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Abstract  

     In this research, a new weighting method was presented based on the truncated 

fractional Mittag-Leffler function. Alternatives to Jacobi polynomials represented 

by the Chelyshkov polynomial with the orthogonal property and the fractional 

degree were relied upon. This approach is based on weighted residual methods. The 

differential equations are converted into a system of linear or nonlinear algebraic 

equations. Accurate results were obtained in various applications, and the 

convergence of the proposed method was studied and the Chelyshkov polynomial 

was compared with other functions. In addition, weighting methods were compared. 

In comparison with other methods, the results showed the efficiency of the proposed 

method in solving such types of fractional equations. 

 

Keywords: Chelyshkov polynomials, Mittag-Leffler weight Method, Weighted 

residual method, Fractional derivative, Spectral method. 

 

ليفلر الطيفية الجديدة المعتمدة على كثيرات حدود تشيليشكوف الكسرية لحل أنواع  -طريقة ميتاج 
 متعددة من المعادلات التفاضلية الاعتيادية الكسرية 

 
 عبد الرزاق طلال عبد 1*, اخلاص سعد الله الراوي 2

 1الرياضيات, كلية التربية للعلوم الصرفة, جامعة الموصل, الموصل, العراق 
 2الرياضيات, كلية علوم الحاسوب والرياضيات, جامعة الموصل, الموصل, العراق

 

  الخلاصة 
ليفلر الكسرية المبتورة. تم الاعتماد  -في هذا البحث تم تقديم طريقة جديدة للترجيح تعتمد على دالة ميتاج     

والدرجة   التعامدية  الخاصية  ذات  تشيليشكوف  حدود  كثيرة  في  الممثلة  جاكوبي  حدود  كثيرات  بدائل  على 
إلى أنظمة من   الكسرية. يعتمد هذا النهج على الطرائق المتبقي المرجح، اذ يتم تحويل المعادلات التفاضلية 
المعادلات الجبرية الخطية أو غير الخطية. تم الحصول على نتائج دقيقة في تطبيقات مختلفة، وتمت دراسة  
تقارب الطريقة المقترحة ومقارنة متعددة حدود تشيليشكوف مع الدوال الأخرى. بالإضافة إلى ذلك، تمت مقارنة  
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طرائق الترجيح. وبالمقارنة مع الطرق الأخرى أظهرت النتائج كفاءة الطريقة المقترحة في حل مثل هذا النوع  
 من المعادلات الكسرية.

 

1. Introduction 

Many real-world applications result in differential equations with various differential 

operators, and the issues become more complex according to the nature of natural 

phenomena. Despite the availability of many analytical methods, nevertheless, there are more 

difficulty in determining the exact solution to many mathematical models [1].  

The numerical solution is considered one of the most important alternative methods to obtain 

a solution that is close to the analytical solution. One of the numerical methods is to reduce 

the residual error function to zero. These methods are known as weighted residual methods 

(WRM). The WRMs depend on calculus of variation in finding the minimum approximation 

[2]. Orthogonal polynomials are often chosen due to two properties: the first is that they are 

analytical in wide fields and the second is that the orthogonality property reduces and 

facilitates mathematical operations [3]. 

Chelyshkov polynomials  (CPs) are introduced as a suitable alternative to orthogonal Jacobi 

polynomials in the interval [0,1] [4]. CPs used as a basic function to solve different types of 

differential equations. The Tau method was applied to solve the Bagley-Torvik equation [5]. 

The collocation method (COM) has also been used to solve the system of FODEs [6]. The 

results obtained from applying CPs were compared with Bessel, Chebyshev, and Legendre 

polynomials, and the results show superiority to fractional Chelyshkov polynomials [7], [8], 

[9]. 

      In this work, instead of using the collocation method, different types of weighted residual 

methods will be applied, in addition to proposing a new weight function, and a comparison 

will be made between the most commonly used polynomials. Furthermore, the importance of 

Chelyshkov fractional polynomials will be highlighted. In addition, the Mittag- Leffler 

function is proposed to be the weight function in Petrov- Galerkin method. The field of 

applying this proposed method are linear and nonlinear FODEs with constant and variable 

coefficient. Furthermore, the solution delay FODEs and system of FODEs are also provided. 

1.1 Fractional Derivative. 

Let 𝑓(𝑡)   be a function defined on [𝑎, 𝑏], and suppose 𝛼 > 0, the Caputo fractional derivative 

is defined as [10] 

𝐷𝑡𝑎
 𝐶 𝛼

𝑓(𝑡) =
1

Γ(𝑛 − 𝛼)
∫ (𝑡 − 𝑢)𝑛−𝛼−1

𝑑𝑛

𝑑𝑢𝑛
𝑓(𝑢)𝑑𝑢

𝑡

𝑎

 
(1) 

where 𝑛 − 1 < 𝛼 < 𝑛. 

