotopy (11) will fall within the ball containing u;(w). For every m,n € N,n > m, and
using (15) and the triangle inequality repeatedly, we have:

[52,(@) = S @] = JEISn, (@) = S, (@)

(Snt((‘)) - S(n—l)t(w)) + (S(n—l)t(w) - S(n—z)t((‘))) i

+... +(S(m+1)t((1)) - Smt ((1)))

= |E

2
= \/E|unt(a)) + u(n_l)t(w)+. . +U(m+1)t((1))|

= \/Elz:?=m+1 uit (w)lz

2
< Yitm+t 1/E|uit(w)| (by Lemma 4.1)

=\/E|u(m+1)t(a))|2+\/E|u(m+2)t(cu)|2+...+ ’E|unt(a))|2

= [lumeny @) + ey @)+ +[[un, (@]

< ™ H|ug, (@) || + 742 ||uo, (@)||+. .. 7™ uo, (@) |
= (™ 424 ™) ||ue, (@) |

= ™A+ r i ) (g, (W) ||

< ™A 4+ ||, ()|

m+1
= (=) o (@) (16)
Since 0 < r < 1, then we get from inequality (16)

Therefore, Sy, (w) is a Cauchy sequence in the Banach space 4, which implies that the series

solution (14) is convergent.

(b) Since, by hypothesis, the approximate series solution (14) is converge, then
lim u, (w) =0, and further producing the homotopy series coefficients u;, (w) of Equation
n—-oo

(12).

Now, from Equation (6), we get after substituting u; (w, 1) instead of u:
0=H(u(w,1),1) =1 - D[L(u(w, 1) = LU)] + 1 x [L(u(w, 1)) +
N(w(w, 1) - F©O)].
Thus, L(ui(®, 1))+ N(u(w,1))—f(®) =0, ie, L(u(w 1))+ N(u(w 1)) =£(0),
which means that u,(w, 1) = Y72, u;,(w) satisfied the original RODE (3), so us(w,1) =
i=o U;, (w) is the exact solution of the problem. This the complete the proof.  [J
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5. Application of Laplace-HPM

In this section, an improved approach will be introduced which is a hybrid between the
Laplace transformation method and the HPM (abbreviated as LHPM), this method may give
a closed form and accurate results.
To introduce this approach, apply first Laplace transformation to both sides of the homotopy
Equation (11) getting:

d i dxe, (w) dxty(w)
L {fuon) _ Do)y (856 gy (4, ), Wy(@))]} = 0

dt dt
and so
’ )
{22 L) (g ),

using the differential properties of the Laplace transformation we get:

sL{e(w,p)} — u(0) = L{Z 2} - pL{Z0 — (¢, 1, (0, p), W ()]

and so:

d dxey(w)
L{ue(o )} = Hu() + L= - p {;L {0 g(t u(w,p), Wt(w>)}} (18)
Utilizing the inverse of the Laplace transform for both sides of Equation (18), getting:

u(wp) = 1” 1{1{u<0)+L{M}}}—pL L g o W) a9)

Assuming that the solutions of (10) may be written as a power series of p, as provided in
Equation (12). Then substituting the Equation (12) into Equation (19), we get:

2optuy ) =17 oo+ {5 -

dx (w) ;
pL { L{ to (t Zl Opl ult((,()), Wt(w))}}-
Comparing coefficients of p with the same power leads to:

p°: up, (@) = L1 { {u(O) + L{dxto(w)}}}
p': up,(w) =L~ { {g(t Ug, (w), We(w)) — dxtst(w)}}

pl: uj, (w) = Lt {;L{g (t, Uj-1), (W), Wt(w))}}, forallj =2,3,....

Assuming that the initial approximation has the form u(0) = x, (w) = ao, u'(0) = ay, ...,

u™=1(0) = a,,_;: therefore, the approximate solution may be obtained as follows:
xe(w) = %)i_r)riut(w, p)

= Li_r)ri(uot(a)) + puy, (w) + pzuzt(a))+. . ) = Xizo i, ().

6. Illustrative Examples and Numerical Simulation:
In this section, two examples will be simulated and solved using the previously suggested
HPM and LHPM, but first, it is crucial to highlight that the production of distinct discretized
Brownian motions within the unit interval [0,1] will be explored. Figure 1 illustrates these
generations, which have total numbers N = 500 and 1000.
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Figure 1:Discretized Brownian path with 500 and 1000 generations.