If 𝑓(𝑡) = 𝑡𝑝 then, 

𝐷𝑡0
 𝐶 𝛼

𝑡𝑝 =
𝛤(𝑝 + 1)

𝛤(𝑝 − 𝛼 + 1)
𝑡𝑝−𝛼,       𝑝 ≥ 𝑛  

(2) 

In Caputo's concept, the function 𝑓(𝑡) must be continuous and differentiable 𝑛 times on 

[𝑎, 𝑏], in addition, the initial conditions in the fractional differential equation must be of the 

integer order. Furthermore, the derivative of the constant function is always zero [11].  

 

1.2 Weighted Residual Method (WRM) 

Let us assume the following differential equation [2]: 

 

𝐴𝑢(𝑥) = 𝑞(𝑥), (3) 
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where 𝐴 is a fractional differential operator and 𝑢 is an unknown function defined on the 

Hilbert space 𝐻(𝑎, 𝑏), and this function is approximated by writing it as a linear combination 

of a expansion functions 𝑁𝑘(𝑥)  as follows: 

𝑢(𝑥) ≈ 𝑈𝑛(𝑥) = ∑ 𝑐𝑘𝑁𝑘(𝑥)

𝑛

𝑘=0

 
(4) 

Substitute 𝑈𝑛(𝑥) in relation (3) to get the following residual function: 

𝑅(𝑥) = 𝐴𝑈𝑛(𝑥) − 𝑞(𝑥) ≠ 0 (5) 

The following theorem is a fundamental theorem to reduce 𝑅(𝑥) to the minimum.  

 

Theorem (1) [12]. Suppose 𝑅(𝑥) be a function defined on 𝐻(𝑎, 𝑏), let the value of the 

following integral be verified for any given function 𝑤(𝑥) defined on 𝐻(𝑎, 𝑏), i.e.  

∫ 𝑅(𝑥)𝑤(𝑥)𝑑𝑥 = 0,
𝑏

𝑎

 
(6) 

then,    
𝑅(𝑥) = 0, ∀ 𝑥 ∈ (𝑎, 𝑏) 

These methods are divided into several types, the most important of which are: 

 

1.2.1 Galerkin Method (GM) [2] 

In this method the weighted function depends on the expansion function, that is: 

𝑤𝑘(𝑥) = 𝑁𝑘(𝑥) (7) 

 

1.2.2 Petrov-Galerkin Method (PGM) [2] 

In this method, the expansion function is not relied upon, but other functions analytical in 

𝐻(𝑎, 𝑏) are used. Several methods fall under this method, for instance, the collocation 

method (CM), subdomain method (SM), and momentum method (MM). 

 

1.2.3. Least Squares Method (LSM) [2] 

This method relies primarily on making the slope of the norm function of the residual for the 

unknown coefficients equal to zero, i.e. 
𝜕

𝜕𝑐𝑘
∫ 𝑅2(𝑥)𝑑𝑥 = 0

 

Ω
, which leads to 

2 ∫ 𝑅 (𝑥)
𝜕𝑅(𝑥)

𝜕𝑐𝑘
𝑑𝑥 = 0

 

Ω
 , so the weighted function is defined by: 𝑤 𝑘

(𝑥) =
𝜕𝑅(𝑥)

𝜕𝑐𝑘
. 

 

1.3 Chelyshkov Polynomials. 

The Chelyshkov polynomials are defined by [8]: 

𝐶𝑁𝑛(𝑥) = ∑ 𝛾𝑁𝑛𝑘
𝑁
𝑘=𝑛 𝑥𝑘, 𝑛 ∈ 𝐼𝑁 (8) 

where,   𝑥 ∈ 𝐼 = [0,1] , 𝐼𝑁 = {0,1, … , 𝑁}, and 𝛾𝑁𝑛𝑘 = (−1)𝑘−𝑛 (
𝑁 − 𝑛
𝑘 − 𝑛

) (
𝑁 + 𝑘 + 1

𝑁 − 𝑛
). 

The relation (8) represents CPs of Degree 𝑁, it can be generalized to a fractional order 𝑣𝑁 , 

where 0 < 𝑣 ≤ 1 as follows: 

𝐶𝑁𝑛𝑣(𝑥) = ∑ 𝛾𝑁𝑛𝑘
𝑁
𝑘=𝑛 𝑥𝑘𝑣,              𝑛 ∈ 𝐼𝑁 

(9) 

The interval 𝐼 can be generalized 𝑡𝑜 𝐼𝑏  =  [0, 𝑏] according to the following relationship [9]: 

𝐶𝑁𝑛𝑣(𝑥) = ∑ 𝛾𝑁𝑛𝑘
𝑁
𝑘=𝑛 (

𝑥𝑣

𝑏
)

𝑘

 ,              𝑛 ∈ 𝐼𝑁 
(10) 

By applying the fractional Caputo derivative to relation  (9), we obtain the following : 
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𝐷𝛼𝐶𝑁𝑛𝑣
 (𝑥) = {

∑ 𝛾𝑁𝑛𝑘
𝑁
𝑘=𝑛

𝛤(𝑘𝑣+1)

𝛤(𝑘𝑣−𝛼+1)
𝑥𝑘𝑣−𝛼 , 𝑘𝑣 ≥ 𝑚 + 1

   
0 , 𝑘𝑣 < 𝑚 + 1

}, 

(11) 

where, 𝑛 ∈ 𝐼𝑁 , 𝑚 < 𝛼 < 𝑚 + 1 

One of the most important properties that characterize these functions is the orthogonality 

property with weighting 𝑤𝑣(𝑥) = 𝑥𝑣−1, which is given according to the following 

relationship: 

∫ 𝐶𝑁𝑛(𝑥)𝐶𝑁𝑘(𝑥)𝑤𝑣(𝑥)𝑑𝑥
𝑏

0
= {

𝑏

𝑣(𝑘+𝑛+1)
, 𝑛 = 𝑘

   
0 , 𝑛 ≠ 𝑘

}, 𝑛, 𝑘 ∈ 𝐼𝑁 

(12) 

 

1.3 .1 The Expansion Approximation and Errors. 

Consider the weighted space 𝐿𝑤𝑣
2 (𝐼) , which is defined by[13]: 

     𝐿𝑤𝑣
2 (𝐼) = {𝑓: 𝐼 → ℝ; 𝑓 𝑖𝑠 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒 𝑜𝑛 𝐼, ∫ |𝑓(𝑥)|2𝑤𝑣(𝑥)𝑑𝑥 < ∞

1

0
}   (13) 

The inner product and the norm are provided by: 

〈𝑓, 𝑔〉𝑤𝑣
= ∫ 𝑓(𝑥)𝑔(𝑥)𝑤𝑣(𝑥)𝑑𝑥

1

0

  , ‖𝑓‖𝑤𝑣
= 〈𝑓, 𝑓〉

1
2

𝑤𝑣
   

(14) 

 

Suppose 𝑆𝑁 = 𝑠𝑝𝑎𝑛{𝐶𝑁0𝑣(𝑥), 𝐶𝑁1𝑣(𝑥), … , 𝐶𝑁𝑁𝑣(𝑥)} a finite-dimensional base and a 

subspace of 𝐿𝑤𝑣
2 (𝐼). For any function 𝑦(𝑥) ∈ 𝐿𝑤𝑣

2 (𝐼) there exists a unique approximation 

𝑦𝑁(𝑥) ∈ 𝑆𝑁 and satisfied the following conditions: 
‖𝑦 − 𝑦𝑁‖𝑤𝑣

 ≤ ‖𝑦 − 𝑌‖𝑤𝑣
 , ∀ 𝑌 ∈ 𝑆𝑁 (15) 

Furthermore, it can be expanded 𝑦𝑁(𝑥) by a fractional Chelyshkov polynomials as: 

𝑦𝑁(𝑥) = ∑ 𝑎𝑘𝐶𝑁𝑘𝑣
 (𝑥)

𝑁

𝑘=0

 

(16) 

Multiply both sides of relation (16) by 𝐶𝑁𝑛𝑣
 (𝑥)𝑤𝑣(𝑥) and integrated the results from 0 to 𝑏, 

so we get: 

∫ 𝑦𝑁(𝑥)𝐶𝑁𝑛𝑣
 (𝑥)𝑤𝑣(𝑥)𝑑𝑥

𝑏

0

= ∑ 𝑎𝑘 ∫ 𝐶𝑁𝑘𝑣
 (𝑥)𝐶𝑁𝑛𝑣

 (𝑥)𝑤𝑣(𝑥)
𝑏

0

𝑑𝑥 
 

𝑁

𝑘=0

 

The following result is obtained by applying the orthogonality property (12): 

𝑎𝑛 =
𝑣(2𝑛 + 1)

𝑏
∫ 𝑦𝑁(𝑥)𝐶𝑁𝑛𝑣

 (𝑥)𝑤𝑣(𝑥)𝑑𝑥
𝑏

0

, 𝑛 ∈ 𝐼𝑁 , 

 

(17) 

that is: 

𝑎𝑛 =
〈𝑦, 𝐶𝑁𝑛𝑣

 〉𝑤𝑣

〈𝐶𝑁𝑛𝑣
 , 𝐶𝑁𝑛𝑣

 〉𝑤𝑣

, 𝑛 ∈ 𝐼𝑁 
(18) 

Theorem (2) [6]. Suppose 𝐷𝑛𝑣𝑦(𝑥) ∈ 𝐶[0,1], 𝑛 ∈ 𝐼𝑁+1 and let 𝑦𝑁(𝑥) be the best 

approximate to the function 𝑦(𝑥) then the bound of error is given by: 

‖𝑦 − 𝑦𝑁‖𝑤𝑣
 ≤

𝑄𝑣

Γ(1+(𝑁+1)𝑣)

1

√(2𝑁+3)𝑣
 , where,  𝑄𝑣 = sup

0<𝑥≤1
{|𝐷(𝑁+1)𝑣𝑦(𝑥)|}. 