Example 6.1: Consider the problem of solving the linear RODE [16]:
d
) = —x () + sIn(W, (@), X, (@) = Xo, (@) = 1,1 € [0,1], (20)

with the exact solution for comparison purposes as it is given in [7] by:
xp(w)=et+et fotessin(Ws(a))) ds.

First, consider the HPM and take the initial guess approximation to be x,,(w) = 1, and by

a ( )

=Lt x (@), N@) =0, gt x(wp), W () = sin(W,(w)).

Hence, define the homotopy functlon H(u,p) as:
det( )

assuming that L(x) =

Ot( )

H(u,p) = 2892 4y (w,p) — 52— xg, (@) + p [T + 6, () -
sin(W, (w))| = 0 Q1)
Now, substituting the approximated solution (12) in Equation (21), one can get
H(w,p) = 520! 2 4 52,0, (0) — T2 — xp, () +p[ZL2 4+
xot(oo) — sm(Wt(oo))] =0.
- [F0 2 4w )| + [ s u @)+, [du’;iw) 1, (0)| -
dxo, (w) dx,(w)

e xo,(w) +p X (@) - sin(Wt(oo))] =0.

Thus, by equating the coefficients of like powers of p will yields to:

dug, (w) dxg, (W)
P — =+, (@) = —E——xp,(w) =0
du ((o) dxo. (w)
phe Dy () + P 4 () - sin(Wy(@)) = 0

p’: du;;t(w) +u;, (w) =0, for allj =23, ...

Consequently, by solving the above differential equations for u; (w), for alli =0,1,2, ...,
one may get:
uot((ﬁ) =1
u,(w)=e "t +e™t fotes sin(W,(w)) ds — 1;
ujt(oo) =0, forallj =23, ....
Now, the approximated solution of Equation (20) is given when p ——1 as:
xe (W) = up, (w) + uyg, (W) + -
=1l4+et+et fotes sin(W;(w)) ds — 1
=et+et fotes sin(W,(w)) ds.
which is the exact solution for Equation (20).
Now, by using the LHPM, it possible to find the handy approximate solution as follows:
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By assuming L(x) = dxt—(m) + x;(w), N(x) =0, g(¢t, xt(w,p), Wi (w)) = sin(W;(w)) and in

order to obtain an approx1mate analytical solution for Equation (20), we must construct a
homotopy function in accordance to Equation (7) as:

dxt(u)) +x,(w) — dxot(oo) Ot(w) + [dxot(w) n xot(‘”) _ Sin(Wt((l)))] =0. (22)

Applying the Laplace transformatlon on Equation (22), give:
sLlxe(w)] = x(0) + Llx; (w)]

_ [dx‘;ft(‘”) + xot(w)l
L ldx‘zt( ) 0, (@)
— sin(Wt(w))l,
and then by solving the last above equation for L[x;(w)], getting'
Lixe ()] = = [x(O) L[y ot(w)]] 2L [ 2, (0) -
sin(Wt(oo))],

Applying Laplace invers transformation implies to:

() = L1 [ [ ©) +L[dx0t(0))+x0t(w)]” L L% L[ 4 ) -

sin(Wt(w))]]. (23)

Also, we assume a series solution for x;(w) in the form of Equation (12), and we choose
Up, (W) = xo,(w) =1 as a first approximation for the solution for Equation (20) and

substituting Equation (12) in Equation (23) will give:
Zﬁopiuit(w) =L_1[ x(0)+L[ +x0t(00)]H —pL7t i L [

dxg, () dxo, (w)

+ %o, (w) —
Now, comparing the coefficients of like power of p, we have:

p°: g, (@) = L™ [ lx(0)+L[dxot(m) +x0t(w)]”;

p*: uy, (w) = —L71 L%IL [dxot(w) + %o, (w) — sm(Wt(oo))]l

pl: uj,(w) =0, forallj =23,....
Consequently, by solving the above differential equations getting:

g, (@) = L‘ll [x(O) FL[E xot(oo)]”

=L"1 [— [1+ L[1]]]

S e R ey 3 Al HEBE

up, (w) = L7 [ﬁ L [dxot(m) + %o, (w) — sm(Wt(oo))”

= L1 [s-l-_l L[1- sm(Wt((»))]]
- _L- [ :

_ sin(We(w)) ]
s(s+1) s(s+1)

1
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=—1+e ¢ +sin(W,(w)) — sin(W,(w))et;
uj,(w) =0, forall j =23,...
By substituting the results of uy, (w), uq,(w),... back into Equation (12) and calculating the
limit when p —— 1, we get the approximate solution of Equation (20) to be as:
xt(w) = sin(W,(w)) — sin(W;(w))e™ +e7F,
which is the same as the exact solution of Equation (20).