 

(19) 

2. New Mittag-Leffler Weight Method (MLWM) 

The Mittag- Leffler function of two parameters 𝛼 𝑎𝑛𝑑 𝛽 is defined by:  
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𝐸𝛼,𝛽(𝑥) = ∑
𝑥𝑗

Γ(𝛼𝑗 + 𝛽)

∞

𝑗=0

 
(20) 

 In this research, the truncated Mittag- Leffler function is suggested to be the weight function. 

Furthermore, the parameter 𝛼 is computed by the minimum fractional order that appears in 

the governing differential equation. Since the degree of the Chelyshkov polynomials may be 

a fraction, it is multiplied by the fraction part   𝑥𝑣−1.  So, the Mittag-leffler weights are 

defined by: 

𝑀𝑘(𝑥) = ∑
𝑥𝑗+𝑣−1

Γ(𝛼𝑗 + 1)

𝑘

𝑗=0

 

(21) 

Proposition (1). If the weight function is defined as wk(x) =  𝑀𝑘(𝑥) in the integral represent 

by equation (6), then the residual 𝑅(𝑥) is vanished. 

Proof:  for all 𝑘 = 1,2, … , 𝑁 − 𝑚, the functions 𝑀𝑘(𝑥) are analytic on 𝐻(0, 𝑏). Suppose 

𝑅(𝑥) ≠ 0, then either 𝑅(𝑥) > 0 , or 𝑅(𝑥) < 0, if it is positive for some subinterval [𝑎1, 𝑏1] in 

[0, 𝑏]. Since 𝑀𝑘(𝑥) > 0, ∀ 𝑘, in addition, the value of 𝑀𝑘(𝑥) = 0 only if 𝑥 = 0. But the 

value of the following integral is positive and not equal to zero, 

∫ 𝑅(𝑥)𝑀𝑘(𝑥)𝑑𝑥 = ∫ 𝑅(𝑥) ∑
𝑥𝑗+𝑣−1

Γ(𝛼𝑗 + 1)

𝑘

𝑗=0

𝑑𝑥 > 0,
𝑏1

𝑎1

𝑏

0

 

(22) 

which is a contradiction with the hypotheses. Therefore 𝑅(𝑥) = 0. 
 

3. The Proposed Method (MLWM-CPs) 

Consider the following fractional differential equation of order 𝑚: 

𝐴𝑢(𝑥) = 𝐿𝛼𝑢 + 𝐿𝑢 + 𝐹(𝑢) = 𝑞(𝑥), 𝑥 ∈ [0, 𝑏] (23) 

 where 𝐿, 𝐿𝛼   be a linear differential operator of integer and fractional order respectively, and 

𝐹 be a nonlinear operator. This differential equation satisfies the following initial or boundary 

conditions 

𝐿0𝑢(0) = 𝑎𝑖, 𝑖 = 1,2, … , 𝑚 (24) 

𝐿0𝑢(0) = 𝑎𝑖, 𝐿1𝑢(𝑏) = 𝑏𝑗, 𝑖 + 𝑗 = 𝑚, where 𝐿0, 𝐿1 𝑙𝑖𝑛𝑒𝑎𝑟 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 (25) 

Suppose the approximate solution of equation (23) can be written as a Chelyshkov 

polynomials as follows: 

𝑢𝑁(𝑥) = ∑ 𝑐𝑘𝐶𝑁𝑘𝑣
 (𝑥)

𝑁

𝑘=0

 

(26) 

Substituting (26) in (23) we get: 

∑ 𝑐𝑘{𝐿𝛼 + 𝐿}

𝑁

𝑘=0

𝐶𝑁𝑘𝑣
 (𝑥) + 𝐹 (∑ 𝑐𝑘𝐶𝑁𝑘𝑣

 (𝑥)

𝑁

𝑘=0

) = 𝑞(𝑥),  
(27) 

 

The following is computed by multiplying relation (27) by the Mittag-Leffler weights  

𝑀𝑗(𝑥), 𝑗 = 1,2 … . , 𝑁 − 𝑚 and integrate the result, so 

∫ [∑ 𝑐𝑘{𝐿𝛼 + 𝐿}

𝑁

𝑘=0

𝐶𝑁𝑘𝑣
 (𝑥) + 𝐹 (∑ 𝑐𝑘𝐶𝑁𝑘𝑣

 (𝑥)

𝑁

𝑘=0

)] 𝑀𝑗(𝑥)
𝑏

0

 𝑑𝑥 = ∫ 𝑞(𝑥)𝑀𝑗(𝑥) 𝑑𝑥
𝑏

0

,  
(28) 

 

which leads to 𝑁 − m of a nonlinear system of equations, by applying the initial or boundary 

conditions, it can obtain 

𝐿0 ∑ 𝑐𝑘𝐶𝑁𝑘𝑣
 (0) = 𝑎𝑖

𝑁
𝑘=0 , 𝑖 = 1,2, … , 𝑚 (29) 
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𝐿0 ∑ 𝑐𝑘𝐶𝑁𝑘𝑣
 (0) = 𝑎𝑖

𝑁
𝑘=0 , 𝐿1 ∑ 𝑐𝑘𝐶𝑁𝑘𝑣

 (𝑏)𝑁
𝑘=0 = 𝑏𝑗, 𝑖 + 𝑗 = 𝑚. (30) 

  

Thus, the required coefficients are obtained by solving the given system of 𝑁 + 1 nonlinear 

equations. If 𝐹(𝑢) = 0, then the differential equation is linear and it is reduced to a system of 

linear algebraic equations. 