Figure 2 illustrates the approximations results for N = 500 and 1000 generations of Brownian
motion that are given in Figure 1.

12

1279 N=500 N=1000

14 1

o4

b0
[=]
=

o
-
Solutions
o
@

Solutions

=

s
o
-

— M
—LHPM

——HPM

=]

P
o
)

—— LHPM

o
o

01 02 03 0.4 05 0.6 07 0.8 09 1
t

=]

0 0.1 0.2 0.3 0.4-1 05 06 0.7 0.8 0.9 1

Figure 2: Approximate results of Example 1 with 100 and 1000 generations of Brownian
motion.

Example 6.2: Consider the problem of solving the second order nonlinear RODE:

)+ W (w) xF(w) = 0,1 [0.1], (24)
with in1t1a1 condition x; (w) = xo,(w) = 1.
Similarly in the first example, using the HPM with the initial guess approximate solution

Yo, @)=1 and by assuming that L(x) =2 N(x) = W (0) x(w),
9t xi(w,p), We(w)) = 0. Hence, the homotopy function H(u,p) take the form:
dus(w,p) dxo, (@) dxg, (w)
H(up) = TeoB - 2ot 4 [0 1w () ué (w,p)| = 0, (25)

Now, substituting the approximated solution (12) in Equation (25), one can get:

- du; d d o 2
H(u,p) = Bi2op! e - Ty [T 41y (w0) [£20 p! g, (@)]]
_dug (@) | du ( ) §duj () _ dxg,(w) dxo (w)
- dtt tp t +ZJ =ob c;t c;t t ]+

pW (w)[EZ0p ult(w)] =0.

d d d
H(u )_ ugt(u)) +p ult( )—|—Z] 2 ujéiu)) Xodtt((l)) + p XOt((D)] +

w 2
p t((l))[uo (00) +pug, (@) + pPuy, (W) + -] =0.
dug, (w) duq, (w) jduj (@) dig, (@)

Ot tp 1t + ZJ 2P ;tt (r)itt

+p ["""f( M Wt(w)uotao)] + pPW, ()20, (@) 1y, ()]

+p° Wi (w) [2ug,(w) tz,(w) + i, (w)]

+p° Wi () [2uy, (w)us, (@) + ud, (0)+...]

+p° Wi(w) [2uz, (@)uz,(w) + -] + p” Wi(w) [u3, (@) + - |+...= 0.

Thus, by equating the coefficients of like powers of p will yields to:
0. duot(w) _ dxot((*)) .

)

H(u,p) =

dt( )_ d (w)
duq,(w dxg, (W
L. —;ft =— [ o 4 Wt((n)uot(u))]
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p?: d”ii_tt("’) = —W,(w)[2uo, (0)uy, (0)];
p3: T = W ()[2uo, (@)itz, (@) + 1, ()];
p*: mz_t;m = W (w) [Zuot(m)u3t(w) + ult(w)uzt(w)];

Consequently, by applying the first integral operator to the above differential equations, to
calculate ug,, uq,, Uy, ..., we get:

p°: uot(w) =1

p*: Uy, (w) = —We(w)t;

p*: Uy, (w) = W (w)t?;
p*: uz, (w) = —W3(w)t>;
p*: Uy, () = Wit (w)t?;

Now, the approximated solution of Equation (24) is given when p —— 1 as:
xe (W) = up, () + Uy, (w) + usz, (0) + Uy, () + -
=1—-Wy(w)t+ Wi(w) t? — W2 (w) t3 + WHw) t* +
= Z?io(l_ We(w) t)*
T Lwm)t
Which is the exact solution for Equation (24).