 

4. Numerical Examples. 

     The examples illustrate the efficiency of the proposed method in solving fractional 

differential equations, in addition to studying the efficiency of the CPs as an expansion 

function, and comparing the results with other famous polynomials (see Ex1 and Ex3). The 

effect of fractional degrees is also studied (see Ex2 and Ex3). Side by side, the effect of 

weighted residual methods on the solution results are discussed, and the Mittag-Leffler 

method is compared with other famous methods in Petrov- Galerkin, Galerkin, and the least 

squares method (see Ex1 and Ex3). Finally, the effect of the length of the interval 𝐼 on the 

accuracy of the approximate solution is detected (see Ex4). The remaining examples are 

presented to illustrate the efficiency of the method in solving different types of fractional 

differential equations. The following experiments are implemented using MATLAB 2020a. 

The root mean squares error (RMS) is used to compare the errors. The RMS is determined by 

[14]: 

𝑅𝑀𝑆 = √∑
(𝑦(𝑥𝑖) − 𝑦𝑁(𝑥𝑖))

2

𝑀

𝑀

𝑖=1

 

(31) 

where 𝑥𝑖 ∈ [0, 𝑏], ∀𝑖, 𝑦 the exact solution, and 𝑦𝑁 is the approximate solution. 

  

Example 1.  Consider the following Fractional Dynamic Model of Bagley-Torvik [5]: 

𝑢′′ +
1

2
𝑢(𝛼) + 𝑢 = 𝑓(𝑥), 0 < 𝛼 < 2, 

where, 𝑓(𝑥) = 𝑥6 − 𝑥5 +
360𝑥6−𝛼

Γ(7−𝛼)
−

60𝑥5−𝛼

Γ(6−𝛼)
+ 30𝑥4 − 20𝑥3, with boundary conditions: 

𝑢(0) = 𝑢(1) = 0, and the exact solution is 𝑢(𝑥) = 𝑥6 − 𝑥5. 

Using the proposed method (MLWM-CPs), when 𝑁 = 6, and α = 0.5, the approximate 

solution is given by:𝑈(𝑥) = −2.1503𝑒 − 18𝑥 + 3.7569e − 19𝑥2 − 9.0427𝑒 − 19𝑥3 +
4.4813e − 18𝑥4 − 𝑥5 + 𝑥6. 

The difference between exact and approximate solutions are showed in Figure 1, as can be 

seen, the error is of the order 10−18 in most values. 

 

  
(b) (a) 

Figure 1:Describes the performance of the solution for Ex. 1, where (a) presents both 

the exact and approximate solutions with parameters set to N = 6, and α = 0.5. 

Furthermore, (b) displays the graph representing the absolute error related to Ex. 1. 
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Error! Reference source not found.) shows the effect of weighted residual methods on the a

pproximate solution using CPs when 𝑁 =  6, 𝛼 =  0.5. It should be noted that these methods 

provide approximate solutions with fairly close accuracy, but the Galerkin method has the 

orthogonality property. Furthermore, the Mittag-Leffler method is considered the fastest 

method to reach the approximate solution, which reduces the significant computational effort 

compared to other methods. If there is complexity in using integrals in linear and nonlinear 

systems, then it is preferable to use the collocation method because it is free from calculating 

integrals, but it depends on the appropriate choice of collocation points. 

 

Table 1: Explain the effect of weighted residual methods on the approximate solution. 

Time consumed (second) RMS Weighted residual method 

7.47 𝟐. 𝟕𝟒𝟓𝐞 − 𝟏𝟗 GM -CPs 

12.18 3.1081e − 19 CM -CPs 

15.50 3.1079e − 19 SM -CPs 

𝟑. 𝟖𝟖 3.1081e − 19 MM -CPs 

𝟐. 𝟐𝟑 3.1079e − 19 MLWM -CPs 

16.86 3.1080e − 19 LSM -CPs 

 

Error! Reference source not found.) explain the effect of the value of 𝛼 and 𝑁 on the a

pproximate solution using the proposed method. The root means square error (RMS) is 

calculated in each case. We note that in this example, the value of α has a slight effect, while 

the accuracy of the approximate solution increases with the value of 𝑁, and the solution 

stabilizes when 𝑵 ≥ 𝟔. It should be noted that when using fractional CPs with effect 𝑣, they 

must also be 𝑵𝒗 ≥ 𝟔 to obtain a suitable approximate solution. 

 

Table 2: shows the effect of the value of α on the approximate solution using MLWM-CPs 

𝛂 = 𝟏. 𝟓 𝛂 = 𝟎. 𝟗 𝛂 = 𝟎. 𝟕 𝛂 = 𝟎. 𝟓 𝛂 = 𝟎. 𝟑  

0.0324 0.0365 0.0364 0.0358 0.0352 𝑁 = 3 

0.0223 0.0249 0.0246 0.0242 0.0239 𝑁 = 4 

0.0071 0.0080 0.0079 0.0077 0.0076 𝑁 = 5 

3.965e − 19 5.014e − 19 3.261e − 19 2.745e − 19 2.732e − 19 𝑁 = 6 

9.801e − 19 2.544e − 19 2.543e − 19 2.541e − 19 2.674e − 19 𝑁 = 7 

1.565e − 18 2.287e − 18 1.036e − 18 2.723e − 19 4.607e − 19 𝑁 = 8 

 

Error! Reference source not found.) provides a numerical comparison using the Galerkin m

ethod based on the polynomials of Chelyshkov, Legendre, Chebyshev of  the first and second 

kind, Jacobi, Bernstein about 𝑓(𝑡) = 𝑒𝑡, Gegenbauer, Hermite, Laguerre, Taylor, and Mittag-

Leffler function 𝛼 = 𝛽 = 1, when 𝑁 = 6 and 𝛼 = 0.5 . The comparison shows that the best 

results appear when using Taylor, Jacobi, and Chelyshkov polynomials. It is known that the 

relationship between Chelyshkov and Jacoby polynomials has been clarified (Ref. [4]), and 

all polynomials are close to Taylor polynomial.  
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Table 3: shows the effect of the expansion function on the approximate solution using 

Galerkin method, with N=6 and α=0.5. 

Time consumed (s) RMS Polynomials 

𝟕. 𝟒𝟕 𝟐. 𝟕𝟒𝟒𝟗𝐞 − 𝟏𝟗 Chelyshkov 

7.82 4.8608e − 19 Chebyshev first kind[15] 

8.20 5.3628e − 19 Chebyshev 2nd kind[16] 

14.58 8.1550𝑒 − 14 Bernstein[17] 

8.23 4.3166e − 19 Legendre, [18] 

8.74 𝟐. 𝟓𝟕𝟗𝟒𝐞 − 𝟏𝟗 Jacobi[19] 

7.98 5.3628𝑒 − 19 Gegenbauer[20] 

7.87 6.6202𝑒 − 19 Hermite[21] 

10.82 1.4551𝑒 − 14 Laguerre [22] 

𝟔. 𝟒𝟏 𝟐. 𝟓𝟒𝟓𝟕𝐞 − 𝟏𝟗 Taylor [23] 

10.21 2.5642e − 19 Mittag-Leffler [24] 

 

Example 2.  Suppose the following initial value problem 

𝑢(0.5) + 𝑢 = √𝑥 + √
𝜋

2
, 𝑢(0) = 0, 

with exact solution 𝑢(𝑥) = √𝑥. The approximate solution using MLWM-CPs, when  N = 4 

, 𝑣 =
1

2
 is 𝑈(𝑥) = √𝑥,. Error! Reference source not found.) shows a numerical comparison b

y taking different values of 𝑣 and observing the change in error. 

 

Table 4: shows the effect of the value of v on the approximate solution. 

N = 5 N = 4 N = 3 N = 2 N = 1  

1.0425e − 73 1.0425e − 73 1.0425e − 73 1.0425e − 73 0.3064 𝑣 =
1

4
 

1.0425e − 73 1.0425e − 73 1.0425e − 73 1.0425e − 73 1.0425e − 73 𝑣 =
1

2
 

0.2061 0.0953 0.0502 0.0329 0.0311 𝑣 =
3

4
 

0.4162 0.1836 0.0907 0.0551 0.0447 𝑣 = 1 

 

Example 3.  Let the following FODEs 

𝑢(𝛼) + 𝑢 =
15

8

√ 𝜋

Γ(3.5 − 𝛼)
𝑥2.5−𝛼 + 6

𝑥3−𝛼

Γ(4 − 𝛼)
+ 𝑥2(√𝑥 + 𝑥), 𝑢(0) = 0, 

with exact solution 𝑢(𝑥) = 𝑥2(√𝑥 + 𝑥). 

The effect of the expansion function on the approximate solution using MLWM, with, 𝑣 = 1 

and 𝛼 = 0.5. when 𝑁 = 3, 𝑅𝑀𝑆 = 1.4058e − 04, when 𝑁 = 6 , 𝑅𝑀𝑆 = 3.0316e − 06 . 