Also, by using the LHPM, it is possible to find them by hand approximate solution, as
follows:

By assuming that L(x) = 5 N(x) = W, (w) xf(w), g(t, xc(w,p), We(w)) = 0, and to

obtain an approximate analytical solution for (24), we must construct a homotopy function in
accordance with Equation (7) as:

o) _ ) 4 p [ 4 Wy (w) 12 ()] = 0. (26)
Applying the Laplace transformation on Equation (26), give:
sLExe(@)] = 2(0) = L[262] - pL[=] — W, (w)p LIx? ()],
and then by solving the last equation for L[x;(w)], we get:
1 dxg, (w) dx (w)
()] = £ [x(0) + L[Z22) | - L[] - 2w 0) p Lix2 ()]

Applying Laplace invers transformation getting:
xt((o)=L‘1[ [x(0)+L[dx°t(w)]] pL- 1[1 d"‘)t(‘”)]] W, (w)p L~ 1[ L[xtz(oo)] 27)

Also, we assume a series solution for x;(w) in the form of (12), and we choose uy, (w) =
Xo,(w) =1 as a first approximation for the solution for Equation (24) and substituting
Equation (12) in Equation (27), will give:

SZop'u(w) =L [ [ (0)+L[d"°t("”]”_p [S donw)”

WL~ [} Lz2epu, @],

and hence:
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o, (0) + pug, (@) +.. —L_l[ [ (0)+L[dxo(00)) ]] p —1[ L[dxo(o w)”_

Wi(w)pL™" [1 [[uot(w) +p uy, (w) + p? uzt(u))+...]2”

e e

We(w) p L[5 L[uf, (@) + 2pug, () ug, (w) +p? uf () +
2p?up, () Uz, () + 2p3ug, (W)us, (W) + 2p3uy, (w) Uy, (w) +
p*u3, (w) + 2p*uy, (w)usz,(w) + 2p° Uz, (W)u, (w) +puj, (w)+... |

e s | e

W, (w) uot(oo)” —p? W,(w) L~ L L[2 up, (w) ult(w)]] -

p3 Wi(w) L™ [%L[u%t(w) +

2, (@) tz, (0)] | =p* We(@) L™ [L[2u0, () 3, (o) +

2uy,(w) uzt(w)]] —pW(w) Lt [%L[u%t(w) + 2uy, (w)uz, (w)+. ]] -
pSW(w) L7* [%L[Zuzt(oo) ugt(w)+...]] —

-1[1
p"W(w)L™? [; L[u%t(w)+...]] +
Now, by comparing the coefficients of like power of p, we get:

p: ug, () = L~ [ [x(O) L ["""t“’)]”;

Pl up, () = —L! [ L[ Wt<w>u3t(w)]];

p*: uzt((ﬂ) = —W(w)L~ [S L[Z uot(w)uh(ﬂ))]]}
P s, (@) = = W)L [2L[u, (@) + 20, (@), @]
P e, (@) = = W)L [FL[2u0, (@), (0) + 201, (@)t ()] |

11
p:ug, (w) = W, (@)L [;L[ugt(w) + 2uy, (0)us, (w) + ]]
and so on.
Consequently, by solving the above differential equations for uy, (w), uy,(w), . .., getting:

ug, (w) =L71 ll x(0) + L d"°t(‘°> ”
— 1! L [1+L[ ]]]
v

= [

— —W,(@) L" LL ]

% g, (6)

+Wt(oo)u (oo)” —-L- [ L[0 + W, (w) [1]?]
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= W ()L 5] = -W () &

t, (0) = =Wy(@) L7 [2L[2 0, (0) w, ()]
= W @) L7 2112 (D (W) 0]
= W2(w) L1 EL[Zt ]]

= wi 1 [ [5]]
= W2 ()L™ [Lfﬂ ” = W2(w) t2.
By the same process, the results of us, (), uy, (w) are founded to be:
uz, (w) = —We (w) t3;
Uy, (W) = Wit (w) t%;
and so on.

By substituting the results of ug, uy, ... in (12) and calculating the limit when p —— 1, we get
the approximate solution of Equation (24) as:
x (W) =1—We(w)t + Wtz'(oo)t2 - W2 (w)t3 + Wi(w)t* + ---.
= Z?io(l_ W (w) 8)*

T W)t
which is the same as the exact solution for Equation (24).
Figure 3 illustrates the approximation results for N = 500 and 1000 generations of Brownian
motion that are given in Figure 1.
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Figure 3: Approximate results of Example 2 with 100 and 1000 generations of Brownian
motion

7. Conclusions

The HPM, gives us too accurate results as expected, while the hybrid method which
combines the HPM and Laplace transformation, give exact results. But, the random part (or
stochastic processes) in the suggested differential equation makes the behavior of the solution
change according to the total numbers of Brownian motion generations.
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