 Figure (   (2  shows the accuracy and speed of the approximate solution resulting from 

applying the MLWM-CPs proposed method compared with others method of WRM when 

using 𝑁 = 6  and 𝑣 = 0.5. In this case, the approximate solution is given by 𝑈(𝑥) =
−1.8795𝑒 − 22𝑥0.5 + 1.201𝑒 − 21𝑥 − 7.7567𝑒 − 21𝑥1.5 + 6.30795𝑒 − 20𝑥2 +
 0.083̅𝑥2.5 + 2.083̅𝑥3. 
This implementation with RMS=1.0442𝑒 − 17 .  
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(b) (a) 

Figure (   (2 comparison among the weighted  residual method based on CPs in Ex 3(a) 

Comparison between WRM in Ex3 using v = 0.5, 1, and N = 1, … ,6  (b) time consumed in 

Ex3. using v = 0.5, 1, and N = 1, … ,6   

 

Example 4.  Suppose the following linear FODEs [25] 

𝑢′′′ + 𝑢(2.5) + 𝑢′′ + 4𝑢′ + 𝑢(2.5) + 4𝑢 = 6 cos(𝑥) , 𝑥 ∈ 𝐼𝑏 = [0, 𝑏], 
with initial condition 𝑢(0) = 1, 𝑢′(0) = 1, 𝑎𝑛𝑑 𝑢′′(0) = −1. 

The exact solution of this equation is 𝑢(𝑥) = √2sin (𝑥 +
𝜋

4
). 

In this problem, increasing the length of the period 𝐼𝑏 requires increasing the number of 

unknown coefficients 𝑁. Table  )1) shows the effect of the length of 𝐼𝑏and the number of 

elements of Chelyshkov’s polynomials on the accuracy of the approximate solution. Figure 3 

shows the approximate solution using MLWM-CPs when 𝑁 = 14, 𝑏 = 10 and 𝑣 = 1. 

 

Table )1): shows the effect of the value of 𝑏 on the approximate solution using MLWM, 

when 𝑣 = 1. 

N = 9 N = 7 N = 5 N = 3  

4.283e − 11 3.803e − 08 1.828e − 05 0.0023 𝑏 = 1 

2.044e − 08 4.743e − 06 5.616e − 04 0.0222 𝑏 = 2 

5.384e − 07 5.383e − 05 0.0018 0.0621 𝑏 = 3 

2.2584e − 06 1.177e − 04 0.0022 0.1075 𝑏 = 4 

1.8576𝑒 − 05 4.5015𝑒 − 04 0.0032 0.1404 𝑏 = 5 

2.6140𝑒 − 04 0.0019 0.0128 0.1501 𝑏 = 6 

 

  

(b) (a) 

Figure 3: The diagram demonstrates the efficacy of the solution for Ex.4 In part (a), it 

presents both the precise and estimated solutions with parameters set at when v = 1, 

b = 10 and N = 14. Furthermore, the accompanying graph in part (b) illustrates the 

absolute error pertaining to Ex.4. 
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Example 5.  Consider the variable coefficient fractional diffusion equation [26]  

−
𝑑

𝑑𝑥
(𝐾(𝑥)𝑢(1−𝛼)) = 𝑓(𝑥), 𝛼 ∈ (0,1), 

Where the diffusivity coefficient  𝐾(𝑥) = 𝑒0.5sin (𝜋𝑥) and 

 𝑓(𝑥) = Γ(4 − α)𝑒0.5 sin(𝜋𝑥) (
𝜋

12
cos(𝜋𝑥) (4 − 𝛼)𝑥3 − 3𝑥2) +

1

2
((4 − 𝛼)𝑥2 − 2𝑥)  

with boundary conditions 𝑢(0) = 𝑢(1) = 0.The exact solution is 𝑢(𝑥) = 𝑥3−𝛼(1 − 𝑥) 

  Figure 4 illustrate the approximate solutions in many value of 𝛼, wih 𝑁 = 5, 𝑣 = 1. 
 

  
(b) (a) 

  Figure 4: comparison between approximate and exact solution using different value of 

𝛼. (a) Approximate solution in Ex.5 with N = 5, v = 1, α = 0.1, … ,0.9 (b) absolute  

errors.               
 

Example 6.  Consider the following system of Bagley-Torvik FODEs [19]  

𝑢1
(0.8)

− 𝑢1 + 3𝑢2 = 4𝑥4 − 𝑥5 − 3𝑥3 +
15625

924Γ(0.2)
𝑥

21
5 −

625

44Γ(0.2)
𝑥

16
5 , 

𝑢2
(0.8)

+ 4𝑢1 − 2𝑢2 = 4𝑥5 − 6𝑥4 + 2𝑥3 +
625

44Γ(0.2)
𝑥

16
5 −

125

11Γ(0.2)
𝑥

11
5 , 

 

with initial conditions 𝑢1(0) = 𝑢2(0) = 0. The exact solutions are 𝑢1(𝑥) = 𝑥5 −
𝑥4, 𝑢2(𝑥) = 𝑥4 − 𝑥3. 

 When 𝑁 = 6, 𝑣 = 1, the following approximate solutions are illustrated in Figure 5, 

𝑼𝟏(𝒙) = 𝟐. 𝟒𝒆 − 𝟏𝟔𝒙𝟔 + 𝒙𝟓 − 𝒙𝟒 − 𝟕. 𝟒𝒆 − 𝟏𝟕𝒙𝟑 + 𝟏. 𝟐𝒆 − 𝟏𝟕𝒙𝟐 − 𝟖. 𝟕𝒆 − 𝟏𝟗𝒙 

𝑼𝟐(𝒙) = −𝟕. 𝟑𝒆 − 𝟏𝟔𝒙𝟔 + 𝟕. 𝟐𝒆 − 𝟏𝟔𝒙𝟓 + 𝒙𝟒 − 𝒙𝟑 − 𝟏. 𝟐𝒆 − 𝟏𝟕𝒙𝟐 + 𝟗. 𝟒𝒆 − 𝟏𝟗𝒙 

with 𝑅𝑀𝑆1 =  2.1566e − 18 and 𝑅𝑀𝑆2 =  7.1135e − 18. 

 

  
(b) (a) 

Figure 5 : (a) Illustrates the approximate solution in Ex.4.6 using 𝑁 = 6, 𝑣 = 1, (b) 

errors. 

 

 



6633 -5433Iraqi Journal of Science, 2025, Vol. 66, No. 8, pp:      Rawi                              -Abed and Al 

 

3364 

Example 7.  Consider the fractional nonlinear delay pantograph differential equations [27] 

𝑢(
1
2

) = 𝑢2 + 𝑢 (
1

3
𝑥) −

8

3√(𝜋)
𝑥

3
2 −

2

 √(𝜋)
𝑥

1
2 − 𝑥4 + 2𝑥3 −

10

9
𝑥2 +

1

3
𝑥 

with initial condition 𝑢(0) = 0. The exact solution is 𝑢(𝑥) = 𝑥2 − 𝑥. 

When 𝑁 = 3, 𝑣 =
1

3
, the approximate solution generated by MLWM-CPs method is 

equivalent to the exact solution. 

 

Example 8.  Consider the following nonlinear Riccati FODEs 

𝑢(𝛼) − 2𝑢 + 𝑢2 = 1, 𝑥 ∈ 𝐼, 
with initial condition 𝑢(0) = 0. The exact solution when 𝛼 = 1 is 𝑢(𝑥) = 1 −

√2
√2 tanh(√2 𝑥)−1

tanh(√2 𝑥)−√2
  . When 𝑁 = 5, 𝑣 = 1, the approximate solution is 𝑈(𝑥) = 1.0218𝑥 −

0.7477𝑥2 + 1.3574𝑥3 − 2.1189𝑥4 + 0.6816𝑥5 with 𝑅𝑀𝑆 = 3.4965𝑒 − 05 

 

  
(b) Ex8, 𝑵 = 𝟓, 𝒗 = 𝟏 𝒂𝒏𝒅 𝜶 = 𝟏 (a) Ex7, 𝑵 = 𝟑, 𝒗 = 𝟏 𝒂𝒏𝒅 𝜶 = 𝟎. 𝟓 

Figure  6 :Draw the approximate and exact solution in Ex7 to Ex8 

Example 9.  Suppose the following non-linear fractional-order Van der Pol ODEs [1] 

𝑢(1+𝛼) + 𝜇(𝑢2 − 1)𝑢(𝛼) + 𝑢 = 0, 𝜇 > 0, 𝛼 ∈ (0,1], 
with initial conditions 𝑢(0) = 0, 𝑢′(0) = 1. 
When 𝑁 = 4, 𝑣 = 1, 𝜇 = 0.05 and 𝛼 = 1 the approximate solution is 𝑈(𝑥) = 𝑥 +
0.0351𝑥2 − 0.1951𝑥3 + 0.0202𝑥4 comparing this solution with the approximate solution 

generated by RK4 method in MATLAB using (ode45) solver,𝑅𝑀𝑆 = 4.5079𝑒 − 04. 

 Figure 7: the approximate solution of Van der Pol FODE using the proposed method, when 

𝜇=0.05 comparing with the numerical solution. when μ = 0.05 and α equal to 0.2,0.4,0.6,0.8. 

 
Figure 7: the approximate solution of Van der Pol FODE using the proposed method, 

when 𝜇 = 0.05 comparing with the numerical solution. 
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5. Conclusions 

     In this article, the proposed method was studied, compared, and applied to a wide range of 

linear and nonlinear fractional differential equations with constant and variable coefficients. 

Orthogonal functions were also compared with the Chelyshkov polynomial. In addition, the 

convergence of the proposed method was studied (see proposition (1)), and the famous 

weighted residual methods were compared. The results show the effectiveness of the method 

and its efficiency in solving different types of differential equations. The effect of the 

fractional degree on Chelyshkov polynomials was studied, in contrast to the results obtained 

in previous literature. We point out that the fractional degree in polynomials is useful if the 

problem requires it, while some results show divergence when using the fractional degree  

(see Ex 2). The results show that the proposed Mittag-Leffler method gives accurate and fast 

convergence results compared to other methods, which reduces significant computational 

efforts. In addition, the effect of fractional orders was studied and the results showed that the 

effect is very small (see table (2)).  
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